| 3 |
|
|
| 4 |
#include "PACKAGES_CONFIG.h" |
#include "PACKAGES_CONFIG.h" |
| 5 |
#include "CPP_OPTIONS.h" |
#include "CPP_OPTIONS.h" |
| 6 |
|
#ifdef ALLOW_SALT_PLUME |
| 7 |
|
#include "SALT_PLUME_OPTIONS.h" |
| 8 |
|
#endif |
| 9 |
|
|
| 10 |
|
C-- File external_forcing.F: |
| 11 |
|
C-- Contents |
| 12 |
|
C-- o EXTERNAL_FORCING_U |
| 13 |
|
C-- o EXTERNAL_FORCING_V |
| 14 |
|
C-- o EXTERNAL_FORCING_T |
| 15 |
|
C-- o EXTERNAL_FORCING_S |
| 16 |
|
|
| 17 |
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 18 |
CBOP |
CBOP |
| 19 |
C !ROUTINE: EXTERNAL_FORCING_U |
C !ROUTINE: EXTERNAL_FORCING_U |
| 20 |
C !INTERFACE: |
C !INTERFACE: |
| 56 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
| 57 |
C == Local variables == |
C == Local variables == |
| 58 |
C i,j :: Loop counters |
C i,j :: Loop counters |
| 59 |
C kSurface :: index of surface layer |
C kSurface :: index of surface level |
| 60 |
INTEGER i, j |
INTEGER i, j |
| 61 |
INTEGER kSurface |
INTEGER kSurface |
| 62 |
CEOP |
CEOP |
| 76 |
& myTime, myThid ) |
& myTime, myThid ) |
| 77 |
#endif /* ALLOW_AIM */ |
#endif /* ALLOW_AIM */ |
| 78 |
|
|
| 79 |
|
#ifdef ALLOW_ATM_PHYS |
| 80 |
|
IF ( useAtm_Phys ) CALL ATM_PHYS_TENDENCY_APPLY_U( |
| 81 |
|
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 82 |
|
& myTime, myThid ) |
| 83 |
|
#endif /* ALLOW_ATM_PHYS */ |
| 84 |
|
|
| 85 |
#ifdef ALLOW_FIZHI |
#ifdef ALLOW_FIZHI |
| 86 |
IF ( useFIZHI ) CALL FIZHI_TENDENCY_APPLY_U( |
IF ( useFIZHI ) CALL FIZHI_TENDENCY_APPLY_U( |
| 87 |
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 88 |
& myTime, myThid ) |
& myTime, myThid ) |
| 89 |
#endif /* ALLOW_FIZHI */ |
#endif /* ALLOW_FIZHI */ |
| 90 |
|
|
| 91 |
C Add windstress momentum impulse into the top-layer |
C Ocean: Add momentum surface forcing (e.g., wind-stress) in surface level |
| 92 |
IF ( kLev .EQ. kSurface ) THEN |
IF ( kLev .EQ. kSurface ) THEN |
| 93 |
c DO j=1,sNy |
c DO j=1,sNy |
| 94 |
C-jmc: Without CD-scheme, this is OK ; but with CD-scheme, needs to cover [0:sNy+1] |
C-jmc: Without CD-scheme, this is OK ; but with CD-scheme, needs to cover [0:sNy+1] |
| 95 |
DO j=0,sNy+1 |
DO j=0,sNy+1 |
| 96 |
DO i=1,sNx+1 |
DO i=1,sNx+1 |
| 97 |
gU(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
gU(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
| 98 |
& +foFacMom*surfaceForcingU(i,j,bi,bj) |
& +foFacMom*surfaceForcingU(i,j,bi,bj) |
| 99 |
& *recip_drF(kLev)*_recip_hFacW(i,j,kLev,bi,bj) |
& *recip_drF(kLev)*_recip_hFacW(i,j,kLev,bi,bj) |
| 100 |
|
ENDDO |
| 101 |
|
ENDDO |
| 102 |
|
ELSEIF ( kSurface.EQ.-1 ) THEN |
| 103 |
|
DO j=0,sNy+1 |
| 104 |
|
DO i=1,sNx+1 |
| 105 |
|
IF ( kSurfW(i,j,bi,bj).EQ.kLev ) THEN |
| 106 |
|
gU(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
| 107 |
|
& +foFacMom*surfaceForcingU(i,j,bi,bj) |
| 108 |
|
& *recip_drF(kLev)*_recip_hFacW(i,j,kLev,bi,bj) |
| 109 |
|
ENDIF |
| 110 |
ENDDO |
ENDDO |
| 111 |
ENDDO |
ENDDO |
| 112 |
ENDIF |
ENDIF |
| 183 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
| 184 |
C == Local variables == |
C == Local variables == |
| 185 |
C i,j :: Loop counters |
C i,j :: Loop counters |
| 186 |
C kSurface :: index of surface layer |
C kSurface :: index of surface level |
| 187 |
INTEGER i, j |
INTEGER i, j |
| 188 |
INTEGER kSurface |
INTEGER kSurface |
| 189 |
CEOP |
CEOP |
| 203 |
& myTime, myThid ) |
& myTime, myThid ) |
| 204 |
#endif /* ALLOW_AIM */ |
#endif /* ALLOW_AIM */ |
| 205 |
|
|
| 206 |
|
#ifdef ALLOW_ATM_PHYS |
| 207 |
|
IF ( useAtm_Phys ) CALL ATM_PHYS_TENDENCY_APPLY_V( |
| 208 |
|
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 209 |
|
& myTime, myThid ) |
| 210 |
|
#endif /* ALLOW_ATM_PHYS */ |
| 211 |
|
|
| 212 |
#ifdef ALLOW_FIZHI |
#ifdef ALLOW_FIZHI |
| 213 |
IF ( useFIZHI ) CALL FIZHI_TENDENCY_APPLY_V( |
IF ( useFIZHI ) CALL FIZHI_TENDENCY_APPLY_V( |
| 214 |
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 215 |
& myTime, myThid ) |
& myTime, myThid ) |
| 216 |
#endif /* ALLOW_FIZHI */ |
#endif /* ALLOW_FIZHI */ |
| 217 |
|
|
| 218 |
C Add windstress momentum impulse into the top-layer |
C Ocean: Add momentum surface forcing (e.g., wind-stress) in surface level |
| 219 |
IF ( kLev .EQ. kSurface ) THEN |
IF ( kLev .EQ. kSurface ) THEN |
| 220 |
DO j=1,sNy+1 |
DO j=1,sNy+1 |
| 221 |
c DO i=1,sNx |
c DO i=1,sNx |
| 222 |
C-jmc: Without CD-scheme, this is OK ; but with CD-scheme, needs to cover [0:sNx+1] |
C-jmc: Without CD-scheme, this is OK ; but with CD-scheme, needs to cover [0:sNx+1] |
| 223 |
DO i=0,sNx+1 |
DO i=0,sNx+1 |
| 224 |
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
| 225 |
& +foFacMom*surfaceForcingV(i,j,bi,bj) |
& +foFacMom*surfaceForcingV(i,j,bi,bj) |
| 226 |
& *recip_drF(kLev)*_recip_hFacS(i,j,kLev,bi,bj) |
& *recip_drF(kLev)*_recip_hFacS(i,j,kLev,bi,bj) |
| 227 |
|
ENDDO |
| 228 |
|
ENDDO |
| 229 |
|
ELSEIF ( kSurface.EQ.-1 ) THEN |
| 230 |
|
DO j=1,sNy+1 |
| 231 |
|
DO i=0,sNx+1 |
| 232 |
|
IF ( kSurfS(i,j,bi,bj).EQ.kLev ) THEN |
| 233 |
|
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
| 234 |
|
& +foFacMom*surfaceForcingV(i,j,bi,bj) |
| 235 |
|
& *recip_drF(kLev)*_recip_hFacS(i,j,kLev,bi,bj) |
| 236 |
|
ENDIF |
| 237 |
ENDDO |
ENDDO |
| 238 |
ENDDO |
ENDDO |
| 239 |
ENDIF |
ENDIF |
| 311 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
| 312 |
C == Local variables == |
C == Local variables == |
| 313 |
C i,j :: Loop counters |
C i,j :: Loop counters |
| 314 |
C kSurface :: index of surface layer |
C kSurface :: index of surface level |
| 315 |
INTEGER i, j |
INTEGER i, j |
| 316 |
INTEGER kSurface |
INTEGER kSurface |
| 317 |
|
INTEGER km, kc, kp |
| 318 |
|
_RL tmpVar(1:sNx,1:sNy) |
| 319 |
|
_RL tmpFac, delPI |
| 320 |
CEOP |
CEOP |
| 321 |
#ifdef ALLOW_FRICTION_HEATING |
c#ifdef ALLOW_FRICTION_HEATING |
| 322 |
_RL tmpFac |
c _RL tmpFac |
| 323 |
#endif |
c#endif |
| 324 |
#ifdef SHORTWAVE_HEATING |
#ifdef SHORTWAVE_HEATING |
|
integer two |
|
| 325 |
_RL minusone |
_RL minusone |
| 326 |
parameter (two=2,minusone=-1.) |
PARAMETER (minusOne=-1.) |
| 327 |
_RL swfracb(two) |
_RL swfracb(2) |
| 328 |
INTEGER kp1 |
INTEGER kp1 |
| 329 |
#endif |
#endif |
| 330 |
|
|
| 331 |
IF ( fluidIsAir ) THEN |
IF ( fluidIsAir ) THEN |
| 332 |
kSurface = 0 |
kSurface = 0 |
| 333 |
|
ELSEIF ( usingZCoords .AND. useShelfIce ) THEN |
| 334 |
|
kSurface = -1 |
| 335 |
ELSEIF ( usingPCoords ) THEN |
ELSEIF ( usingPCoords ) THEN |
| 336 |
kSurface = Nr |
kSurface = Nr |
| 337 |
ELSE |
ELSE |
| 345 |
& myTime, myThid ) |
& myTime, myThid ) |
| 346 |
#endif /* ALLOW_AIM */ |
#endif /* ALLOW_AIM */ |
| 347 |
|
|
| 348 |
|
#ifdef ALLOW_ATM_PHYS |
| 349 |
|
IF ( useAtm_Phys ) CALL ATM_PHYS_TENDENCY_APPLY_T( |
| 350 |
|
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 351 |
|
& myTime, myThid ) |
| 352 |
|
#endif /* ALLOW_ATM_PHYS */ |
| 353 |
|
|
| 354 |
#ifdef ALLOW_FIZHI |
#ifdef ALLOW_FIZHI |
| 355 |
IF ( useFIZHI ) CALL FIZHI_TENDENCY_APPLY_T( |
IF ( useFIZHI ) CALL FIZHI_TENDENCY_APPLY_T( |
| 356 |
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 395 |
tmpFac = (tmpFac/atm_Cp) * mass2rUnit |
tmpFac = (tmpFac/atm_Cp) * mass2rUnit |
| 396 |
ELSE |
ELSE |
| 397 |
C conversion from W/m^2/r_unit to K/s |
C conversion from W/m^2/r_unit to K/s |
| 398 |
tmpFac = recip_Cp * mass2rUnit |
tmpFac = mass2rUnit/HeatCapacity_Cp |
| 399 |
ENDIF |
ENDIF |
| 400 |
DO j=1,sNy |
DO j=1,sNy |
| 401 |
DO i=1,sNx |
DO i=1,sNx |
| 408 |
ENDIF |
ENDIF |
| 409 |
#endif /* ALLOW_FRICTION_HEATING */ |
#endif /* ALLOW_FRICTION_HEATING */ |
| 410 |
|
|
| 411 |
C Add heat in top-layer |
IF ( fluidIsAir .AND. atm_Rq.NE.zeroRL .AND. Nr.NE.1 ) THEN |
| 412 |
|
C-- Compressible fluid: account for difference between moist and dry air |
| 413 |
|
C specific volume in Enthalpy equation (+ V.dP term), since only the |
| 414 |
|
C dry air part is accounted for in the (dry) Pot.Temp formulation. |
| 415 |
|
C Used centered averaging from interface to center (consistent with |
| 416 |
|
C conversion term in KE eq) and same discretisation ( [T*Q]_bar_k ) |
| 417 |
|
C as for Theta_v in CALC_PHI_HYD |
| 418 |
|
|
| 419 |
|
C conversion from in-situ Temp to Pot.Temp |
| 420 |
|
tmpFac = (atm_Po/rC(kLev))**atm_kappa |
| 421 |
|
C conversion from W/kg to K/s |
| 422 |
|
tmpFac = tmpFac/atm_Cp |
| 423 |
|
km = kLev-1 |
| 424 |
|
kc = kLev |
| 425 |
|
kp = kLev+1 |
| 426 |
|
IF ( kLev.EQ.1 ) THEN |
| 427 |
|
DO j=1,sNy |
| 428 |
|
DO i=1,sNx |
| 429 |
|
tmpVar(i,j) = 0. |
| 430 |
|
ENDDO |
| 431 |
|
ENDDO |
| 432 |
|
ELSE |
| 433 |
|
delPI = atm_Cp*( (rC(km)/atm_Po)**atm_kappa |
| 434 |
|
& - (rC(kc)/atm_Po)**atm_kappa ) |
| 435 |
|
DO j=1,sNy |
| 436 |
|
DO i=1,sNx |
| 437 |
|
tmpVar(i,j) = wVel(i,j,kc,bi,bj)*delPI*atm_Rq |
| 438 |
|
& *( theta(i,j,km,bi,bj)*salt(i,j,km,bi,bj) |
| 439 |
|
& + theta(i,j,kc,bi,bj)*salt(i,j,kc,bi,bj) |
| 440 |
|
& )*maskC(i,j,km,bi,bj)*0.25 _d 0 |
| 441 |
|
ENDDO |
| 442 |
|
ENDDO |
| 443 |
|
ENDIF |
| 444 |
|
IF ( kLev.LT.Nr ) THEN |
| 445 |
|
delPI = atm_Cp*( (rC(kc)/atm_Po)**atm_kappa |
| 446 |
|
& - (rC(kp)/atm_Po)**atm_kappa ) |
| 447 |
|
DO j=1,sNy |
| 448 |
|
DO i=1,sNx |
| 449 |
|
tmpVar(i,j) = tmpVar(i,j) |
| 450 |
|
& + wVel(i,j,kp,bi,bj)*delPI*atm_Rq |
| 451 |
|
& *( theta(i,j,kc,bi,bj)*salt(i,j,kc,bi,bj) |
| 452 |
|
& + theta(i,j,kp,bi,bj)*salt(i,j,kp,bi,bj) |
| 453 |
|
& )*maskC(i,j,kp,bi,bj)*0.25 _d 0 |
| 454 |
|
ENDDO |
| 455 |
|
ENDDO |
| 456 |
|
ENDIF |
| 457 |
|
DO j=1,sNy |
| 458 |
|
DO i=1,sNx |
| 459 |
|
gT(i,j,kLev,bi,bj) = gT(i,j,kLev,bi,bj) |
| 460 |
|
& + tmpVar(i,j)*tmpFac |
| 461 |
|
& *recip_drF(kLev)*_recip_hFacC(i,j,kLev,bi,bj) |
| 462 |
|
ENDDO |
| 463 |
|
ENDDO |
| 464 |
|
#ifdef ALLOW_DIAGNOSTICS |
| 465 |
|
IF ( useDiagnostics ) THEN |
| 466 |
|
C conversion to W/m^2 |
| 467 |
|
tmpFac = rUnit2mass |
| 468 |
|
CALL DIAGNOSTICS_SCALE_FILL( tmpVar, tmpFac, 1, |
| 469 |
|
& 'MoistCor', kc, 1, 3, bi,bj,myThid ) |
| 470 |
|
ENDIF |
| 471 |
|
#endif /* ALLOW_DIAGNOSTICS */ |
| 472 |
|
ENDIF |
| 473 |
|
|
| 474 |
|
C Ocean: Add temperature surface forcing (e.g., heat-flux) in surface level |
| 475 |
IF ( kLev .EQ. kSurface ) THEN |
IF ( kLev .EQ. kSurface ) THEN |
| 476 |
DO j=1,sNy |
DO j=1,sNy |
| 477 |
DO i=1,sNx |
DO i=1,sNx |
| 478 |
gT(i,j,kLev,bi,bj)=gT(i,j,kLev,bi,bj) |
gT(i,j,kLev,bi,bj)=gT(i,j,kLev,bi,bj) |
| 479 |
& +surfaceForcingT(i,j,bi,bj) |
& +surfaceForcingT(i,j,bi,bj) |
| 480 |
& *recip_drF(kLev)*_recip_hFacC(i,j,kLev,bi,bj) |
& *recip_drF(kLev)*_recip_hFacC(i,j,kLev,bi,bj) |
| 481 |
|
ENDDO |
| 482 |
|
ENDDO |
| 483 |
|
ELSEIF ( kSurface.EQ.-1 ) THEN |
| 484 |
|
DO j=1,sNy |
| 485 |
|
DO i=1,sNx |
| 486 |
|
IF ( kSurfC(i,j,bi,bj).EQ.kLev ) THEN |
| 487 |
|
gT(i,j,kLev,bi,bj)=gT(i,j,kLev,bi,bj) |
| 488 |
|
& +surfaceForcingT(i,j,bi,bj) |
| 489 |
|
& *recip_drF(kLev)*_recip_hFacC(i,j,kLev,bi,bj) |
| 490 |
|
ENDIF |
| 491 |
ENDDO |
ENDDO |
| 492 |
ENDDO |
ENDDO |
| 493 |
ENDIF |
ENDIF |
| 529 |
swfracb(1)=abs(rF(klev)) |
swfracb(1)=abs(rF(klev)) |
| 530 |
swfracb(2)=abs(rF(klev+1)) |
swfracb(2)=abs(rF(klev+1)) |
| 531 |
CALL SWFRAC( |
CALL SWFRAC( |
| 532 |
I two, minusone, |
I 2, minusOne, |
| 533 |
U swfracb, |
U swfracb, |
| 534 |
I myTime, 1, myThid ) |
I myTime, 1, myThid ) |
| 535 |
kp1 = klev+1 |
kp1 = klev+1 |
| 542 |
gT(i,j,klev,bi,bj) = gT(i,j,klev,bi,bj) |
gT(i,j,klev,bi,bj) = gT(i,j,klev,bi,bj) |
| 543 |
& -Qsw(i,j,bi,bj)*(swfracb(1)*maskC(i,j,klev,bi,bj) |
& -Qsw(i,j,bi,bj)*(swfracb(1)*maskC(i,j,klev,bi,bj) |
| 544 |
& -swfracb(2)*maskC(i,j,kp1, bi,bj)) |
& -swfracb(2)*maskC(i,j,kp1, bi,bj)) |
| 545 |
& *recip_Cp*mass2rUnit |
& *mass2rUnit/HeatCapacity_Cp |
| 546 |
& *recip_drF(klev)*_recip_hFacC(i,j,kLev,bi,bj) |
& *recip_drF(klev)*_recip_hFacC(i,j,kLev,bi,bj) |
| 547 |
ENDDO |
ENDDO |
| 548 |
ENDDO |
ENDDO |
| 623 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
| 624 |
C == Local variables == |
C == Local variables == |
| 625 |
C i,j :: Loop counters |
C i,j :: Loop counters |
| 626 |
C kSurface :: index of surface layer |
C kSurface :: index of surface level |
| 627 |
INTEGER i, j |
INTEGER i, j |
| 628 |
INTEGER kSurface |
INTEGER kSurface |
| 629 |
CEOP |
CEOP |
| 630 |
|
|
| 631 |
IF ( fluidIsAir ) THEN |
IF ( fluidIsAir ) THEN |
| 632 |
kSurface = 0 |
kSurface = 0 |
| 633 |
|
ELSEIF ( usingZCoords .AND. useShelfIce ) THEN |
| 634 |
|
kSurface = -1 |
| 635 |
ELSEIF ( usingPCoords ) THEN |
ELSEIF ( usingPCoords ) THEN |
| 636 |
kSurface = Nr |
kSurface = Nr |
| 637 |
ELSE |
ELSE |
| 645 |
& myTime, myThid ) |
& myTime, myThid ) |
| 646 |
#endif /* ALLOW_AIM */ |
#endif /* ALLOW_AIM */ |
| 647 |
|
|
| 648 |
|
#ifdef ALLOW_ATM_PHYS |
| 649 |
|
IF ( useAtm_Phys ) CALL ATM_PHYS_TENDENCY_APPLY_S( |
| 650 |
|
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 651 |
|
& myTime, myThid ) |
| 652 |
|
#endif /* ALLOW_ATM_PHYS */ |
| 653 |
|
|
| 654 |
#ifdef ALLOW_FIZHI |
#ifdef ALLOW_FIZHI |
| 655 |
IF ( useFIZHI ) CALL FIZHI_TENDENCY_APPLY_S( |
IF ( useFIZHI ) CALL FIZHI_TENDENCY_APPLY_S( |
| 656 |
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
& iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 686 |
ENDIF |
ENDIF |
| 687 |
#endif /* ALLOW_ADDFLUID */ |
#endif /* ALLOW_ADDFLUID */ |
| 688 |
|
|
| 689 |
C Add fresh-water in top-layer |
C Ocean: Add salinity surface forcing (e.g., fresh-water) in surface level |
| 690 |
IF ( kLev .EQ. kSurface ) THEN |
IF ( kLev .EQ. kSurface ) THEN |
| 691 |
DO j=1,sNy |
DO j=1,sNy |
| 692 |
DO i=1,sNx |
DO i=1,sNx |
| 693 |
gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) |
gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) |
| 694 |
& +surfaceForcingS(i,j,bi,bj) |
& +surfaceForcingS(i,j,bi,bj) |
| 695 |
& *recip_drF(kLev)*_recip_hFacC(i,j,kLev,bi,bj) |
& *recip_drF(kLev)*_recip_hFacC(i,j,kLev,bi,bj) |
| 696 |
|
ENDDO |
| 697 |
|
ENDDO |
| 698 |
|
ELSEIF ( kSurface.EQ.-1 ) THEN |
| 699 |
|
DO j=1,sNy |
| 700 |
|
DO i=1,sNx |
| 701 |
|
IF ( kSurfC(i,j,bi,bj).EQ.kLev ) THEN |
| 702 |
|
gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) |
| 703 |
|
& +surfaceForcingS(i,j,bi,bj) |
| 704 |
|
& *recip_drF(kLev)*_recip_hFacC(i,j,kLev,bi,bj) |
| 705 |
|
ENDIF |
| 706 |
ENDDO |
ENDDO |
| 707 |
ENDDO |
ENDDO |
| 708 |
ENDIF |
ENDIF |
| 731 |
& bi,bj, kLev, myTime, myThid ) |
& bi,bj, kLev, myTime, myThid ) |
| 732 |
#endif /* ALLOW_ICEFRONT */ |
#endif /* ALLOW_ICEFRONT */ |
| 733 |
|
|
| 734 |
|
Catn: org. version of SP: do within k-loop |
| 735 |
|
Catn new version: outside k-loop; called from [temp,salt]_integrate.F |
| 736 |
#ifdef ALLOW_SALT_PLUME |
#ifdef ALLOW_SALT_PLUME |
| 737 |
|
CC#ifndef SALT_PLUME_VOLUME |
| 738 |
IF ( useSALT_PLUME ) |
IF ( useSALT_PLUME ) |
| 739 |
& CALL SALT_PLUME_TENDENCY_APPLY_S( |
& CALL SALT_PLUME_TENDENCY_APPLY_S( |
| 740 |
I iMin,iMax, jMin,jMax, bi,bj, kLev, |
I iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 741 |
I myTime, myThid ) |
I myTime, myThid ) |
| 742 |
|
#ifdef SALT_PLUME_VOLUME |
| 743 |
|
IF ( useSALT_PLUME ) |
| 744 |
|
& CALL SALT_PLUME_TENDENCY_APPLY_T( |
| 745 |
|
I iMin,iMax, jMin,jMax, bi,bj, kLev, |
| 746 |
|
I myTime, myThid ) |
| 747 |
|
#endif /* ndef SALT_PLUME_VOLUME */ |
| 748 |
#endif /* ALLOW_SALT_PLUME */ |
#endif /* ALLOW_SALT_PLUME */ |
| 749 |
|
|
| 750 |
#ifdef ALLOW_RBCS |
#ifdef ALLOW_RBCS |