C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.130 2006/03/16 16:29:40 jmc Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" #undef DYNAMICS_GUGV_EXCH_CHECK CBOP C !ROUTINE: DYNAMICS C !INTERFACE: SUBROUTINE DYNAMICS(myTime, myIter, myThid) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE DYNAMICS C | o Controlling routine for the explicit part of the model C | dynamics. C *==========================================================* C | This routine evaluates the "dynamics" terms for each C | block of ocean in turn. Because the blocks of ocean have C | overlap regions they are independent of one another. C | If terms involving lateral integrals are needed in this C | routine care will be needed. Similarly finite-difference C | operations with stencils wider than the overlap region C | require special consideration. C | The algorithm... C | C | "Correction Step" C | ================= C | Here we update the horizontal velocities with the surface C | pressure such that the resulting flow is either consistent C | with the free-surface evolution or the rigid-lid: C | U[n] = U* + dt x d/dx P C | V[n] = V* + dt x d/dy P C | W[n] = W* + dt x d/dz P (NH mode) C | C | "Calculation of Gs" C | =================== C | This is where all the accelerations and tendencies (ie. C | physics, parameterizations etc...) are calculated C | rho = rho ( theta[n], salt[n] ) C | b = b(rho, theta) C | K31 = K31 ( rho ) C | Gu[n] = Gu( u[n], v[n], wVel, b, ... ) C | Gv[n] = Gv( u[n], v[n], wVel, b, ... ) C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) C | C | "Time-stepping" or "Prediction" C | ================================ C | The models variables are stepped forward with the appropriate C | time-stepping scheme (currently we use Adams-Bashforth II) C | - For momentum, the result is always *only* a "prediction" C | in that the flow may be divergent and will be "corrected" C | later with a surface pressure gradient. C | - Normally for tracers the result is the new field at time C | level [n+1} *BUT* in the case of implicit diffusion the result C | is also *only* a prediction. C | - We denote "predictors" with an asterisk (*). C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C | With implicit diffusion: C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C | (1 + dt * K * d_zz) theta[n] = theta* C | (1 + dt * K * d_zz) salt[n] = salt* C | C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "DYNVARS.h" #ifdef ALLOW_CD_CODE #include "CD_CODE_VARS.h" #endif #include "GRID.h" #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" # include "tamc_keys.h" # include "FFIELDS.h" # include "EOS.h" # ifdef ALLOW_KPP # include "KPP.h" # endif #endif /* ALLOW_AUTODIFF_TAMC */ C !CALLING SEQUENCE: C DYNAMICS() C | C |-- CALC_EP_FORCING C | C |-- CALC_GRAD_PHI_SURF C | C |-- CALC_VISCOSITY C | C |-- CALC_PHI_HYD C | C |-- MOM_FLUXFORM C | C |-- MOM_VECINV C | C |-- TIMESTEP C | C |-- OBCS_APPLY_UV C | C |-- MOM_U_IMPLICIT_R C |-- MOM_V_IMPLICIT_R C | C |-- IMPLDIFF C | C |-- OBCS_APPLY_UV C | C |-- CALC_GW C | C |-- DIAGNOSTICS_FILL C |-- DEBUG_STATS_RL C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of the routine. _RL myTime INTEGER myIter INTEGER myThid C !LOCAL VARIABLES: C == Local variables C fVer[UV] o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. C phiHydC :: hydrostatic potential anomaly at cell center C In z coords phiHyd is the hydrostatic potential C (=pressure/rho0) anomaly C In p coords phiHyd is the geopotential height anomaly. C phiHydF :: hydrostatic potential anomaly at middle between 2 centers C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom. C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean) C phiSurfY or geopotential (atmos) in X and Y direction C guDissip :: dissipation tendency (all explicit terms), u component C gvDissip :: dissipation tendency (all explicit terms), v component C iMin, iMax - Ranges and sub-block indices on which calculations C jMin, jMax are applied. C bi, bj C k, kup, - Index for layer above and below. kup and kDown C kDown, km1 are switched with layer to be the appropriate C index into fVerTerm. _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j INTEGER k, km1, kp1, kup, kDown #ifdef ALLOW_DIAGNOSTICS _RL tmpFac #endif /* ALLOW_DIAGNOSTICS */ C--- The algorithm... C C "Correction Step" C ================= C Here we update the horizontal velocities with the surface C pressure such that the resulting flow is either consistent C with the free-surface evolution or the rigid-lid: C U[n] = U* + dt x d/dx P C V[n] = V* + dt x d/dy P C C "Calculation of Gs" C =================== C This is where all the accelerations and tendencies (ie. C physics, parameterizations etc...) are calculated C rho = rho ( theta[n], salt[n] ) C b = b(rho, theta) C K31 = K31 ( rho ) C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) C C "Time-stepping" or "Prediction" C ================================ C The models variables are stepped forward with the appropriate C time-stepping scheme (currently we use Adams-Bashforth II) C - For momentum, the result is always *only* a "prediction" C in that the flow may be divergent and will be "corrected" C later with a surface pressure gradient. C - Normally for tracers the result is the new field at time C level [n+1} *BUT* in the case of implicit diffusion the result C is also *only* a prediction. C - We denote "predictors" with an asterisk (*). C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C With implicit diffusion: C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C (1 + dt * K * d_zz) theta[n] = theta* C (1 + dt * K * d_zz) salt[n] = salt* C--- CEOP #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevB ) & CALL DEBUG_ENTER( 'DYNAMICS', myThid ) #endif C-- Call to routine for calculation of C Eliassen-Palm-flux-forced U-tendency, C if desired: #ifdef INCLUDE_EP_FORCING_CODE CALL CALC_EP_FORCING(myThid) #endif #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC CHPF$ INDEPENDENT #endif /* ALLOW_AUTODIFF_TAMC */ DO bj=myByLo(myThid),myByHi(myThid) #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC CHPF$ INDEPENDENT, NEW (fVerU,fVerV CHPF$& ,phiHydF CHPF$& ,KappaRU,KappaRV CHPF$& ) #endif /* ALLOW_AUTODIFF_TAMC */ DO bi=myBxLo(myThid),myBxHi(myThid) #ifdef ALLOW_AUTODIFF_TAMC act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 act3 = myThid - 1 max3 = nTx*nTy act4 = ikey_dynamics - 1 idynkey = (act1 + 1) + act2*max1 & + act3*max1*max2 & + act4*max1*max2*max3 #endif /* ALLOW_AUTODIFF_TAMC */ C-- Set up work arrays with valid (i.e. not NaN) values C These inital values do not alter the numerical results. They C just ensure that all memory references are to valid floating C point numbers. This prevents spurious hardware signals due to C uninitialised but inert locations. DO k=1,Nr DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx KappaRU(i,j,k) = 0. _d 0 KappaRV(i,j,k) = 0. _d 0 #ifdef ALLOW_AUTODIFF_TAMC cph( c-- need some re-initialisation here to break dependencies cph) gU(i,j,k,bi,bj) = 0. _d 0 gV(i,j,k,bi,bj) = 0. _d 0 #endif ENDDO ENDDO ENDDO DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fVerU (i,j,1) = 0. _d 0 fVerU (i,j,2) = 0. _d 0 fVerV (i,j,1) = 0. _d 0 fVerV (i,j,2) = 0. _d 0 phiHydF (i,j) = 0. _d 0 phiHydC (i,j) = 0. _d 0 dPhiHydX(i,j) = 0. _d 0 dPhiHydY(i,j) = 0. _d 0 phiSurfX(i,j) = 0. _d 0 phiSurfY(i,j) = 0. _d 0 guDissip(i,j) = 0. _d 0 gvDissip(i,j) = 0. _d 0 ENDDO ENDDO C-- Start computation of dynamics iMin = 0 iMax = sNx+1 jMin = 0 jMax = sNy+1 #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE wvel (:,:,:,bi,bj) = CADJ & comlev1_bibj, key = idynkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP) C (note: this loop will be replaced by CALL CALC_GRAD_ETA) IF (implicSurfPress.NE.1.) THEN CALL CALC_GRAD_PHI_SURF( I bi,bj,iMin,iMax,jMin,jMax, I etaN, O phiSurfX,phiSurfY, I myThid ) ENDIF #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte #ifdef ALLOW_KPP CADJ STORE KPPviscAz (:,:,:,bi,bj) CADJ & = comlev1_bibj, key=idynkey, byte=isbyte #endif /* ALLOW_KPP */ #endif /* ALLOW_AUTODIFF_TAMC */ #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL C-- Calculate the total vertical diffusivity DO k=1,Nr CALL CALC_VISCOSITY( I bi,bj,iMin,iMax,jMin,jMax,k, O KappaRU,KappaRV, I myThid) ENDDO #endif #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE KappaRU(:,:,:) CADJ & = comlev1_bibj, key=idynkey, byte=isbyte CADJ STORE KappaRV(:,:,:) CADJ & = comlev1_bibj, key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ C-- Start of dynamics loop DO k=1,Nr C-- km1 Points to level above k (=k-1) C-- kup Cycles through 1,2 to point to layer above C-- kDown Cycles through 2,1 to point to current layer km1 = MAX(1,k-1) kp1 = MIN(k+1,Nr) kup = 1+MOD(k+1,2) kDown= 1+MOD(k,2) #ifdef ALLOW_AUTODIFF_TAMC kkey = (idynkey-1)*Nr + k c CADJ STORE totphihyd (:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE theta (:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE salt (:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gt(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gs(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # ifdef NONLIN_FRSURF cph-test CADJ STORE phiHydC (:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE phiHydF (:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gudissip (:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gvdissip (:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE fVerU (:,:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE fVerV (:,:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gu(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gv(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gunm1(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gvnm1(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # ifdef ALLOW_CD_CODE CADJ STORE unm1(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE vnm1(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE uVelD(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE vVelD(:,:,k,bi,bj) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # endif # endif #endif /* ALLOW_AUTODIFF_TAMC */ C-- Integrate hydrostatic balance for phiHyd with BC of C phiHyd(z=0)=0 IF ( implicitIntGravWave ) THEN CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,k, I gT, gS, U phiHydF, O phiHydC, dPhiHydX, dPhiHydY, I myTime, myIter, myThid ) ELSE CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,k, I theta, salt, U phiHydF, O phiHydC, dPhiHydX, dPhiHydY, I myTime, myIter, myThid ) ENDIF C-- Calculate accelerations in the momentum equations (gU, gV, ...) C and step forward storing the result in gU, gV, etc... IF ( momStepping ) THEN #ifdef ALLOW_MOM_FLUXFORM IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM( I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, I KappaRU, KappaRV, U fVerU, fVerV, O guDissip, gvDissip, I myTime, myIter, myThid) #endif #ifdef ALLOW_MOM_VECINV IF (vectorInvariantMomentum) THEN C # ifdef ALLOW_AUTODIFF_TAMC # ifdef NONLIN_FRSURF CADJ STORE fVerU(:,:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE fVerV(:,:,:) CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte # endif # endif /* ALLOW_AUTODIFF_TAMC */ C CALL MOM_VECINV( I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, I KappaRU, KappaRV, U fVerU, fVerV, O guDissip, gvDissip, I myTime, myIter, myThid) ENDIF #endif CALL TIMESTEP( I bi,bj,iMin,iMax,jMin,jMax,k, I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY, I guDissip, gvDissip, I myTime, myIter, myThid) #ifdef ALLOW_OBCS C-- Apply open boundary conditions IF (useOBCS) THEN CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid ) ENDIF #endif /* ALLOW_OBCS */ ENDIF C-- end of dynamics k loop (1:Nr) ENDDO C-- Implicit Vertical advection & viscosity #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON)) IF ( momImplVertAdv ) THEN CALL MOM_U_IMPLICIT_R( kappaRU, I bi, bj, myTime, myIter, myThid ) CALL MOM_V_IMPLICIT_R( kappaRV, I bi, bj, myTime, myIter, myThid ) ELSEIF ( implicitViscosity ) THEN #else /* INCLUDE_IMPLVERTADV_CODE */ IF ( implicitViscosity ) THEN #endif /* INCLUDE_IMPLVERTADV_CODE */ #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I -1, KappaRU,recip_HFacW, U gU, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I -2, KappaRV,recip_HFacS, U gV, I myThid ) ENDIF #ifdef ALLOW_OBCS C-- Apply open boundary conditions IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN DO K=1,Nr CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid ) ENDDO ENDIF #endif /* ALLOW_OBCS */ #ifdef ALLOW_CD_CODE IF (implicitViscosity.AND.useCDscheme) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I 0, KappaRU,recip_HFacW, U vVelD, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I 0, KappaRV,recip_HFacS, U uVelD, I myThid ) ENDIF #endif /* ALLOW_CD_CODE */ C-- End implicit Vertical advection & viscosity ENDDO ENDDO #ifdef ALLOW_OBCS IF (useOBCS) THEN CALL OBCS_PRESCRIBE_EXCHANGES(myThid) ENDIF #endif C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| #ifdef ALLOW_NONHYDROSTATIC C-- Step forward W field in N-H algorithm IF ( nonHydrostatic ) THEN #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevB ) & CALL DEBUG_CALL('CALC_GW', myThid ) #endif CALL TIMER_START('CALC_GW [DYNAMICS]',myThid) CALL CALC_GW( myTime, myIter, myThid ) ENDIF IF ( nonHydrostatic.OR.implicitIntGravWave ) & CALL TIMESTEP_WVEL( myTime, myIter, myThid ) IF ( nonHydrostatic ) & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid) #endif C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| Cml( C In order to compare the variance of phiHydLow of a p/z-coordinate C run with etaH of a z/p-coordinate run the drift of phiHydLow C has to be removed by something like the following subroutine: C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF, C & 'phiHydLow', myThid ) Cml) #ifdef ALLOW_DIAGNOSTICS IF ( useDiagnostics ) THEN CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid) CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid) tmpFac = 1. _d 0 CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2, & 'PHIHYDSQ',0,Nr,0,1,1,myThid) CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2, & 'PHIBOTSQ',0, 1,0,1,1,myThid) ENDIF #endif /* ALLOW_DIAGNOSTICS */ #ifdef ALLOW_DEBUG If ( debugLevel .GE. debLevB ) THEN CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid) #ifndef ALLOW_ADAMSBASHFORTH_3 CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid) #endif ENDIF #endif #ifdef DYNAMICS_GUGV_EXCH_CHECK C- jmc: For safety checking only: This Exchange here should not change C the solution. If solution changes, it means something is wrong, C but it does not mean that it is less wrong with this exchange. IF ( debugLevel .GT. debLevB ) THEN CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid) ENDIF #endif #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevB ) & CALL DEBUG_LEAVE( 'DYNAMICS', myThid ) #endif RETURN END