C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.28 1998/08/20 19:25:05 cnh Exp $ #include "CPP_OPTIONS.h" SUBROUTINE DYNAMICS(myTime, myIter, myThid) C /==========================================================\ C | SUBROUTINE DYNAMICS | C | o Controlling routine for the explicit part of the model | C | dynamics. | C |==========================================================| C | This routine evaluates the "dynamics" terms for each | C | block of ocean in turn. Because the blocks of ocean have | C | overlap regions they are independent of one another. | C | If terms involving lateral integrals are needed in this | C | routine care will be needed. Similarly finite-difference | C | operations with stencils wider than the overlap region | C | require special consideration. | C | Notes | C | ===== | C | C*P* comments indicating place holders for which code is | C | presently being developed. | C \==========================================================/ C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "CG2D.h" #include "PARAMS.h" #include "DYNVARS.h" C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of the routine. INTEGER myThid _RL myTime INTEGER myIter C == Local variables C xA, yA - Per block temporaries holding face areas C uTrans, vTrans, wTrans - Per block temporaries holding flow transport C wVel o uTrans: Zonal transport C o vTrans: Meridional transport C o wTrans: Vertical transport C o wVel: Vertical velocity at upper and lower C cell faces. C maskC,maskUp o maskC: land/water mask for tracer cells C o maskUp: land/water mask for W points C aTerm, xTerm, cTerm - Work arrays for holding separate terms in C mTerm, pTerm, tendency equations. C fZon, fMer, fVer[STUV] o aTerm: Advection term C o xTerm: Mixing term C o cTerm: Coriolis term C o mTerm: Metric term C o pTerm: Pressure term C o fZon: Zonal flux term C o fMer: Meridional flux term C o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. C rhoK, rhoKM1 - Density at current level, level above and level below. C rhoKP1 C buoyK, buoyKM1 - Buoyancy at current level and level above. C phiHyd - Hydrostatic part of the potential phi. C In z coords phiHyd is the hydrostatic pressure anomaly C In p coords phiHyd is the geopotential surface height anomaly. C iMin, iMax - Ranges and sub-block indices on which calculations C jMin, jMax are applied. C bi, bj C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown C are switched with layer to be the appropriate index C into fVerTerm _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL buoyKM1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz) _RL KappaZS(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz) INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j INTEGER k, kM1, kUp, kDown LOGICAL BOTTOM_LAYER C--- The algorithm... C C "Correction Step" C ================= C Here we update the horizontal velocities with the surface C pressure such that the resulting flow is either consistent C with the free-surface evolution or the rigid-lid: C U[n] = U* + dt x d/dx P C V[n] = V* + dt x d/dy P C C "Calculation of Gs" C =================== C This is where all the accelerations and tendencies (ie. C physics, parameterizations etc...) are calculated C rVel = sum_r ( div. u[n] ) C rho = rho ( theta[n], salt[n] ) C b = b(rho, theta) C K31 = K31 ( rho ) C Gu[n] = Gu( u[n], v[n], rVel, b, ... ) C Gv[n] = Gv( u[n], v[n], rVel, b, ... ) C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... ) C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... ) C C "Time-stepping" or "Prediction" C ================================ C The models variables are stepped forward with the appropriate C time-stepping scheme (currently we use Adams-Bashforth II) C - For momentum, the result is always *only* a "prediction" C in that the flow may be divergent and will be "corrected" C later with a surface pressure gradient. C - Normally for tracers the result is the new field at time C level [n+1} *BUT* in the case of implicit diffusion the result C is also *only* a prediction. C - We denote "predictors" with an asterisk (*). C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C With implicit diffusion: C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C (1 + dt * K * d_zz) theta[n] = theta* C (1 + dt * K * d_zz) salt[n] = salt* C--- C-- Set up work arrays with valid (i.e. not NaN) values C These inital values do not alter the numerical results. They C just ensure that all memory references are to valid floating C point numbers. This prevents spurious hardware signals due to C uninitialised but inert locations. DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx xA(i,j) = 0. _d 0 yA(i,j) = 0. _d 0 uTrans(i,j) = 0. _d 0 vTrans(i,j) = 0. _d 0 aTerm(i,j) = 0. _d 0 xTerm(i,j) = 0. _d 0 cTerm(i,j) = 0. _d 0 mTerm(i,j) = 0. _d 0 pTerm(i,j) = 0. _d 0 fZon(i,j) = 0. _d 0 fMer(i,j) = 0. _d 0 DO K=1,nZ pH (i,j,k) = 0. _d 0 K13(i,j,k) = 0. _d 0 K23(i,j,k) = 0. _d 0 K33(i,j,k) = 0. _d 0 KappaZT(i,j,k) = 0. _d 0 ENDDO rhokm1(i,j) = 0. _d 0 rhok (i,j) = 0. _d 0 rhokp1(i,j) = 0. _d 0 rhotmp(i,j) = 0. _d 0 buoyKM1(i,j) = 0. _d 0 buoyK (i,j) = 0. _d 0 maskC (i,j) = 0. _d 0 ENDDO ENDDO DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) C-- Set up work arrays that need valid initial values DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx rTrans(i,j) = 0. _d 0 rVel (i,j,1) = 0. _d 0 rVel (i,j,2) = 0. _d 0 fVerT(i,j,1) = 0. _d 0 fVerT(i,j,2) = 0. _d 0 fVerS(i,j,1) = 0. _d 0 fVerS(i,j,2) = 0. _d 0 fVerU(i,j,1) = 0. _d 0 fVerU(i,j,2) = 0. _d 0 fVerV(i,j,1) = 0. _d 0 fVerV(i,j,2) = 0. _d 0 phiHyd(i,j,1) = 0. _d 0 K13(i,j,1) = 0. _d 0 K23(i,j,1) = 0. _d 0 K33(i,j,1) = 0. _d 0 KapGM(i,j) = GMkbackground ENDDO ENDDO iMin = 1-OLx+1 iMax = sNx+OLx jMin = 1-OLy+1 jMax = sNy+OLy K = 1 BOTTOM_LAYER = K .EQ. Nz C-- Calculate gradient of surface pressure CALL CALC_GRAD_ETA_SURF( I bi,bj,iMin,iMax,jMin,jMax, O pSurfX,pSurfY, I myThid) C-- Update fields in top level according to tendency terms CALL CORRECTION_STEP( I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myTime,myThid) IF ( .NOT. BOTTOM_LAYER ) THEN C-- Update fields in layer below according to tendency terms CALL CORRECTION_STEP( I bi,bj,iMin,iMax,jMin,jMax,K+1,pSurfX,pSurfY,myTime,myThid) ENDIF C-- Density of 1st level (below W(1)) reference to level 1 CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, O rhoKm1, I myThid ) IF ( .NOT. BOTTOM_LAYER ) THEN C-- Check static stability with layer below C and mix as needed. CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, O rhoKp1, I myThid ) CALL CONVECT( I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1, I myTime,myIter,myThid) C-- Recompute density after mixing CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, O rhoKm1, I myThid ) ENDIF C-- Calculate buoyancy CALL CALC_BUOY( I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1, O buoyKm1, I myThid ) C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1, U phiHyd, I myThid ) DO K=2,Nz BOTTOM_LAYER = K .EQ. Nz IF ( .NOT. BOTTOM_LAYER ) THEN C-- Update fields in layer below according to tendency terms CALL CORRECTION_STEP( I bi,bj,iMin,iMax,jMin,jMax,K+1,pSurfX,pSurfY,myTime,myThid) ENDIF C-- Density of K level (below W(K)) reference to K level CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, O rhoK, I myThid ) IF ( .NOT. BOTTOM_LAYER ) THEN C-- Check static stability with layer below and mix as needed. C-- Density of K+1 level (below W(K+1)) reference to K level. CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, O rhoKp1, I myThid ) CALL CONVECT( I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1, I myTime,myIter,myThid) C-- Recompute density after mixing CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, O rhoK, I myThid ) ENDIF C-- Calculate buoyancy CALL CALC_BUOY( I bi,bj,iMin,iMax,jMin,jMax,K,rhoK, O buoyK, I myThid ) C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK, U phiHyd, I myThid ) C-- Calculate iso-neutral slopes for the GM/Redi parameterisation CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType, O rhoTmp, I myThid ) CALL CALC_ISOSLOPES( I bi, bj, iMin, iMax, jMin, jMax, K, I rhoKm1, rhoK, rhotmp, O K13, K23, K33, KapGM, I myThid ) DO J=jMin,jMax DO I=iMin,iMax rhoKm1 (I,J) = rhoK(I,J) buoyKm1(I,J) = buoyK(I,J) ENDDO ENDDO ENDDO ! K DO K = Nz, 1, -1 kM1 =max(1,k-1) ! Points to level above k (=k-1) kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer iMin = 1-OLx+2 iMax = sNx+OLx-1 jMin = 1-OLy+2 jMax = sNy+OLy-1 C-- Get temporary terms used by tendency routines CALL CALC_COMMON_FACTORS ( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, O xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp, I myThid) C-- Calculate the total vertical diffusivity CALL CALC_DIFFUSIVITY( I bi,bj,iMin,iMax,jMin,jMax,K, I maskC,maskUp,KapGM,K33, O KappaZT,KappaZS, I myThid) C-- Calculate accelerations in the momentum equations IF ( momStepping ) THEN CALL CALC_MOM_RHS( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, I xA,yA,uTrans,vTrans,wTrans,wVel,maskC, I phiHyd, U aTerm,xTerm,cTerm,mTerm,pTerm, U fZon, fMer, fVerU, fVerV, I myThid) ENDIF C-- Calculate active tracer tendencies IF ( tempStepping ) THEN CALL CALC_GT( I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, I xA,yA,uTrans,vTrans,wTrans,maskUp,maskC, I K13,K23,KappaZT,KapGM, U aTerm,xTerm,fZon,fMer,fVerT, I myThid) ENDIF IF ( saltStepping ) THEN CALL CALC_GS( I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, I xA,yA,uTrans,vTrans,wTrans,maskUp,maskC, I K13,K23,KappaZS,KapGM, U aTerm,xTerm,fZon,fMer,fVerS, I myThid) ENDIF C-- Prediction step (step forward all model variables) CALL TIMESTEP( I bi,bj,iMin,iMax,jMin,jMax,K, I myThid) C-- Diagnose barotropic divergence of predicted fields CALL DIV_G( I bi,bj,iMin,iMax,jMin,jMax,K, I xA,yA, I myThid) C-- Cumulative diagnostic calculations (ie. time-averaging) #ifdef ALLOW_DIAGNOSTICS IF (taveFreq.GT.0.) THEN CALL DO_TIME_AVERAGES( I myTime, myIter, bi, bj, K, kUp, kDown, I K13, K23, wVel, KapGM, I myThid ) ENDIF #endif ENDDO ! K C-- Implicit diffusion IF (implicitDiffusion) THEN CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax, I KappaZT,KappaZS, I myThid ) ENDIF ENDDO ENDDO C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)), C & maxval(cg2d_x(1:sNx,1:sNy,:,:)) C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.), C & maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.) C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.), C & maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.) C write(0,*) 'dynamics: wVel(1) ', C & minval(wVel(1:sNx,1:sNy,1),mask=wVel(1:sNx,1:sNy,1).NE.0.), C & maxval(wVel(1:sNx,1:sNy,1),mask=wVel(1:sNx,1:sNy,1).NE.0.) C write(0,*) 'dynamics: wVel(2) ', C & minval(wVel(1:sNx,1:sNy,2),mask=wVel(1:sNx,1:sNy,2).NE.0.), C & maxval(wVel(1:sNx,1:sNy,2),mask=wVel(1:sNx,1:sNy,2).NE.0.) cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)), cblk & maxval(K13(1:sNx,1:sNy,:)) cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)), cblk & maxval(K23(1:sNx,1:sNy,:)) cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)), cblk & maxval(K33(1:sNx,1:sNy,:)) C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)), C & maxval(gT(1:sNx,1:sNy,:,:,:)) C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)), C & maxval(Theta(1:sNx,1:sNy,:,:,:)) C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)), C & maxval(gS(1:sNx,1:sNy,:,:,:)) C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)), C & maxval(salt(1:sNx,1:sNy,:,:,:)) C write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil),mask=ph.NE.0.), C & maxval(pH/(Gravity*Rhonil)) RETURN END