/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.141 - (show annotations) (download)
Fri Feb 13 21:56:48 2009 UTC (15 years, 2 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint61l, checkpoint61j, checkpoint61k
Changes since 1.140: +2 -2 lines
Add TAF option "kind" (or adjust "byte") to enable real*4 common blocks

1 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.140 2008/10/20 23:51:39 jmc Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6 #ifdef ALLOW_OBCS
7 # include "OBCS_OPTIONS.h"
8 #endif
9
10 #undef DYNAMICS_GUGV_EXCH_CHECK
11
12 CBOP
13 C !ROUTINE: DYNAMICS
14 C !INTERFACE:
15 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16 C !DESCRIPTION: \bv
17 C *==========================================================*
18 C | SUBROUTINE DYNAMICS
19 C | o Controlling routine for the explicit part of the model
20 C | dynamics.
21 C *==========================================================*
22 C | This routine evaluates the "dynamics" terms for each
23 C | block of ocean in turn. Because the blocks of ocean have
24 C | overlap regions they are independent of one another.
25 C | If terms involving lateral integrals are needed in this
26 C | routine care will be needed. Similarly finite-difference
27 C | operations with stencils wider than the overlap region
28 C | require special consideration.
29 C | The algorithm...
30 C |
31 C | "Correction Step"
32 C | =================
33 C | Here we update the horizontal velocities with the surface
34 C | pressure such that the resulting flow is either consistent
35 C | with the free-surface evolution or the rigid-lid:
36 C | U[n] = U* + dt x d/dx P
37 C | V[n] = V* + dt x d/dy P
38 C | W[n] = W* + dt x d/dz P (NH mode)
39 C |
40 C | "Calculation of Gs"
41 C | ===================
42 C | This is where all the accelerations and tendencies (ie.
43 C | physics, parameterizations etc...) are calculated
44 C | rho = rho ( theta[n], salt[n] )
45 C | b = b(rho, theta)
46 C | K31 = K31 ( rho )
47 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51 C |
52 C | "Time-stepping" or "Prediction"
53 C | ================================
54 C | The models variables are stepped forward with the appropriate
55 C | time-stepping scheme (currently we use Adams-Bashforth II)
56 C | - For momentum, the result is always *only* a "prediction"
57 C | in that the flow may be divergent and will be "corrected"
58 C | later with a surface pressure gradient.
59 C | - Normally for tracers the result is the new field at time
60 C | level [n+1} *BUT* in the case of implicit diffusion the result
61 C | is also *only* a prediction.
62 C | - We denote "predictors" with an asterisk (*).
63 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67 C | With implicit diffusion:
68 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70 C | (1 + dt * K * d_zz) theta[n] = theta*
71 C | (1 + dt * K * d_zz) salt[n] = salt*
72 C |
73 C *==========================================================*
74 C \ev
75 C !USES:
76 IMPLICIT NONE
77 C == Global variables ===
78 #include "SIZE.h"
79 #include "EEPARAMS.h"
80 #include "PARAMS.h"
81 #include "DYNVARS.h"
82 #ifdef ALLOW_CD_CODE
83 #include "CD_CODE_VARS.h"
84 #endif
85 #include "GRID.h"
86 #ifdef ALLOW_AUTODIFF_TAMC
87 # include "tamc.h"
88 # include "tamc_keys.h"
89 # include "FFIELDS.h"
90 # include "EOS.h"
91 # ifdef ALLOW_KPP
92 # include "KPP.h"
93 # endif
94 # ifdef ALLOW_PTRACERS
95 # include "PTRACERS_SIZE.h"
96 # include "PTRACERS_FIELDS.h"
97 # endif
98 # ifdef ALLOW_OBCS
99 # include "OBCS.h"
100 # ifdef ALLOW_PTRACERS
101 # include "OBCS_PTRACERS.h"
102 # endif
103 # endif
104 # ifdef ALLOW_MOM_FLUXFORM
105 # include "MOM_FLUXFORM.h"
106 # endif
107 #endif /* ALLOW_AUTODIFF_TAMC */
108
109 C !CALLING SEQUENCE:
110 C DYNAMICS()
111 C |
112 C |-- CALC_EP_FORCING
113 C |
114 C |-- CALC_GRAD_PHI_SURF
115 C |
116 C |-- CALC_VISCOSITY
117 C |
118 C |-- CALC_PHI_HYD
119 C |
120 C |-- MOM_FLUXFORM
121 C |
122 C |-- MOM_VECINV
123 C |
124 C |-- TIMESTEP
125 C |
126 C |-- OBCS_APPLY_UV
127 C |
128 C |-- MOM_U_IMPLICIT_R
129 C |-- MOM_V_IMPLICIT_R
130 C |
131 C |-- IMPLDIFF
132 C |
133 C |-- OBCS_APPLY_UV
134 C |
135 C |-- CALC_GW
136 C |
137 C |-- DIAGNOSTICS_FILL
138 C |-- DEBUG_STATS_RL
139
140 C !INPUT/OUTPUT PARAMETERS:
141 C == Routine arguments ==
142 C myTime :: Current time in simulation
143 C myIter :: Current iteration number in simulation
144 C myThid :: Thread number for this instance of the routine.
145 _RL myTime
146 INTEGER myIter
147 INTEGER myThid
148
149 C !LOCAL VARIABLES:
150 C == Local variables
151 C fVer[UV] o fVer: Vertical flux term - note fVer
152 C is "pipelined" in the vertical
153 C so we need an fVer for each
154 C variable.
155 C phiHydC :: hydrostatic potential anomaly at cell center
156 C In z coords phiHyd is the hydrostatic potential
157 C (=pressure/rho0) anomaly
158 C In p coords phiHyd is the geopotential height anomaly.
159 C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
160 C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
161 C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
162 C phiSurfY or geopotential (atmos) in X and Y direction
163 C guDissip :: dissipation tendency (all explicit terms), u component
164 C gvDissip :: dissipation tendency (all explicit terms), v component
165 C KappaRU :: vertical viscosity
166 C KappaRV :: vertical viscosity
167 C iMin, iMax - Ranges and sub-block indices on which calculations
168 C jMin, jMax are applied.
169 C bi, bj
170 C k, kup, - Index for layer above and below. kup and kDown
171 C kDown, km1 are switched with layer to be the appropriate
172 C index into fVerTerm.
173 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
174 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
175 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
176 _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
177 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
178 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
179 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
180 _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
181 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182 _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
184 _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
185
186 INTEGER iMin, iMax
187 INTEGER jMin, jMax
188 INTEGER bi, bj
189 INTEGER i, j
190 INTEGER k, km1, kp1, kup, kDown
191
192 #ifdef ALLOW_DIAGNOSTICS
193 _RL tmpFac
194 #endif /* ALLOW_DIAGNOSTICS */
195
196
197 C--- The algorithm...
198 C
199 C "Correction Step"
200 C =================
201 C Here we update the horizontal velocities with the surface
202 C pressure such that the resulting flow is either consistent
203 C with the free-surface evolution or the rigid-lid:
204 C U[n] = U* + dt x d/dx P
205 C V[n] = V* + dt x d/dy P
206 C
207 C "Calculation of Gs"
208 C ===================
209 C This is where all the accelerations and tendencies (ie.
210 C physics, parameterizations etc...) are calculated
211 C rho = rho ( theta[n], salt[n] )
212 C b = b(rho, theta)
213 C K31 = K31 ( rho )
214 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
215 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
216 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
217 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
218 C
219 C "Time-stepping" or "Prediction"
220 C ================================
221 C The models variables are stepped forward with the appropriate
222 C time-stepping scheme (currently we use Adams-Bashforth II)
223 C - For momentum, the result is always *only* a "prediction"
224 C in that the flow may be divergent and will be "corrected"
225 C later with a surface pressure gradient.
226 C - Normally for tracers the result is the new field at time
227 C level [n+1} *BUT* in the case of implicit diffusion the result
228 C is also *only* a prediction.
229 C - We denote "predictors" with an asterisk (*).
230 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
231 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
232 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
233 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
234 C With implicit diffusion:
235 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
236 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
237 C (1 + dt * K * d_zz) theta[n] = theta*
238 C (1 + dt * K * d_zz) salt[n] = salt*
239 C---
240 CEOP
241
242 #ifdef ALLOW_DEBUG
243 IF ( debugLevel .GE. debLevB )
244 & CALL DEBUG_ENTER( 'DYNAMICS', myThid )
245 #endif
246
247 C-- Call to routine for calculation of
248 C Eliassen-Palm-flux-forced U-tendency,
249 C if desired:
250 #ifdef INCLUDE_EP_FORCING_CODE
251 CALL CALC_EP_FORCING(myThid)
252 #endif
253
254 #ifdef ALLOW_AUTODIFF_TAMC
255 C-- HPF directive to help TAMC
256 CHPF$ INDEPENDENT
257 #endif /* ALLOW_AUTODIFF_TAMC */
258
259 DO bj=myByLo(myThid),myByHi(myThid)
260
261 #ifdef ALLOW_AUTODIFF_TAMC
262 C-- HPF directive to help TAMC
263 CHPF$ INDEPENDENT, NEW (fVerU,fVerV
264 CHPF$& ,phiHydF
265 CHPF$& ,KappaRU,KappaRV
266 CHPF$& )
267 #endif /* ALLOW_AUTODIFF_TAMC */
268
269 DO bi=myBxLo(myThid),myBxHi(myThid)
270
271 #ifdef ALLOW_AUTODIFF_TAMC
272 act1 = bi - myBxLo(myThid)
273 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
274 act2 = bj - myByLo(myThid)
275 max2 = myByHi(myThid) - myByLo(myThid) + 1
276 act3 = myThid - 1
277 max3 = nTx*nTy
278 act4 = ikey_dynamics - 1
279 idynkey = (act1 + 1) + act2*max1
280 & + act3*max1*max2
281 & + act4*max1*max2*max3
282 #endif /* ALLOW_AUTODIFF_TAMC */
283
284 C-- Set up work arrays with valid (i.e. not NaN) values
285 C These inital values do not alter the numerical results. They
286 C just ensure that all memory references are to valid floating
287 C point numbers. This prevents spurious hardware signals due to
288 C uninitialised but inert locations.
289
290 #ifdef ALLOW_AUTODIFF_TAMC
291 DO k=1,Nr
292 DO j=1-OLy,sNy+OLy
293 DO i=1-OLx,sNx+OLx
294 KappaRU(i,j,k) = 0. _d 0
295 KappaRV(i,j,k) = 0. _d 0
296 cph(
297 c-- need some re-initialisation here to break dependencies
298 cph)
299 gU(i,j,k,bi,bj) = 0. _d 0
300 gV(i,j,k,bi,bj) = 0. _d 0
301 ENDDO
302 ENDDO
303 ENDDO
304 #endif /* ALLOW_AUTODIFF_TAMC */
305 DO j=1-OLy,sNy+OLy
306 DO i=1-OLx,sNx+OLx
307 fVerU (i,j,1) = 0. _d 0
308 fVerU (i,j,2) = 0. _d 0
309 fVerV (i,j,1) = 0. _d 0
310 fVerV (i,j,2) = 0. _d 0
311 phiHydF (i,j) = 0. _d 0
312 phiHydC (i,j) = 0. _d 0
313 dPhiHydX(i,j) = 0. _d 0
314 dPhiHydY(i,j) = 0. _d 0
315 phiSurfX(i,j) = 0. _d 0
316 phiSurfY(i,j) = 0. _d 0
317 guDissip(i,j) = 0. _d 0
318 gvDissip(i,j) = 0. _d 0
319 #ifdef ALLOW_AUTODIFF_TAMC
320 # ifdef NONLIN_FRSURF
321 # ifndef DISABLE_RSTAR_CODE
322 dWtransC(i,j,bi,bj) = 0. _d 0
323 dWtransU(i,j,bi,bj) = 0. _d 0
324 dWtransV(i,j,bi,bj) = 0. _d 0
325 # endif
326 # endif
327 #endif
328 ENDDO
329 ENDDO
330
331 C-- Start computation of dynamics
332 iMin = 0
333 iMax = sNx+1
334 jMin = 0
335 jMax = sNy+1
336
337 #ifdef ALLOW_AUTODIFF_TAMC
338 CADJ STORE wvel (:,:,:,bi,bj) =
339 CADJ & comlev1_bibj, key=idynkey, byte=isbyte
340 #endif /* ALLOW_AUTODIFF_TAMC */
341
342 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
343 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
344 IF (implicSurfPress.NE.1.) THEN
345 CALL CALC_GRAD_PHI_SURF(
346 I bi,bj,iMin,iMax,jMin,jMax,
347 I etaN,
348 O phiSurfX,phiSurfY,
349 I myThid )
350 ENDIF
351
352 #ifdef ALLOW_AUTODIFF_TAMC
353 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
354 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
355 #ifdef ALLOW_KPP
356 CADJ STORE KPPviscAz (:,:,:,bi,bj)
357 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
358 #endif /* ALLOW_KPP */
359 #endif /* ALLOW_AUTODIFF_TAMC */
360
361 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
362 C-- Calculate the total vertical viscosity
363 CALL CALC_VISCOSITY(
364 I bi,bj, iMin,iMax,jMin,jMax,
365 O KappaRU, KappaRV,
366 I myThid )
367 #else
368 DO k=1,Nr
369 DO j=1-OLy,sNy+OLy
370 DO i=1-OLx,sNx+OLx
371 KappaRU(i,j,k) = 0. _d 0
372 KappaRV(i,j,k) = 0. _d 0
373 ENDDO
374 ENDDO
375 ENDDO
376 #endif
377
378 #ifdef ALLOW_AUTODIFF_TAMC
379 CADJ STORE KappaRU(:,:,:)
380 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
381 CADJ STORE KappaRV(:,:,:)
382 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
383 #endif /* ALLOW_AUTODIFF_TAMC */
384
385 C-- Start of dynamics loop
386 DO k=1,Nr
387
388 C-- km1 Points to level above k (=k-1)
389 C-- kup Cycles through 1,2 to point to layer above
390 C-- kDown Cycles through 2,1 to point to current layer
391
392 km1 = MAX(1,k-1)
393 kp1 = MIN(k+1,Nr)
394 kup = 1+MOD(k+1,2)
395 kDown= 1+MOD(k,2)
396
397 #ifdef ALLOW_AUTODIFF_TAMC
398 kkey = (idynkey-1)*Nr + k
399 c
400 CADJ STORE totphihyd (:,:,k,bi,bj)
401 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
402 CADJ STORE theta (:,:,k,bi,bj)
403 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
404 CADJ STORE salt (:,:,k,bi,bj)
405 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
406 CADJ STORE gt(:,:,k,bi,bj)
407 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
408 CADJ STORE gs(:,:,k,bi,bj)
409 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
410 # ifdef NONLIN_FRSURF
411 cph-test
412 CADJ STORE phiHydC (:,:)
413 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
414 CADJ STORE phiHydF (:,:)
415 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
416 CADJ STORE gudissip (:,:)
417 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
418 CADJ STORE gvdissip (:,:)
419 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
420 CADJ STORE fVerU (:,:,:)
421 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
422 CADJ STORE fVerV (:,:,:)
423 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
424 CADJ STORE gu(:,:,k,bi,bj)
425 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
426 CADJ STORE gv(:,:,k,bi,bj)
427 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
428 CADJ STORE gunm1(:,:,k,bi,bj)
429 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
430 CADJ STORE gvnm1(:,:,k,bi,bj)
431 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
432 # ifdef ALLOW_CD_CODE
433 CADJ STORE unm1(:,:,k,bi,bj)
434 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
435 CADJ STORE vnm1(:,:,k,bi,bj)
436 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
437 CADJ STORE uVelD(:,:,k,bi,bj)
438 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
439 CADJ STORE vVelD(:,:,k,bi,bj)
440 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
441 # endif
442 # endif
443 # ifdef ALLOW_DEPTH_CONTROL
444 CADJ STORE fVerU (:,:,:)
445 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
446 CADJ STORE fVerV (:,:,:)
447 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
448 # endif
449 #endif /* ALLOW_AUTODIFF_TAMC */
450
451 C-- Integrate hydrostatic balance for phiHyd with BC of
452 C phiHyd(z=0)=0
453 IF ( implicitIntGravWave ) THEN
454 CALL CALC_PHI_HYD(
455 I bi,bj,iMin,iMax,jMin,jMax,k,
456 I gT, gS,
457 U phiHydF,
458 O phiHydC, dPhiHydX, dPhiHydY,
459 I myTime, myIter, myThid )
460 ELSE
461 CALL CALC_PHI_HYD(
462 I bi,bj,iMin,iMax,jMin,jMax,k,
463 I theta, salt,
464 U phiHydF,
465 O phiHydC, dPhiHydX, dPhiHydY,
466 I myTime, myIter, myThid )
467 ENDIF
468
469 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
470 C and step forward storing the result in gU, gV, etc...
471 IF ( momStepping ) THEN
472 #ifdef ALLOW_AUTODIFF_TAMC
473 # ifdef NONLIN_FRSURF
474 # ifndef DISABLE_RSTAR_CODE
475 CADJ STORE dWtransC(:,:,bi,bj)
476 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
477 CADJ STORE dWtransU(:,:,bi,bj)
478 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
479 CADJ STORE dWtransV(:,:,bi,bj)
480 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
481 # endif
482 # endif
483 #endif
484 IF (.NOT. vectorInvariantMomentum) THEN
485 #ifdef ALLOW_MOM_FLUXFORM
486 C
487 CALL MOM_FLUXFORM(
488 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
489 I KappaRU, KappaRV,
490 U fVerU, fVerV,
491 O guDissip, gvDissip,
492 I myTime, myIter, myThid)
493 #endif
494 ELSE
495 #ifdef ALLOW_MOM_VECINV
496 C
497 # ifdef ALLOW_AUTODIFF_TAMC
498 # ifdef NONLIN_FRSURF
499 CADJ STORE fVerU(:,:,:)
500 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
501 CADJ STORE fVerV(:,:,:)
502 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
503 # endif
504 # endif /* ALLOW_AUTODIFF_TAMC */
505 C
506 CALL MOM_VECINV(
507 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
508 I KappaRU, KappaRV,
509 U fVerU, fVerV,
510 O guDissip, gvDissip,
511 I myTime, myIter, myThid)
512 #endif
513 ENDIF
514 C
515 CALL TIMESTEP(
516 I bi,bj,iMin,iMax,jMin,jMax,k,
517 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
518 I guDissip, gvDissip,
519 I myTime, myIter, myThid)
520
521 #ifdef ALLOW_OBCS
522 C-- Apply open boundary conditions
523 IF (useOBCS) THEN
524 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
525 ENDIF
526 #endif /* ALLOW_OBCS */
527
528 ENDIF
529
530
531 C-- end of dynamics k loop (1:Nr)
532 ENDDO
533
534 C-- Implicit Vertical advection & viscosity
535 #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON))
536 IF ( momImplVertAdv ) THEN
537 CALL MOM_U_IMPLICIT_R( kappaRU,
538 I bi, bj, myTime, myIter, myThid )
539 CALL MOM_V_IMPLICIT_R( kappaRV,
540 I bi, bj, myTime, myIter, myThid )
541 ELSEIF ( implicitViscosity ) THEN
542 #else /* INCLUDE_IMPLVERTADV_CODE */
543 IF ( implicitViscosity ) THEN
544 #endif /* INCLUDE_IMPLVERTADV_CODE */
545 #ifdef ALLOW_AUTODIFF_TAMC
546 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
547 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
548 #endif /* ALLOW_AUTODIFF_TAMC */
549 CALL IMPLDIFF(
550 I bi, bj, iMin, iMax, jMin, jMax,
551 I -1, KappaRU,recip_HFacW,
552 U gU,
553 I myThid )
554 #ifdef ALLOW_AUTODIFF_TAMC
555 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
556 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
557 #endif /* ALLOW_AUTODIFF_TAMC */
558 CALL IMPLDIFF(
559 I bi, bj, iMin, iMax, jMin, jMax,
560 I -2, KappaRV,recip_HFacS,
561 U gV,
562 I myThid )
563 ENDIF
564
565 #ifdef ALLOW_OBCS
566 C-- Apply open boundary conditions
567 IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
568 DO K=1,Nr
569 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
570 ENDDO
571 ENDIF
572 #endif /* ALLOW_OBCS */
573
574 #ifdef ALLOW_CD_CODE
575 IF (implicitViscosity.AND.useCDscheme) THEN
576 #ifdef ALLOW_AUTODIFF_TAMC
577 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
578 #endif /* ALLOW_AUTODIFF_TAMC */
579 CALL IMPLDIFF(
580 I bi, bj, iMin, iMax, jMin, jMax,
581 I 0, KappaRU,recip_HFacW,
582 U vVelD,
583 I myThid )
584 #ifdef ALLOW_AUTODIFF_TAMC
585 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
586 #endif /* ALLOW_AUTODIFF_TAMC */
587 CALL IMPLDIFF(
588 I bi, bj, iMin, iMax, jMin, jMax,
589 I 0, KappaRV,recip_HFacS,
590 U uVelD,
591 I myThid )
592 ENDIF
593 #endif /* ALLOW_CD_CODE */
594 C-- End implicit Vertical advection & viscosity
595
596 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
597
598 #ifdef ALLOW_NONHYDROSTATIC
599 C-- Step forward W field in N-H algorithm
600 IF ( nonHydrostatic ) THEN
601 #ifdef ALLOW_DEBUG
602 IF ( debugLevel .GE. debLevB )
603 & CALL DEBUG_CALL('CALC_GW', myThid )
604 #endif
605 CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
606 CALL CALC_GW(
607 I bi,bj, KappaRU, KappaRV,
608 I myTime, myIter, myThid )
609 ENDIF
610 IF ( nonHydrostatic.OR.implicitIntGravWave )
611 & CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
612 IF ( nonHydrostatic )
613 & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
614 #endif
615
616 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
617
618 C- end of bi,bj loops
619 ENDDO
620 ENDDO
621
622 #ifdef ALLOW_OBCS
623 IF (useOBCS) THEN
624 CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
625 ENDIF
626 #endif
627
628 Cml(
629 C In order to compare the variance of phiHydLow of a p/z-coordinate
630 C run with etaH of a z/p-coordinate run the drift of phiHydLow
631 C has to be removed by something like the following subroutine:
632 C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
633 C & 'phiHydLow', myThid )
634 Cml)
635
636 #ifdef ALLOW_DIAGNOSTICS
637 IF ( useDiagnostics ) THEN
638
639 CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
640 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
641
642 tmpFac = 1. _d 0
643 CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
644 & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
645
646 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
647 & 'PHIBOTSQ',0, 1,0,1,1,myThid)
648
649 ENDIF
650 #endif /* ALLOW_DIAGNOSTICS */
651
652 #ifdef ALLOW_DEBUG
653 If ( debugLevel .GE. debLevB ) THEN
654 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
655 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
656 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
657 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
658 CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
659 CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
660 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
661 CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
662 CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
663 CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
664 #ifndef ALLOW_ADAMSBASHFORTH_3
665 CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
666 CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
667 CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
668 CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
669 #endif
670 ENDIF
671 #endif
672
673 #ifdef DYNAMICS_GUGV_EXCH_CHECK
674 C- jmc: For safety checking only: This Exchange here should not change
675 C the solution. If solution changes, it means something is wrong,
676 C but it does not mean that it is less wrong with this exchange.
677 IF ( debugLevel .GT. debLevB ) THEN
678 CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
679 ENDIF
680 #endif
681
682 #ifdef ALLOW_DEBUG
683 IF ( debugLevel .GE. debLevB )
684 & CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
685 #endif
686
687 RETURN
688 END

  ViewVC Help
Powered by ViewVC 1.1.22