C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.54.2.12 2001/01/30 21:02:59 adcroft Exp $ #include "CPP_OPTIONS.h" SUBROUTINE DYNAMICS(myTime, myIter, myThid) C /==========================================================\ C | SUBROUTINE DYNAMICS | C | o Controlling routine for the explicit part of the model | C | dynamics. | C |==========================================================| C | This routine evaluates the "dynamics" terms for each | C | block of ocean in turn. Because the blocks of ocean have | C | overlap regions they are independent of one another. | C | If terms involving lateral integrals are needed in this | C | routine care will be needed. Similarly finite-difference | C | operations with stencils wider than the overlap region | C | require special consideration. | C | Notes | C | ===== | C | C*P* comments indicating place holders for which code is | C | presently being developed. | C \==========================================================/ IMPLICIT NONE C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "CG2D.h" #include "PARAMS.h" #include "DYNVARS.h" #include "GRID.h" #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" # include "tamc_keys.h" #endif /* ALLOW_AUTODIFF_TAMC */ #ifdef ALLOW_KPP # include "KPP.h" #endif C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of the routine. _RL myTime INTEGER myIter INTEGER myThid C == Local variables C xA, yA - Per block temporaries holding face areas C uTrans, vTrans, rTrans - Per block temporaries holding flow C transport C rVel o uTrans: Zonal transport C o vTrans: Meridional transport C o rTrans: Vertical transport C o rVel: Vertical velocity at upper and C lower cell faces. C maskC,maskUp o maskC: land/water mask for tracer cells C o maskUp: land/water mask for W points C fVer[STUV] o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. C rhoK, rhoKM1 - Density at current level, and level above C phiHyd - Hydrostatic part of the potential phiHydi. C In z coords phiHydiHyd is the hydrostatic C pressure anomaly C In p coords phiHydiHyd is the geopotential C surface height C anomaly. C etaSurfX, - Holds surface elevation gradient in X and Y. C etaSurfY C KappaRT, - Total diffusion in vertical for T and S. C KappaRS (background + spatially varying, isopycnal term). C iMin, iMax - Ranges and sub-block indices on which calculations C jMin, jMax are applied. C bi, bj C k, kup, - Index for layer above and below. kup and kDown C kDown, km1 are switched with layer to be the appropriate C index into fVerTerm. _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) C This is currently also used by IVDC and Diagnostics C #ifdef INCLUDE_CONVECT_CALL _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) C #endif INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j INTEGER k, km1, kup, kDown #ifdef ALLOW_AUTODIFF_TAMC INTEGER isbyte PARAMETER( isbyte = 4 ) INTEGER act1, act2, act3, act4 INTEGER max1, max2, max3 INTEGER iikey, kkey INTEGER maximpl #endif /* ALLOW_AUTODIFF_TAMC */ C--- The algorithm... C C "Correction Step" C ================= C Here we update the horizontal velocities with the surface C pressure such that the resulting flow is either consistent C with the free-surface evolution or the rigid-lid: C U[n] = U* + dt x d/dx P C V[n] = V* + dt x d/dy P C C "Calculation of Gs" C =================== C This is where all the accelerations and tendencies (ie. C physics, parameterizations etc...) are calculated C rVel = sum_r ( div. u[n] ) C rho = rho ( theta[n], salt[n] ) C b = b(rho, theta) C K31 = K31 ( rho ) C Gu[n] = Gu( u[n], v[n], rVel, b, ... ) C Gv[n] = Gv( u[n], v[n], rVel, b, ... ) C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... ) C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... ) C C "Time-stepping" or "Prediction" C ================================ C The models variables are stepped forward with the appropriate C time-stepping scheme (currently we use Adams-Bashforth II) C - For momentum, the result is always *only* a "prediction" C in that the flow may be divergent and will be "corrected" C later with a surface pressure gradient. C - Normally for tracers the result is the new field at time C level [n+1} *BUT* in the case of implicit diffusion the result C is also *only* a prediction. C - We denote "predictors" with an asterisk (*). C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C With implicit diffusion: C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C (1 + dt * K * d_zz) theta[n] = theta* C (1 + dt * K * d_zz) salt[n] = salt* C--- #ifdef ALLOW_AUTODIFF_TAMC C-- dummy statement to end declaration part ikey = 1 #endif /* ALLOW_AUTODIFF_TAMC */ C-- Set up work arrays with valid (i.e. not NaN) values C These inital values do not alter the numerical results. They C just ensure that all memory references are to valid floating C point numbers. This prevents spurious hardware signals due to C uninitialised but inert locations. DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx xA(i,j) = 0. _d 0 yA(i,j) = 0. _d 0 uTrans(i,j) = 0. _d 0 vTrans(i,j) = 0. _d 0 DO k=1,Nr KappaRU(i,j,k) = 0. _d 0 KappaRV(i,j,k) = 0. _d 0 sigmaX(i,j,k) = 0. _d 0 sigmaY(i,j,k) = 0. _d 0 sigmaR(i,j,k) = 0. _d 0 ENDDO rhoKM1 (i,j) = 0. _d 0 rhok (i,j) = 0. _d 0 maskC (i,j) = 0. _d 0 ENDDO ENDDO #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC CHPF$ INDEPENDENT #endif /* ALLOW_AUTODIFF_TAMC */ DO bj=myByLo(myThid),myByHi(myThid) #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC CHPF$ INDEPENDENT, NEW (rTrans,rVel,fVerT,fVerS,fVerU,fVerV CHPF$& ,phiHyd,utrans,vtrans,maskc,xA,yA CHPF$& ,KappaRT,KappaRS,KappaRU,KappaRV CHPF$& ) #endif /* ALLOW_AUTODIFF_TAMC */ DO bi=myBxLo(myThid),myBxHi(myThid) #ifdef ALLOW_AUTODIFF_TAMC act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 act3 = myThid - 1 max3 = nTx*nTy act4 = ikey_dynamics - 1 ikey = (act1 + 1) + act2*max1 & + act3*max1*max2 & + act4*max1*max2*max3 #endif /* ALLOW_AUTODIFF_TAMC */ C-- Set up work arrays that need valid initial values DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx rTrans(i,j) = 0. _d 0 rVel (i,j,1) = 0. _d 0 rVel (i,j,2) = 0. _d 0 fVerT (i,j,1) = 0. _d 0 fVerT (i,j,2) = 0. _d 0 fVerS (i,j,1) = 0. _d 0 fVerS (i,j,2) = 0. _d 0 fVerU (i,j,1) = 0. _d 0 fVerU (i,j,2) = 0. _d 0 fVerV (i,j,1) = 0. _d 0 fVerV (i,j,2) = 0. _d 0 ENDDO ENDDO DO k=1,Nr DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx #ifdef INCLUDE_CONVECT_CALL ConvectCount(i,j,k) = 0. #endif KappaRT(i,j,k) = 0. _d 0 KappaRS(i,j,k) = 0. _d 0 ENDDO ENDDO ENDDO iMin = 1-OLx+1 iMax = sNx+OLx jMin = 1-OLy+1 jMax = sNy+OLy C-- Start of diagnostic loop DO k=Nr,1,-1 #ifdef ALLOW_AUTODIFF_TAMC C? Patrick, is this formula correct now that we change the loop range? C? Do we still need this? kkey = (ikey-1)*(Nr-2+1) + (k-2) + 1 #endif /* ALLOW_AUTODIFF_TAMC */ C-- Integrate continuity vertically for vertical velocity CALL INTEGRATE_FOR_W( I bi, bj, k, uVel, vVel, O wVel, I myThid ) #ifdef ALLOW_OBCS #ifdef ALLOW_NONHYDROSTATIC C-- Calculate future values on open boundaries IF (useOBCS.AND.nonHydrostatic) THEN CALL OBCS_APPLY_W( bi, bj, k, wVel, myThid ) ENDIF #endif /* ALLOW_NONHYDROSTATIC */ #endif /* ALLOW_OBCS */ C-- Calculate gradients of potential density for isoneutral C slope terms (e.g. GM/Redi tensor or IVDC diffusivity) c IF ( k.GT.1 .AND. (useGMRedi.OR.ivdc_kappa.NE.0.) ) THEN IF ( useGMRedi .OR. (k.GT.1 .AND. ivdc_kappa.NE.0.) ) THEN CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, I theta, salt, O rhoK, I myThid ) IF (k.GT.1) CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType, I theta, salt, O rhoKm1, I myThid ) CALL GRAD_SIGMA( I bi, bj, iMin, iMax, jMin, jMax, k, I rhoK, rhoKm1, rhoK, O sigmaX, sigmaY, sigmaR, I myThid ) ENDIF C-- Implicit Vertical Diffusion for Convection c ==> should use sigmaR !!! IF (k.GT.1 .AND. ivdc_kappa.NE.0.) THEN CALL CALC_IVDC( I bi, bj, iMin, iMax, jMin, jMax, k, I rhoKm1, rhoK, U ConvectCount, KappaRT, KappaRS, I myTime, myIter, myThid) END IF C-- end of diagnostic k loop (Nr:1) ENDDO #ifdef ALLOW_OBCS C-- Calculate future values on open boundaries IF (useOBCS) THEN CALL OBCS_CALC( bi, bj, myTime+deltaT, I uVel, vVel, wVel, theta, salt, I myThid ) ENDIF #endif /* ALLOW_OBCS */ C-- Determines forcing terms based on external fields C relaxation terms, etc. CALL EXTERNAL_FORCING_SURF( I bi, bj, iMin, iMax, jMin, jMax, I myThid ) #ifdef ALLOW_GMREDI C-- Calculate iso-neutral slopes for the GM/Redi parameterisation IF (useGMRedi) THEN DO k=1,Nr CALL GMREDI_CALC_TENSOR( I bi, bj, iMin, iMax, jMin, jMax, k, I sigmaX, sigmaY, sigmaR, I myThid ) ENDDO ENDIF #endif /* ALLOW_GMREDI */ #ifdef ALLOW_KPP C-- Compute KPP mixing coefficients IF (useKPP) THEN CALL KPP_CALC( I bi, bj, myTime, myThid ) ENDIF #endif /* ALLOW_KPP */ #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE KappaRT(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE KappaRS(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ C-- Start of thermodynamics loop DO k=Nr,1,-1 C-- km1 Points to level above k (=k-1) C-- kup Cycles through 1,2 to point to layer above C-- kDown Cycles through 2,1 to point to current layer km1 = MAX(1,k-1) kup = 1+MOD(k+1,2) kDown= 1+MOD(k,2) iMin = 1-OLx+2 iMax = sNx+OLx-1 jMin = 1-OLy+2 jMax = sNy+OLy-1 #ifdef ALLOW_AUTODIFF_TAMC CPatrick Is this formula correct? kkey = (ikey-1)*(Nr-1+1) + (k-1) + 1 CADJ STORE rvel (:,:,kDown) = comlev1_bibj_k, key = kkey, byte = isbyte CADJ STORE rTrans(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte CADJ STORE KappaRT(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte CADJ STORE KappaRS(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ C-- Get temporary terms used by tendency routines CALL CALC_COMMON_FACTORS ( I bi,bj,iMin,iMax,jMin,jMax,k,km1,kup,kDown, O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp, I myThid) #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL C-- Calculate the total vertical diffusivity CALL CALC_DIFFUSIVITY( I bi,bj,iMin,iMax,jMin,jMax,k, I maskC,maskup, O KappaRT,KappaRS,KappaRU,KappaRV, I myThid) #endif C-- Calculate active tracer tendencies (gT,gS,...) C and step forward storing result in gTnm1, gSnm1, etc. IF ( tempStepping ) THEN CALL CALC_GT( I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, I KappaRT, U fVerT, I myTime, myThid) CALL TIMESTEP_TRACER( I bi,bj,iMin,iMax,jMin,jMax,k, I theta, gT, U gTnm1, I myIter, myThid) ENDIF IF ( saltStepping ) THEN CALL CALC_GS( I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, I KappaRS, U fVerS, I myTime, myThid) CALL TIMESTEP_TRACER( I bi,bj,iMin,iMax,jMin,jMax,k, I salt, gS, U gSnm1, I myIter, myThid) ENDIF #ifdef ALLOW_OBCS C-- Apply open boundary conditions IF (useOBCS) THEN CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid ) END IF #endif /* ALLOW_OBCS */ C-- Freeze water IF (allowFreezing) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid ) END IF C-- end of thermodynamic k loop (Nr:1) ENDDO #ifdef ALLOW_AUTODIFF_TAMC CPatrick? What about this one? maximpl = 6 iikey = (ikey-1)*maximpl #endif /* ALLOW_AUTODIFF_TAMC */ C-- Implicit diffusion IF (implicitDiffusion) THEN IF (tempStepping) THEN #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 1 #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTtracer, KappaRT, recip_HFacC, U gTNm1, I myThid ) ENDIF IF (saltStepping) THEN #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 2 #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTtracer, KappaRS, recip_HFacC, U gSNm1, I myThid ) ENDIF #ifdef ALLOW_OBCS C-- Apply open boundary conditions IF (useOBCS) THEN DO K=1,Nr CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid ) ENDDO END IF #endif /* ALLOW_OBCS */ C-- End If implicitDiffusion ENDIF C-- Start of dynamics loop DO k=1,Nr C-- km1 Points to level above k (=k-1) C-- kup Cycles through 1,2 to point to layer above C-- kDown Cycles through 2,1 to point to current layer km1 = MAX(1,k-1) kup = 1+MOD(k+1,2) kDown= 1+MOD(k,2) iMin = 1-OLx+2 iMax = sNx+OLx-1 jMin = 1-OLy+2 jMax = sNy+OLy-1 C-- Integrate hydrostatic balance for phiHyd with BC of C phiHyd(z=0)=0 C distinguishe between Stagger and Non Stagger time stepping IF (staggerTimeStep) THEN CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,k, I gTnm1, gSnm1, U phiHyd, I myThid ) ELSE CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,k, I theta, salt, U phiHyd, I myThid ) ENDIF C-- Calculate accelerations in the momentum equations (gU, gV, ...) C and step forward storing the result in gUnm1, gVnm1, etc... IF ( momStepping ) THEN CALL CALC_MOM_RHS( I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, I phiHyd,KappaRU,KappaRV, U fVerU, fVerV, I myTime, myThid) CALL TIMESTEP( I bi,bj,iMin,iMax,jMin,jMax,k,phiHyd, I myIter, myThid) #ifdef ALLOW_OBCS C-- Apply open boundary conditions IF (useOBCS) THEN CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) END IF #endif /* ALLOW_OBCS */ #ifdef ALLOW_AUTODIFF_TAMC #ifdef INCLUDE_CD_CODE ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx guCD(i,j,k,bi,bj) = 0.0 gvCD(i,j,k,bi,bj) = 0.0 END DO END DO #endif /* INCLUDE_CD_CODE */ #endif /* ALLOW_AUTODIFF_TAMC */ ENDIF C-- end of dynamics k loop (1:Nr) ENDDO C-- Implicit viscosity IF (implicitViscosity.AND.momStepping) THEN #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 3 #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTmom, KappaRU,recip_HFacW, U gUNm1, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 4 #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTmom, KappaRV,recip_HFacS, U gVNm1, I myThid ) #ifdef ALLOW_OBCS C-- Apply open boundary conditions IF (useOBCS) THEN DO K=1,Nr CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) ENDDO END IF #endif /* ALLOW_OBCS */ #ifdef INCLUDE_CD_CODE #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 5 #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTmom, KappaRU,recip_HFacW, U vVelD, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 6 #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTmom, KappaRV,recip_HFacS, U uVelD, I myThid ) #endif /* INCLUDE_CD_CODE */ C-- End If implicitViscosity.AND.momStepping ENDIF ENDDO ENDDO RETURN END C-- Cumulative diagnostic calculations (ie. time-averaging) #ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE c IF (taveFreq.GT.0.) THEN c CALL DO_TIME_AVERAGES( c I myTime, myIter, bi, bj, k, kup, kDown, c I ConvectCount, c I myThid ) c ENDIF #endif