C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.178 2016/11/28 23:05:05 jmc Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" #ifdef ALLOW_AUTODIFF # include "AUTODIFF_OPTIONS.h" #endif #ifdef ALLOW_MOM_COMMON # include "MOM_COMMON_OPTIONS.h" #endif #ifdef ALLOW_OBCS # include "OBCS_OPTIONS.h" #endif #undef DYNAMICS_GUGV_EXCH_CHECK CBOP C !ROUTINE: DYNAMICS C !INTERFACE: SUBROUTINE DYNAMICS(myTime, myIter, myThid) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE DYNAMICS C | o Controlling routine for the explicit part of the model C | dynamics. C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "DYNVARS.h" #ifdef ALLOW_MOM_COMMON # include "MOM_VISC.h" #endif #ifdef ALLOW_CD_CODE # include "CD_CODE_VARS.h" #endif #ifdef ALLOW_AUTODIFF # include "tamc.h" # include "tamc_keys.h" # include "FFIELDS.h" # include "EOS.h" # ifdef ALLOW_KPP # include "KPP.h" # endif # ifdef ALLOW_PTRACERS # include "PTRACERS_SIZE.h" # include "PTRACERS_FIELDS.h" # endif # ifdef ALLOW_OBCS # include "OBCS_PARAMS.h" # include "OBCS_FIELDS.h" # ifdef ALLOW_PTRACERS # include "OBCS_PTRACERS.h" # endif # endif # ifdef ALLOW_MOM_FLUXFORM # include "MOM_FLUXFORM.h" # endif #endif /* ALLOW_AUTODIFF */ C !CALLING SEQUENCE: C DYNAMICS() C | C |-- CALC_EP_FORCING C | C |-- CALC_GRAD_PHI_SURF C | C |-- CALC_VISCOSITY C | C |-- MOM_CALC_3D_STRAIN C | C |-- CALC_EDDY_STRESS C | C |-- CALC_PHI_HYD C | C |-- MOM_FLUXFORM C | C |-- MOM_VECINV C | C |-- MOM_CALC_SMAG_3D C |-- MOM_UV_SMAG_3D C | C |-- TIMESTEP C | C |-- MOM_U_IMPLICIT_R C |-- MOM_V_IMPLICIT_R C | C |-- IMPLDIFF C | C |-- OBCS_APPLY_UV C | C |-- CALC_GW C | C |-- DIAGNOSTICS_FILL C |-- DEBUG_STATS_RL C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myTime :: Current time in simulation C myIter :: Current iteration number in simulation C myThid :: Thread number for this instance of the routine. _RL myTime INTEGER myIter INTEGER myThid C !FUNCTIONS: #ifdef ALLOW_DIAGNOSTICS LOGICAL DIAGNOSTICS_IS_ON EXTERNAL DIAGNOSTICS_IS_ON #endif C !LOCAL VARIABLES: C == Local variables C fVer[UV] o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. C phiHydC :: hydrostatic potential anomaly at cell center C In z coords phiHyd is the hydrostatic potential C (=pressure/rho0) anomaly C In p coords phiHyd is the geopotential height anomaly. C phiHydF :: hydrostatic potential anomaly at middle between 2 centers C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom. C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean) C phiSurfY or geopotential (atmos) in X and Y direction C guDissip :: dissipation tendency (all explicit terms), u component C gvDissip :: dissipation tendency (all explicit terms), v component C kappaRU :: vertical viscosity for velocity U-component C kappaRV :: vertical viscosity for velocity V-component C iMin, iMax :: Ranges and sub-block indices on which calculations C jMin, jMax are applied. C bi, bj :: tile indices C k :: current level index C km1, kp1 :: index of level above (k-1) and below (k+1) C kUp, kDown :: Index for interface above and below. kUp and kDown are C are switched with k to be the appropriate index into fVerU,V _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL kappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) _RL kappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) #ifdef ALLOW_SMAG_3D C str11 :: strain component Vxx @ grid-cell center C str22 :: strain component Vyy @ grid-cell center C str33 :: strain component Vzz @ grid-cell center C str12 :: strain component Vxy @ grid-cell corner C str13 :: strain component Vxz @ above uVel C str23 :: strain component Vyz @ above vVel C viscAh3d_00 :: Smagorinsky viscosity @ grid-cell center C viscAh3d_12 :: Smagorinsky viscosity @ grid-cell corner C viscAh3d_13 :: Smagorinsky viscosity @ above uVel C viscAh3d_23 :: Smagorinsky viscosity @ above vVel C addDissU :: zonal momentum tendency from 3-D Smag. viscosity C addDissV :: merid momentum tendency from 3-D Smag. viscosity _RL str11(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) _RL str22(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) _RL str33(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) _RL str12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) _RL str13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) _RL str23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) _RL viscAh3d_00(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) _RL viscAh3d_12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) _RL viscAh3d_13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) _RL viscAh3d_23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) _RL addDissU(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL addDissV(1-OLx:sNx+OLx,1-OLy:sNy+OLy) #elif ( defined ALLOW_NONHYDROSTATIC ) _RL str13(1), str23(1), str33(1) _RL viscAh3d_00(1), viscAh3d_13(1), viscAh3d_23(1) #endif INTEGER bi, bj INTEGER i, j INTEGER k, km1, kp1, kUp, kDown INTEGER iMin, iMax INTEGER jMin, jMax PARAMETER( iMin = 0 , iMax = sNx+1 ) PARAMETER( jMin = 0 , jMax = sNy+1 ) #ifdef ALLOW_DIAGNOSTICS LOGICAL dPhiHydDiagIsOn _RL tmpFac #endif /* ALLOW_DIAGNOSTICS */ C--- The algorithm... C C "Correction Step" C ================= C Here we update the horizontal velocities with the surface C pressure such that the resulting flow is either consistent C with the free-surface evolution or the rigid-lid: C U[n] = U* + dt x d/dx P C V[n] = V* + dt x d/dy P C C "Calculation of Gs" C =================== C This is where all the accelerations and tendencies (ie. C physics, parameterizations etc...) are calculated C rho = rho ( theta[n], salt[n] ) C b = b(rho, theta) C K31 = K31 ( rho ) C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) C C "Time-stepping" or "Prediction" C ================================ C The models variables are stepped forward with the appropriate C time-stepping scheme (currently we use Adams-Bashforth II) C - For momentum, the result is always *only* a "prediction" C in that the flow may be divergent and will be "corrected" C later with a surface pressure gradient. C - Normally for tracers the result is the new field at time C level [n+1} *BUT* in the case of implicit diffusion the result C is also *only* a prediction. C - We denote "predictors" with an asterisk (*). C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C With implicit diffusion: C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C (1 + dt * K * d_zz) theta[n] = theta* C (1 + dt * K * d_zz) salt[n] = salt* C--- CEOP #ifdef ALLOW_DEBUG IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid ) #endif #ifdef ALLOW_DIAGNOSTICS dPhiHydDiagIsOn = .FALSE. IF ( useDiagnostics ) & dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid ) & .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid ) #endif C-- Call to routine for calculation of Eliassen-Palm-flux-forced C U-tendency, if desired: #ifdef INCLUDE_EP_FORCING_CODE CALL CALC_EP_FORCING(myThid) #endif #ifdef ALLOW_AUTODIFF_MONITOR_DIAG CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid ) #endif #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC CHPF$ INDEPENDENT #endif /* ALLOW_AUTODIFF_TAMC */ DO bj=myByLo(myThid),myByHi(myThid) #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC CHPF$ INDEPENDENT, NEW (fVerU,fVerV CHPF$& ,phiHydF CHPF$& ,kappaRU,kappaRV CHPF$& ) #endif /* ALLOW_AUTODIFF_TAMC */ DO bi=myBxLo(myThid),myBxHi(myThid) #ifdef ALLOW_AUTODIFF_TAMC act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 act3 = myThid - 1 max3 = nTx*nTy act4 = ikey_dynamics - 1 idynkey = (act1 + 1) + act2*max1 & + act3*max1*max2 & + act4*max1*max2*max3 #endif /* ALLOW_AUTODIFF_TAMC */ C-- Set up work arrays with valid (i.e. not NaN) values C These initial values do not alter the numerical results. They C just ensure that all memory references are to valid floating C point numbers. This prevents spurious hardware signals due to C uninitialised but inert locations. #ifdef ALLOW_AUTODIFF DO k=1,Nr DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx c-- need some re-initialisation here to break dependencies gU(i,j,k,bi,bj) = 0. _d 0 gV(i,j,k,bi,bj) = 0. _d 0 ENDDO ENDDO ENDDO #endif /* ALLOW_AUTODIFF */ DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fVerU (i,j,1) = 0. _d 0 fVerU (i,j,2) = 0. _d 0 fVerV (i,j,1) = 0. _d 0 fVerV (i,j,2) = 0. _d 0 phiHydF (i,j) = 0. _d 0 phiHydC (i,j) = 0. _d 0 #ifndef INCLUDE_PHIHYD_CALCULATION_CODE dPhiHydX(i,j) = 0. _d 0 dPhiHydY(i,j) = 0. _d 0 #endif phiSurfX(i,j) = 0. _d 0 phiSurfY(i,j) = 0. _d 0 guDissip(i,j) = 0. _d 0 gvDissip(i,j) = 0. _d 0 #ifdef ALLOW_AUTODIFF phiHydLow(i,j,bi,bj) = 0. _d 0 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM) # ifndef DISABLE_RSTAR_CODE dWtransC(i,j,bi,bj) = 0. _d 0 dWtransU(i,j,bi,bj) = 0. _d 0 dWtransV(i,j,bi,bj) = 0. _d 0 # endif # endif #endif /* ALLOW_AUTODIFF */ ENDDO ENDDO C-- Start computation of dynamics #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE wVel (:,:,:,bi,bj) = CADJ & comlev1_bibj, key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ C-- Explicit part of the Surface Potential Gradient (add in TIMESTEP) C (note: this loop will be replaced by CALL CALC_GRAD_ETA) IF (implicSurfPress.NE.1.) THEN CALL CALC_GRAD_PHI_SURF( I bi,bj,iMin,iMax,jMin,jMax, I etaN, O phiSurfX,phiSurfY, I myThid ) ENDIF #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte #ifdef ALLOW_KPP CADJ STORE KPPviscAz (:,:,:,bi,bj) CADJ & = comlev1_bibj, key=idynkey, byte=isbyte #endif /* ALLOW_KPP */ #endif /* ALLOW_AUTODIFF_TAMC */ #ifndef ALLOW_AUTODIFF IF ( .NOT.momViscosity ) THEN #endif DO k=1,Nr+1 DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx kappaRU(i,j,k) = 0. _d 0 kappaRV(i,j,k) = 0. _d 0 ENDDO ENDDO ENDDO #ifndef ALLOW_AUTODIFF ENDIF #endif #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL C-- Calculate the total vertical viscosity IF ( momViscosity ) THEN CALL CALC_VISCOSITY( I bi,bj, iMin,iMax,jMin,jMax, O kappaRU, kappaRV, I myThid ) ENDIF #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */ #ifdef ALLOW_SMAG_3D IF ( useSmag3D ) THEN CALL MOM_CALC_3D_STRAIN( O str11, str22, str33, str12, str13, str23, I bi, bj, myThid ) ENDIF #endif /* ALLOW_SMAG_3D */ #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE kappaRU(:,:,:) CADJ & = comlev1_bibj, key=idynkey, byte=isbyte CADJ STORE kappaRV(:,:,:) CADJ & = comlev1_bibj, key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ #ifdef ALLOW_OBCS C-- For Stevens boundary conditions velocities need to be extrapolated C (copied) to a narrow strip outside the domain IF ( useOBCS ) THEN CALL OBCS_COPY_UV_N( U uVel(1-OLx,1-OLy,1,bi,bj), U vVel(1-OLx,1-OLy,1,bi,bj), I Nr, bi, bj, myThid ) ENDIF #endif /* ALLOW_OBCS */ #ifdef ALLOW_EDDYPSI CALL CALC_EDDY_STRESS(bi,bj,myThid) #endif C-- Start of dynamics loop DO k=1,Nr C-- km1 Points to level above k (=k-1) C-- kup Cycles through 1,2 to point to layer above C-- kDown Cycles through 2,1 to point to current layer km1 = MAX(1,k-1) kp1 = MIN(k+1,Nr) kup = 1+MOD(k+1,2) kDown= 1+MOD(k,2) #ifdef ALLOW_AUTODIFF_TAMC kkey = (idynkey-1)*Nr + k CADJ STORE totPhiHyd (:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE phiHydLow (:,:,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE theta (:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE salt (:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # ifdef NONLIN_FRSURF cph-test CADJ STORE phiHydC (:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE phiHydF (:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gU(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gV(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # ifndef ALLOW_ADAMSBASHFORTH_3 CADJ STORE guNm1(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gvNm1(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # else CADJ STORE guNm(:,:,k,bi,bj,1) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE guNm(:,:,k,bi,bj,2) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gvNm(:,:,k,bi,bj,1) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gvNm(:,:,k,bi,bj,2) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # endif # ifdef ALLOW_CD_CODE CADJ STORE uNM1(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE vNM1(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE uVelD(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE vVelD(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # endif # endif /* NONLIN_FRSURF */ #endif /* ALLOW_AUTODIFF_TAMC */ C-- Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0 CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,k, I theta, salt, U phiHydF, O phiHydC, dPhiHydX, dPhiHydY, I myTime, myIter, myThid ) #ifdef ALLOW_DIAGNOSTICS IF ( dPhiHydDiagIsOn ) THEN tmpFac = -1. _d 0 CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1, & 'Um_dPHdx', k, 1, 2, bi, bj, myThid ) CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1, & 'Vm_dPHdy', k, 1, 2, bi, bj, myThid ) ENDIF #endif /* ALLOW_DIAGNOSTICS */ C-- Calculate accelerations in the momentum equations (gU, gV, ...) C and step forward storing the result in gU, gV, etc... IF ( momStepping ) THEN #ifdef ALLOW_AUTODIFF DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx guDissip(i,j) = 0. _d 0 gvDissip(i,j) = 0. _d 0 ENDDO ENDDO #endif /* ALLOW_AUTODIFF */ #ifdef ALLOW_AUTODIFF_TAMC # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM) # ifndef DISABLE_RSTAR_CODE CADJ STORE dWtransC(:,:,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE dWtransU(:,:,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE dWtransV(:,:,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # endif # endif /* NONLIN_FRSURF and ALLOW_MOM_FLUXFORM */ # if (defined NONLIN_FRSURF) || (defined ALLOW_DEPTH_CONTROL) CADJ STORE fVerU(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE fVerV(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte # endif #endif /* ALLOW_AUTODIFF_TAMC */ IF (.NOT. vectorInvariantMomentum) THEN #ifdef ALLOW_MOM_FLUXFORM CALL MOM_FLUXFORM( I bi,bj,k,iMin,iMax,jMin,jMax, I kappaRU, kappaRV, U fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp), O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown), O guDissip, gvDissip, I myTime, myIter, myThid) #endif ELSE #ifdef ALLOW_MOM_VECINV CALL MOM_VECINV( I bi,bj,k,iMin,iMax,jMin,jMax, I kappaRU, kappaRV, I fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp), O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown), O guDissip, gvDissip, I myTime, myIter, myThid) #endif ENDIF #ifdef ALLOW_SMAG_3D IF ( useSmag3D ) THEN CALL MOM_CALC_SMAG_3D( I str11, str22, str33, str12, str13, str23, O viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23, I smag3D_hLsC, smag3D_hLsW, smag3D_hLsS, smag3D_hLsZ, I k, bi, bj, myThid ) CALL MOM_UV_SMAG_3D( I str11, str22, str12, str13, str23, I viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23, O addDissU, addDissV, I iMin,iMax,jMin,jMax, k, bi, bj, myThid ) DO j= jMin,jMax DO i= iMin,iMax guDissip(i,j) = guDissip(i,j) + addDissU(i,j) gvDissip(i,j) = gvDissip(i,j) + addDissV(i,j) ENDDO ENDDO ENDIF #endif /* ALLOW_SMAG_3D */ CALL TIMESTEP( I bi,bj,iMin,iMax,jMin,jMax,k, I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY, I guDissip, gvDissip, I myTime, myIter, myThid) ENDIF C-- end of dynamics k loop (1:Nr) ENDDO C-- Implicit Vertical advection & viscosity #if (defined (INCLUDE_IMPLVERTADV_CODE) && \ defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF)) IF ( momImplVertAdv .OR. implicitViscosity & .OR. selectImplicitDrag.GE.1 ) THEN C to recover older (prior to 2016-10-05) results: c IF ( momImplVertAdv ) THEN CALL MOM_U_IMPLICIT_R( kappaRU, I bi, bj, myTime, myIter, myThid ) CALL MOM_V_IMPLICIT_R( kappaRV, I bi, bj, myTime, myIter, myThid ) ELSEIF ( implicitViscosity ) THEN #else /* INCLUDE_IMPLVERTADV_CODE */ IF ( implicitViscosity ) THEN #endif /* INCLUDE_IMPLVERTADV_CODE */ #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I -1, kappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj), U gU(1-OLx,1-OLy,1,bi,bj), I myThid ) #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I -2, kappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj), U gV(1-OLx,1-OLy,1,bi,bj), I myThid ) ENDIF #ifdef ALLOW_OBCS C-- Apply open boundary conditions IF ( useOBCS ) THEN C-- but first save intermediate velocities to be used in the C next time step for the Stevens boundary conditions CALL OBCS_SAVE_UV_N( I bi, bj, iMin, iMax, jMin, jMax, 0, I gU, gV, myThid ) CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid ) ENDIF #endif /* ALLOW_OBCS */ #ifdef ALLOW_CD_CODE IF (implicitViscosity.AND.useCDscheme) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I 0, kappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj), U vVelD(1-OLx,1-OLy,1,bi,bj), I myThid ) #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I 0, kappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj), U uVelD(1-OLx,1-OLy,1,bi,bj), I myThid ) ENDIF #endif /* ALLOW_CD_CODE */ C-- End implicit Vertical advection & viscosity C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| #ifdef ALLOW_NONHYDROSTATIC C-- Step forward W field in N-H algorithm IF ( nonHydrostatic ) THEN #ifdef ALLOW_DEBUG IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid ) #endif CALL TIMER_START('CALC_GW [DYNAMICS]',myThid) CALL CALC_GW( I bi,bj, kappaRU, kappaRV, I str13, str23, str33, I viscAh3d_00, viscAh3d_13, viscAh3d_23, I myTime, myIter, myThid ) ENDIF IF ( nonHydrostatic.OR.implicitIntGravWave ) & CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid ) IF ( nonHydrostatic ) & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid) #endif C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| C- end of bi,bj loops ENDDO ENDDO #ifdef ALLOW_OBCS IF (useOBCS) THEN CALL OBCS_EXCHANGES( myThid ) ENDIF #endif Cml( C In order to compare the variance of phiHydLow of a p/z-coordinate C run with etaH of a z/p-coordinate run the drift of phiHydLow C has to be removed by something like the following subroutine: C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF, C & 'phiHydLow', myTime, myThid ) Cml) #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid) CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid) tmpFac = 1. _d 0 CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2, & 'PHIHYDSQ',0,Nr,0,1,1,myThid) CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2, & 'PHIBOTSQ',0, 1,0,1,1,myThid) ENDIF #endif /* ALLOW_DIAGNOSTICS */ #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevD ) THEN CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid) #ifndef ALLOW_ADAMSBASHFORTH_3 CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid) #endif ENDIF #endif #ifdef DYNAMICS_GUGV_EXCH_CHECK C- jmc: For safety checking only: This Exchange here should not change C the solution. If solution changes, it means something is wrong, C but it does not mean that it is less wrong with this exchange. IF ( debugLevel .GE. debLevE ) THEN CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid) ENDIF #endif #ifdef ALLOW_DEBUG IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid ) #endif RETURN END