/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.40 - (show annotations) (download)
Wed Dec 9 16:11:51 1998 UTC (25 years, 5 months ago) by adcroft
Branch: MAIN
CVS Tags: checkpoint19, checkpoint20
Changes since 1.39: +2 -1 lines
Added IMPLICIT NONE in a lot of subroutines.
Also corrected the recip_Rhonil bug: we didn't set it in ini_parms.F

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.39 1998/12/08 19:44:28 adcroft Exp $
2
3 #include "CPP_OPTIONS.h"
4
5 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
6 C /==========================================================\
7 C | SUBROUTINE DYNAMICS |
8 C | o Controlling routine for the explicit part of the model |
9 C | dynamics. |
10 C |==========================================================|
11 C | This routine evaluates the "dynamics" terms for each |
12 C | block of ocean in turn. Because the blocks of ocean have |
13 C | overlap regions they are independent of one another. |
14 C | If terms involving lateral integrals are needed in this |
15 C | routine care will be needed. Similarly finite-difference |
16 C | operations with stencils wider than the overlap region |
17 C | require special consideration. |
18 C | Notes |
19 C | ===== |
20 C | C*P* comments indicating place holders for which code is |
21 C | presently being developed. |
22 C \==========================================================/
23 IMPLICIT NONE
24
25 C == Global variables ===
26 #include "SIZE.h"
27 #include "EEPARAMS.h"
28 #include "CG2D.h"
29 #include "PARAMS.h"
30 #include "DYNVARS.h"
31
32 C == Routine arguments ==
33 C myTime - Current time in simulation
34 C myIter - Current iteration number in simulation
35 C myThid - Thread number for this instance of the routine.
36 INTEGER myThid
37 _RL myTime
38 INTEGER myIter
39
40 C == Local variables
41 C xA, yA - Per block temporaries holding face areas
42 C uTrans, vTrans, rTrans - Per block temporaries holding flow
43 C transport
44 C rVel o uTrans: Zonal transport
45 C o vTrans: Meridional transport
46 C o rTrans: Vertical transport
47 C o rVel: Vertical velocity at upper and
48 C lower cell faces.
49 C maskC,maskUp o maskC: land/water mask for tracer cells
50 C o maskUp: land/water mask for W points
51 C aTerm, xTerm, cTerm - Work arrays for holding separate terms in
52 C mTerm, pTerm, tendency equations.
53 C fZon, fMer, fVer[STUV] o aTerm: Advection term
54 C o xTerm: Mixing term
55 C o cTerm: Coriolis term
56 C o mTerm: Metric term
57 C o pTerm: Pressure term
58 C o fZon: Zonal flux term
59 C o fMer: Meridional flux term
60 C o fVer: Vertical flux term - note fVer
61 C is "pipelined" in the vertical
62 C so we need an fVer for each
63 C variable.
64 C rhoK, rhoKM1 - Density at current level, level above and level
65 C below.
66 C rhoKP1
67 C buoyK, buoyKM1 - Buoyancy at current level and level above.
68 C phiHyd - Hydrostatic part of the potential phiHydi.
69 C In z coords phiHydiHyd is the hydrostatic
70 C pressure anomaly
71 C In p coords phiHydiHyd is the geopotential
72 C surface height
73 C anomaly.
74 C etaSurfX, - Holds surface elevation gradient in X and Y.
75 C etaSurfY
76 C K13, K23, K33 - Non-zero elements of small-angle approximation
77 C diffusion tensor.
78 C KapGM - Spatially varying Visbeck et. al mixing coeff.
79 C KappaRT, - Total diffusion in vertical for T and S.
80 C KappaRS (background + spatially varying, isopycnal term).
81 C iMin, iMax - Ranges and sub-block indices on which calculations
82 C jMin, jMax are applied.
83 C bi, bj
84 C k, kUp, - Index for layer above and below. kUp and kDown
85 C kDown, kM1 are switched with layer to be the appropriate
86 C index into fVerTerm.
87 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
93 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94 _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95 _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
96 _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
103 _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
104 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
105 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
106 _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
107 _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
108 _RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
109 _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
110 _RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
111 _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112 _RL rhotmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
113 _RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
114 _RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
115 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
116 _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
117 _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
118 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
120 _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
121
122 INTEGER iMin, iMax
123 INTEGER jMin, jMax
124 INTEGER bi, bj
125 INTEGER i, j
126 INTEGER k, kM1, kUp, kDown
127 LOGICAL BOTTOM_LAYER
128
129 C--- The algorithm...
130 C
131 C "Correction Step"
132 C =================
133 C Here we update the horizontal velocities with the surface
134 C pressure such that the resulting flow is either consistent
135 C with the free-surface evolution or the rigid-lid:
136 C U[n] = U* + dt x d/dx P
137 C V[n] = V* + dt x d/dy P
138 C
139 C "Calculation of Gs"
140 C ===================
141 C This is where all the accelerations and tendencies (ie.
142 C phiHydysics, parameterizations etc...) are calculated
143 C rVel = sum_r ( div. u[n] )
144 C rho = rho ( theta[n], salt[n] )
145 C b = b(rho, theta)
146 C K31 = K31 ( rho )
147 C Gu[n] = Gu( u[n], v[n], rVel, b, ... )
148 C Gv[n] = Gv( u[n], v[n], rVel, b, ... )
149 C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... )
150 C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... )
151 C
152 C "Time-stepping" or "Prediction"
153 C ================================
154 C The models variables are stepped forward with the appropriate
155 C time-stepping scheme (currently we use Adams-Bashforth II)
156 C - For momentum, the result is always *only* a "prediction"
157 C in that the flow may be divergent and will be "corrected"
158 C later with a surface pressure gradient.
159 C - Normally for tracers the result is the new field at time
160 C level [n+1} *BUT* in the case of implicit diffusion the result
161 C is also *only* a prediction.
162 C - We denote "predictors" with an asterisk (*).
163 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
164 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
165 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
166 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
167 C With implicit diffusion:
168 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
169 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
170 C (1 + dt * K * d_zz) theta[n] = theta*
171 C (1 + dt * K * d_zz) salt[n] = salt*
172 C---
173
174 C-- Set up work arrays with valid (i.e. not NaN) values
175 C These inital values do not alter the numerical results. They
176 C just ensure that all memory references are to valid floating
177 C point numbers. This prevents spurious hardware signals due to
178 C uninitialised but inert locations.
179 DO j=1-OLy,sNy+OLy
180 DO i=1-OLx,sNx+OLx
181 xA(i,j) = 0. _d 0
182 yA(i,j) = 0. _d 0
183 uTrans(i,j) = 0. _d 0
184 vTrans(i,j) = 0. _d 0
185 aTerm(i,j) = 0. _d 0
186 xTerm(i,j) = 0. _d 0
187 cTerm(i,j) = 0. _d 0
188 mTerm(i,j) = 0. _d 0
189 pTerm(i,j) = 0. _d 0
190 fZon(i,j) = 0. _d 0
191 fMer(i,j) = 0. _d 0
192 DO K=1,Nr
193 phiHyd (i,j,k) = 0. _d 0
194 K13(i,j,k) = 0. _d 0
195 K23(i,j,k) = 0. _d 0
196 K33(i,j,k) = 0. _d 0
197 KappaRT(i,j,k) = 0. _d 0
198 KappaRS(i,j,k) = 0. _d 0
199 ENDDO
200 rhoKM1 (i,j) = 0. _d 0
201 rhok (i,j) = 0. _d 0
202 rhoKP1 (i,j) = 0. _d 0
203 rhoTMP (i,j) = 0. _d 0
204 buoyKM1(i,j) = 0. _d 0
205 buoyK (i,j) = 0. _d 0
206 maskC (i,j) = 0. _d 0
207 ENDDO
208 ENDDO
209
210
211 DO bj=myByLo(myThid),myByHi(myThid)
212 DO bi=myBxLo(myThid),myBxHi(myThid)
213
214 C-- Set up work arrays that need valid initial values
215 DO j=1-OLy,sNy+OLy
216 DO i=1-OLx,sNx+OLx
217 rTrans(i,j) = 0. _d 0
218 rVel (i,j,1) = 0. _d 0
219 rVel (i,j,2) = 0. _d 0
220 fVerT (i,j,1) = 0. _d 0
221 fVerT (i,j,2) = 0. _d 0
222 fVerS (i,j,1) = 0. _d 0
223 fVerS (i,j,2) = 0. _d 0
224 fVerU (i,j,1) = 0. _d 0
225 fVerU (i,j,2) = 0. _d 0
226 fVerV (i,j,1) = 0. _d 0
227 fVerV (i,j,2) = 0. _d 0
228 phiHyd(i,j,1) = 0. _d 0
229 K13 (i,j,1) = 0. _d 0
230 K23 (i,j,1) = 0. _d 0
231 K33 (i,j,1) = 0. _d 0
232 KapGM (i,j) = GMkbackground
233 ENDDO
234 ENDDO
235
236 iMin = 1-OLx+1
237 iMax = sNx+OLx
238 jMin = 1-OLy+1
239 jMax = sNy+OLy
240
241
242 K = 1
243 BOTTOM_LAYER = K .EQ. Nr
244
245 #ifdef DO_PIPELINED_CORRECTION_STEP
246 C-- Calculate gradient of surface pressure
247 CALL CALC_GRAD_ETA_SURF(
248 I bi,bj,iMin,iMax,jMin,jMax,
249 O etaSurfX,etaSurfY,
250 I myThid)
251 C-- Update fields in top level according to tendency terms
252 CALL CORRECTION_STEP(
253 I bi,bj,iMin,iMax,jMin,jMax,K,
254 I etaSurfX,etaSurfY,myTime,myThid)
255 IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K, myThid )
256 IF ( .NOT. BOTTOM_LAYER ) THEN
257 C-- Update fields in layer below according to tendency terms
258 CALL CORRECTION_STEP(
259 I bi,bj,iMin,iMax,jMin,jMax,K+1,
260 I etaSurfX,etaSurfY,myTime,myThid)
261 IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid )
262 ENDIF
263 #endif
264 C-- Density of 1st level (below W(1)) reference to level 1
265 #ifdef INCLUDE_FIND_RHO_CALL
266 CALL FIND_RHO(
267 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
268 O rhoKm1,
269 I myThid )
270 #endif
271
272 IF ( .NOT. BOTTOM_LAYER ) THEN
273 C-- Check static stability with layer below
274 C-- and mix as needed.
275 #ifdef INCLUDE_FIND_RHO_CALL
276 CALL FIND_RHO(
277 I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
278 O rhoKp1,
279 I myThid )
280 #endif
281 #ifdef INCLUDE_CONVECT_CALL
282 CALL CONVECT(
283 I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,
284 I myTime,myIter,myThid)
285 #endif
286 C-- Recompute density after mixing
287 #ifdef INCLUDE_FIND_RHO_CALL
288 CALL FIND_RHO(
289 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
290 O rhoKm1,
291 I myThid )
292 #endif
293 ENDIF
294 C-- Calculate buoyancy
295 CALL CALC_BUOYANCY(
296 I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,
297 O buoyKm1,
298 I myThid )
299 C-- Integrate hydrostatic balance for phiHyd with BC of
300 C-- phiHyd(z=0)=0
301 CALL CALC_PHI_HYD(
302 I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1,
303 U phiHyd,
304 I myThid )
305
306 DO K=2,Nr
307 BOTTOM_LAYER = K .EQ. Nr
308 #ifdef DO_PIPELINED_CORRECTION_STEP
309 IF ( .NOT. BOTTOM_LAYER ) THEN
310 C-- Update fields in layer below according to tendency terms
311 CALL CORRECTION_STEP(
312 I bi,bj,iMin,iMax,jMin,jMax,K+1,
313 I etaSurfX,etaSurfY,myTime,myThid)
314 IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid )
315 ENDIF
316 #endif
317 C-- Density of K level (below W(K)) reference to K level
318 #ifdef INCLUDE_FIND_RHO_CALL
319 CALL FIND_RHO(
320 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
321 O rhoK,
322 I myThid )
323 #endif
324 IF ( .NOT. BOTTOM_LAYER ) THEN
325 C-- Check static stability with layer below and mix as needed.
326 C-- Density of K+1 level (below W(K+1)) reference to K level.
327 #ifdef INCLUDE_FIND_RHO_CALL
328 CALL FIND_RHO(
329 I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
330 O rhoKp1,
331 I myThid )
332 #endif
333 #ifdef INCLUDE_CONVECT_CALL
334 CALL CONVECT(
335 I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1,
336 I myTime,myIter,myThid)
337 #endif
338 C-- Recompute density after mixing
339 #ifdef INCLUDE_FIND_RHO_CALL
340 CALL FIND_RHO(
341 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
342 O rhoK,
343 I myThid )
344 #endif
345 ENDIF
346 C-- Calculate buoyancy
347 CALL CALC_BUOYANCY(
348 I bi,bj,iMin,iMax,jMin,jMax,K,rhoK,
349 O buoyK,
350 I myThid )
351 C-- Integrate hydrostatic balance for phiHyd with BC of
352 C-- phiHyd(z=0)=0
353 CALL CALC_PHI_HYD(
354 I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK,
355 U phiHyd,
356 I myThid )
357 C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
358 #ifdef INCLUDE_FIND_RHO_CALL
359 CALL FIND_RHO(
360 I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,
361 O rhoTmp,
362 I myThid )
363 #endif
364 #ifdef INCLUDE_CALC_ISOSLOPES_CALL
365 CALL CALC_ISOSLOPES(
366 I bi, bj, iMin, iMax, jMin, jMax, K,
367 I rhoKm1, rhoK, rhotmp,
368 O K13, K23, K33, KapGM,
369 I myThid )
370 #endif
371 DO J=jMin,jMax
372 DO I=iMin,iMax
373 #ifdef INCLUDE_FIND_RHO_CALL
374 rhoKm1 (I,J) = rhoK(I,J)
375 #endif
376 buoyKm1(I,J) = buoyK(I,J)
377 ENDDO
378 ENDDO
379 ENDDO ! K
380
381 DO K = Nr, 1, -1
382
383 kM1 =max(1,k-1) ! Points to level above k (=k-1)
384 kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above
385 kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer
386 iMin = 1-OLx+2
387 iMax = sNx+OLx-1
388 jMin = 1-OLy+2
389 jMax = sNy+OLy-1
390
391 C-- Get temporary terms used by tendency routines
392 CALL CALC_COMMON_FACTORS (
393 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
394 O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp,
395 I myThid)
396 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
397 C-- Calculate the total vertical diffusivity
398 CALL CALC_DIFFUSIVITY(
399 I bi,bj,iMin,iMax,jMin,jMax,K,
400 I maskC,maskUp,KapGM,K33,
401 O KappaRT,KappaRS,
402 I myThid)
403 #endif
404 C-- Calculate accelerations in the momentum equations
405 IF ( momStepping ) THEN
406 CALL CALC_MOM_RHS(
407 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
408 I xA,yA,uTrans,vTrans,rTrans,rVel,maskC,
409 I phiHyd,
410 U aTerm,xTerm,cTerm,mTerm,pTerm,
411 U fZon, fMer, fVerU, fVerV,
412 I myTime, myThid)
413 ENDIF
414 C-- Calculate active tracer tendencies
415 IF ( tempStepping ) THEN
416 CALL CALC_GT(
417 I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
418 I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,
419 I K13,K23,KappaRT,KapGM,
420 U aTerm,xTerm,fZon,fMer,fVerT,
421 I myTime, myThid)
422 ENDIF
423 IF ( saltStepping ) THEN
424 CALL CALC_GS(
425 I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
426 I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,
427 I K13,K23,KappaRS,KapGM,
428 U aTerm,xTerm,fZon,fMer,fVerS,
429 I myTime, myThid)
430 ENDIF
431 C-- Prediction step (step forward all model variables)
432 CALL TIMESTEP(
433 I bi,bj,iMin,iMax,jMin,jMax,K,
434 I myThid)
435 IF (openBoundaries) CALL APPLY_OBCS2( bi, bj, K, myThid )
436 C-- Diagnose barotropic divergence of predicted fields
437 CALL CALC_DIV_GHAT(
438 I bi,bj,iMin,iMax,jMin,jMax,K,
439 I xA,yA,
440 I myThid)
441
442 C-- Cumulative diagnostic calculations (ie. time-averaging)
443 #ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE
444 IF (taveFreq.GT.0.) THEN
445 CALL DO_TIME_AVERAGES(
446 I myTime, myIter, bi, bj, K, kUp, kDown,
447 I K13, K23, rVel, KapGM,
448 I myThid )
449 ENDIF
450 #endif
451
452 ENDDO ! K
453
454 C-- Implicit diffusion
455 IF (implicitDiffusion) THEN
456 CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
457 I KappaRT,KappaRS,
458 I myThid )
459 ENDIF
460
461 ENDDO
462 ENDDO
463
464 C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),
465 C & maxval(cg2d_x(1:sNx,1:sNy,:,:))
466 C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.),
467 C & maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.)
468 C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.),
469 C & maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.)
470 C write(0,*) 'dynamics: rVel(1) ',
471 C & minval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.),
472 C & maxval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.)
473 C write(0,*) 'dynamics: rVel(2) ',
474 C & minval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.),
475 C & maxval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.)
476 cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
477 cblk & maxval(K13(1:sNx,1:sNy,:))
478 cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
479 cblk & maxval(K23(1:sNx,1:sNy,:))
480 cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
481 cblk & maxval(K33(1:sNx,1:sNy,:))
482 C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),
483 C & maxval(gT(1:sNx,1:sNy,:,:,:))
484 C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)),
485 C & maxval(Theta(1:sNx,1:sNy,:,:,:))
486 C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),
487 C & maxval(gS(1:sNx,1:sNy,:,:,:))
488 C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)),
489 C & maxval(salt(1:sNx,1:sNy,:,:,:))
490 C write(0,*) 'dynamics: phiHyd ',minval(phiHyd/(Gravity*Rhonil),mask=phiHyd.NE.0.),
491 C & maxval(phiHyd/(Gravity*Rhonil))
492 C CALL PLOT_FIELD_XYZRL( gU, ' GU exiting dyanmics ' ,
493 C &Nr, 1, myThid )
494 C CALL PLOT_FIELD_XYZRL( gV, ' GV exiting dyanmics ' ,
495 C &Nr, 1, myThid )
496 C CALL PLOT_FIELD_XYZRL( gS, ' GS exiting dyanmics ' ,
497 C &Nr, 1, myThid )
498 C CALL PLOT_FIELD_XYZRL( gT, ' GT exiting dyanmics ' ,
499 C &Nr, 1, myThid )
500 C CALL PLOT_FIELD_XYZRL( phiHyd, ' phiHyd exiting dyanmics ' ,
501 C &Nr, 1, myThid )
502
503
504 RETURN
505 END

  ViewVC Help
Powered by ViewVC 1.1.22