/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.68 by adcroft, Tue May 29 14:01:37 2001 UTC revision 1.127 by jmc, Thu Dec 15 21:09:00 2005 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2  C $Name$  C $Name$
3    
4    #include "PACKAGES_CONFIG.h"
5  #include "CPP_OPTIONS.h"  #include "CPP_OPTIONS.h"
6    #undef DYNAMICS_GUGV_EXCH_CHECK
7    
8    CBOP
9    C     !ROUTINE: DYNAMICS
10    C     !INTERFACE:
11        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
12  C     /==========================================================\  C     !DESCRIPTION: \bv
13  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
14  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS                                      
15  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model  
16  C     |==========================================================|  C     |   dynamics.                                              
17  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
18  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each      
19  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have  
20  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.      
21  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this  
22  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference  
23  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region    
24  C     | Notes                                                    |  C     | require special consideration.                            
25  C     | =====                                                    |  C     | The algorithm...
26  C     | C*P* comments indicating place holders for which code is |  C     |
27  C     |      presently being developed.                          |  C     | "Correction Step"
28  C     \==========================================================/  C     | =================
29    C     | Here we update the horizontal velocities with the surface
30    C     | pressure such that the resulting flow is either consistent
31    C     | with the free-surface evolution or the rigid-lid:
32    C     |   U[n] = U* + dt x d/dx P
33    C     |   V[n] = V* + dt x d/dy P
34    C     |   W[n] = W* + dt x d/dz P  (NH mode)
35    C     |
36    C     | "Calculation of Gs"
37    C     | ===================
38    C     | This is where all the accelerations and tendencies (ie.
39    C     | physics, parameterizations etc...) are calculated
40    C     |   rho = rho ( theta[n], salt[n] )
41    C     |   b   = b(rho, theta)
42    C     |   K31 = K31 ( rho )
43    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
44    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
45    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
46    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
47    C     |
48    C     | "Time-stepping" or "Prediction"
49    C     | ================================
50    C     | The models variables are stepped forward with the appropriate
51    C     | time-stepping scheme (currently we use Adams-Bashforth II)
52    C     | - For momentum, the result is always *only* a "prediction"
53    C     | in that the flow may be divergent and will be "corrected"
54    C     | later with a surface pressure gradient.
55    C     | - Normally for tracers the result is the new field at time
56    C     | level [n+1} *BUT* in the case of implicit diffusion the result
57    C     | is also *only* a prediction.
58    C     | - We denote "predictors" with an asterisk (*).
59    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
60    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
61    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     | With implicit diffusion:
64    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
65    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   (1 + dt * K * d_zz) theta[n] = theta*
67    C     |   (1 + dt * K * d_zz) salt[n] = salt*
68    C     |
69    C     *==========================================================*
70    C     \ev
71    C     !USES:
72        IMPLICIT NONE        IMPLICIT NONE
   
73  C     == Global variables ===  C     == Global variables ===
74  #include "SIZE.h"  #include "SIZE.h"
75  #include "EEPARAMS.h"  #include "EEPARAMS.h"
76  #include "PARAMS.h"  #include "PARAMS.h"
77  #include "DYNVARS.h"  #include "DYNVARS.h"
78    #ifdef ALLOW_CD_CODE
79    #include "CD_CODE_VARS.h"
80    #endif
81  #include "GRID.h"  #include "GRID.h"
   
82  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
83  # include "tamc.h"  # include "tamc.h"
84  # include "tamc_keys.h"  # include "tamc_keys.h"
85  # include "FFIELDS.h"  # include "FFIELDS.h"
86    # include "EOS.h"
87  # ifdef ALLOW_KPP  # ifdef ALLOW_KPP
88  #  include "KPP.h"  #  include "KPP.h"
89  # endif  # endif
 # ifdef ALLOW_GMREDI  
 #  include "GMREDI.h"  
 # endif  
90  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
91    
92  #ifdef ALLOW_TIMEAVE  C     !CALLING SEQUENCE:
93  #include "TIMEAVE_STATV.h"  C     DYNAMICS()
94  #endif  C      |
95    C      |-- CALC_EP_FORCING
96    C      |
97    C      |-- CALC_GRAD_PHI_SURF
98    C      |
99    C      |-- CALC_VISCOSITY
100    C      |
101    C      |-- CALC_PHI_HYD  
102    C      |
103    C      |-- MOM_FLUXFORM  
104    C      |
105    C      |-- MOM_VECINV    
106    C      |
107    C      |-- TIMESTEP      
108    C      |
109    C      |-- OBCS_APPLY_UV
110    C      |
111    C      |-- MOM_U_IMPLICIT_R      
112    C      |-- MOM_V_IMPLICIT_R      
113    C      |
114    C      |-- IMPLDIFF      
115    C      |
116    C      |-- OBCS_APPLY_UV
117    C      |
118    C      |-- CALC_GW
119    C      |
120    C      |-- DIAGNOSTICS_FILL
121    C      |-- DEBUG_STATS_RL
122    
123    C     !INPUT/OUTPUT PARAMETERS:
124  C     == Routine arguments ==  C     == Routine arguments ==
125  C     myTime - Current time in simulation  C     myTime - Current time in simulation
126  C     myIter - Current iteration number in simulation  C     myIter - Current iteration number in simulation
# Line 54  C     myThid - Thread number for this in Line 129  C     myThid - Thread number for this in
129        INTEGER myIter        INTEGER myIter
130        INTEGER myThid        INTEGER myThid
131    
132    C     !LOCAL VARIABLES:
133  C     == Local variables  C     == Local variables
134  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
135  C     uTrans, vTrans, rTrans - Per block temporaries holding flow  C                                    is "pipelined" in the vertical
136  C                              transport  C                                    so we need an fVer for each
137  C                              o uTrans: Zonal transport  C                                    variable.
138  C                              o vTrans: Meridional transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
139  C                              o rTrans: Vertical transport  C                   In z coords phiHyd is the hydrostatic potential
140  C     maskUp                   o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
141  C     fVer[STUV]               o fVer: Vertical flux term - note fVer  C                   In p coords phiHyd is the geopotential height anomaly.
142  C                                      is "pipelined" in the vertical  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
143  C                                      so we need an fVer for each  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
144  C                                      variable.  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
145  C     rhoK, rhoKM1   - Density at current level, and level above  C     phiSurfY             or geopotential (atmos) in X and Y direction
146  C     phiHyd         - Hydrostatic part of the potential phiHydi.  C     guDissip   :: dissipation tendency (all explicit terms), u component
147  C                      In z coords phiHydiHyd is the hydrostatic  C     gvDissip   :: dissipation tendency (all explicit terms), v component
 C                      Potential (=pressure/rho0) anomaly  
 C                      In p coords phiHydiHyd is the geopotential  
 C                      surface height anomaly.  
 C     phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean)  
 C     phiSurfY             or geopotentiel (atmos) in X and Y direction  
 C     KappaRT,       - Total diffusion in vertical for T and S.  
 C     KappaRS          (background + spatially varying, isopycnal term).  
148  C     iMin, iMax     - Ranges and sub-block indices on which calculations  C     iMin, iMax     - Ranges and sub-block indices on which calculations
149  C     jMin, jMax       are applied.  C     jMin, jMax       are applied.
150  C     bi, bj  C     bi, bj
151  C     k, kup,        - Index for layer above and below. kup and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
152  C     kDown, km1       are switched with layer to be the appropriate  C     kDown, km1       are switched with layer to be the appropriate
153  C                      index into fVerTerm.  C                      index into fVerTerm.
 C     tauAB - Adams-Bashforth timestepping weight: 0=forward ; 1/2=Adams-Bashf.  
       _RS xA      (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RS yA      (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL uTrans  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL vTrans  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rTrans  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RS maskUp  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
154        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
155        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
156        _RL phiHyd  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
157        _RL rhokm1  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
158        _RL rhok    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
159          _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
160        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
161        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
162        _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
163        _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
164        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
165        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
       _RL sigmaX  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL sigmaY  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL sigmaR  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL tauAB  
   
 C This is currently used by IVDC and Diagnostics  
       _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
166    
167        INTEGER iMin, iMax        INTEGER iMin, iMax
168        INTEGER jMin, jMax        INTEGER jMin, jMax
169        INTEGER bi, bj        INTEGER bi, bj
170        INTEGER i, j        INTEGER i, j
171        INTEGER k, km1, kup, kDown        INTEGER k, km1, kp1, kup, kDown
172    
173    #ifdef ALLOW_DIAGNOSTICS
174          _RL tmpFac
175    #endif /* ALLOW_DIAGNOSTICS */
176    
 Cjmc : add for phiHyd output <- but not working if multi tile per CPU  
 c     CHARACTER*(MAX_LEN_MBUF) suff  
 c     LOGICAL  DIFFERENT_MULTIPLE  
 c     EXTERNAL DIFFERENT_MULTIPLE  
 Cjmc(end)  
177    
178  C---    The algorithm...  C---    The algorithm...
179  C  C
# Line 165  C         salt* = salt[n] + dt x ( 3/2 G Line 218  C         salt* = salt[n] + dt x ( 3/2 G
218  C         (1 + dt * K * d_zz) theta[n] = theta*  C         (1 + dt * K * d_zz) theta[n] = theta*
219  C         (1 + dt * K * d_zz) salt[n] = salt*  C         (1 + dt * K * d_zz) salt[n] = salt*
220  C---  C---
221    CEOP
222    
223  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_DEBUG
224  C--   dummy statement to end declaration part        IF ( debugLevel .GE. debLevB )
225        ikey = 1       &   CALL DEBUG_ENTER( 'DYNAMICS', myThid )
226  #endif /* ALLOW_AUTODIFF_TAMC */  #endif
   
 C--   Set up work arrays with valid (i.e. not NaN) values  
 C     These inital values do not alter the numerical results. They  
 C     just ensure that all memory references are to valid floating  
 C     point numbers. This prevents spurious hardware signals due to  
 C     uninitialised but inert locations.  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0. _d 0  
         yA(i,j)      = 0. _d 0  
         uTrans(i,j)  = 0. _d 0  
         vTrans(i,j)  = 0. _d 0  
         DO k=1,Nr  
          phiHyd(i,j,k)  = 0. _d 0  
          KappaRU(i,j,k) = 0. _d 0  
          KappaRV(i,j,k) = 0. _d 0  
          sigmaX(i,j,k) = 0. _d 0  
          sigmaY(i,j,k) = 0. _d 0  
          sigmaR(i,j,k) = 0. _d 0  
         ENDDO  
         rhoKM1 (i,j) = 0. _d 0  
         rhok   (i,j) = 0. _d 0  
         phiSurfX(i,j) = 0. _d 0  
         phiSurfY(i,j) = 0. _d 0  
        ENDDO  
       ENDDO  
227    
228    C-- Call to routine for calculation of
229    C   Eliassen-Palm-flux-forced U-tendency,
230    C   if desired:
231    #ifdef INCLUDE_EP_FORCING_CODE
232          CALL CALC_EP_FORCING(myThid)
233    #endif
234    
235  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
236  C--   HPF directive to help TAMC  C--   HPF directive to help TAMC
# Line 207  CHPF$ INDEPENDENT Line 241  CHPF$ INDEPENDENT
241    
242  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
243  C--    HPF directive to help TAMC  C--    HPF directive to help TAMC
244  CHPF$  INDEPENDENT, NEW (rTrans,fVerT,fVerS,fVerU,fVerV  CHPF$  INDEPENDENT, NEW (fVerU,fVerV
245  CHPF$&                  ,phiHyd,utrans,vtrans,xA,yA  CHPF$&                  ,phiHydF
246  CHPF$&                  ,KappaRT,KappaRS,KappaRU,KappaRV  CHPF$&                  ,KappaRU,KappaRV
247  CHPF$&                  )  CHPF$&                  )
248  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
249    
# Line 218  CHPF$&                  ) Line 252  CHPF$&                  )
252  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
253            act1 = bi - myBxLo(myThid)            act1 = bi - myBxLo(myThid)
254            max1 = myBxHi(myThid) - myBxLo(myThid) + 1            max1 = myBxHi(myThid) - myBxLo(myThid) + 1
   
255            act2 = bj - myByLo(myThid)            act2 = bj - myByLo(myThid)
256            max2 = myByHi(myThid) - myByLo(myThid) + 1            max2 = myByHi(myThid) - myByLo(myThid) + 1
   
257            act3 = myThid - 1            act3 = myThid - 1
258            max3 = nTx*nTy            max3 = nTx*nTy
   
259            act4 = ikey_dynamics - 1            act4 = ikey_dynamics - 1
260              idynkey = (act1 + 1) + act2*max1
           ikey = (act1 + 1) + act2*max1  
261       &                      + act3*max1*max2       &                      + act3*max1*max2
262       &                      + act4*max1*max2*max3       &                      + act4*max1*max2*max3
263  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
264    
265  C--     Set up work arrays that need valid initial values  C--   Set up work arrays with valid (i.e. not NaN) values
266          DO j=1-OLy,sNy+OLy  C     These inital values do not alter the numerical results. They
267           DO i=1-OLx,sNx+OLx  C     just ensure that all memory references are to valid floating
268            rTrans(i,j)   = 0. _d 0  C     point numbers. This prevents spurious hardware signals due to
269            fVerT (i,j,1) = 0. _d 0  C     uninitialised but inert locations.
           fVerT (i,j,2) = 0. _d 0  
           fVerS (i,j,1) = 0. _d 0  
           fVerS (i,j,2) = 0. _d 0  
           fVerU (i,j,1) = 0. _d 0  
           fVerU (i,j,2) = 0. _d 0  
           fVerV (i,j,1) = 0. _d 0  
           fVerV (i,j,2) = 0. _d 0  
          ENDDO  
         ENDDO  
270    
271          DO k=1,Nr          DO k=1,Nr
272           DO j=1-OLy,sNy+OLy           DO j=1-OLy,sNy+OLy
273            DO i=1-OLx,sNx+OLx            DO i=1-OLx,sNx+OLx
274  C This is currently also used by IVDC and Diagnostics             KappaRU(i,j,k) = 0. _d 0
275             ConvectCount(i,j,k) = 0.             KappaRV(i,j,k) = 0. _d 0
276             KappaRT(i,j,k) = 0. _d 0  #ifdef ALLOW_AUTODIFF_TAMC
277             KappaRS(i,j,k) = 0. _d 0  cph(
278    c--   need some re-initialisation here to break dependencies
279    cph)
280               gU(i,j,k,bi,bj) = 0. _d 0
281               gV(i,j,k,bi,bj) = 0. _d 0
282    #endif
283            ENDDO            ENDDO
284           ENDDO           ENDDO
285          ENDDO          ENDDO
286            DO j=1-OLy,sNy+OLy
287          iMin = 1-OLx+1           DO i=1-OLx,sNx+OLx
288          iMax = sNx+OLx            fVerU  (i,j,1) = 0. _d 0
289          jMin = 1-OLy+1            fVerU  (i,j,2) = 0. _d 0
290          jMax = sNy+OLy            fVerV  (i,j,1) = 0. _d 0
291              fVerV  (i,j,2) = 0. _d 0
292              phiHydF (i,j)  = 0. _d 0
293  #ifdef ALLOW_AUTODIFF_TAMC            phiHydC (i,j)  = 0. _d 0
294  CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte            dPhiHydX(i,j)  = 0. _d 0
295  CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte            dPhiHydY(i,j)  = 0. _d 0
296  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte            phiSurfX(i,j)  = 0. _d 0
297  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte            phiSurfY(i,j)  = 0. _d 0
298  #endif /* ALLOW_AUTODIFF_TAMC */            guDissip(i,j)  = 0. _d 0
299              gvDissip(i,j)  = 0. _d 0
300  C--     Start of diagnostic loop           ENDDO
         DO k=Nr,1,-1  
   
 #ifdef ALLOW_AUTODIFF_TAMC  
 C? Patrick, is this formula correct now that we change the loop range?  
 C? Do we still need this?  
 cph kkey formula corrected.  
 cph Needed for rhok, rhokm1, in the case useGMREDI.  
          kkey = (ikey-1)*Nr + k  
 CADJ STORE rhokm1(:,:) = comlev1_bibj_k ,       key=kkey, byte=isbyte  
 CADJ STORE rhok  (:,:) = comlev1_bibj_k ,       key=kkey, byte=isbyte  
 #endif /* ALLOW_AUTODIFF_TAMC */  
   
 C--       Integrate continuity vertically for vertical velocity  
           CALL INTEGRATE_FOR_W(  
      I                         bi, bj, k, uVel, vVel,  
      O                         wVel,  
      I                         myThid )  
   
 #ifdef    ALLOW_OBCS  
 #ifdef    ALLOW_NONHYDROSTATIC  
 C--       Apply OBC to W if in N-H mode  
           IF (useOBCS.AND.nonHydrostatic) THEN  
             CALL OBCS_APPLY_W( bi, bj, k, wVel, myThid )  
           ENDIF  
 #endif    /* ALLOW_NONHYDROSTATIC */  
 #endif    /* ALLOW_OBCS */  
   
 C--       Calculate gradients of potential density for isoneutral  
 C         slope terms (e.g. GM/Redi tensor or IVDC diffusivity)  
 c         IF ( k.GT.1 .AND. (useGMRedi.OR.ivdc_kappa.NE.0.) ) THEN  
           IF ( useGMRedi .OR. (k.GT.1 .AND. ivdc_kappa.NE.0.) ) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte  
 CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte  
 #endif /* ALLOW_AUTODIFF_TAMC */  
             CALL FIND_RHO(  
      I        bi, bj, iMin, iMax, jMin, jMax, k, k, eosType,  
      I        theta, salt,  
      O        rhoK,  
      I        myThid )  
             IF (k.GT.1) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE theta(:,:,k-1,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte  
 CADJ STORE salt (:,:,k-1,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte  
 #endif /* ALLOW_AUTODIFF_TAMC */  
              CALL FIND_RHO(  
      I        bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType,  
      I        theta, salt,  
      O        rhoKm1,  
      I        myThid )  
             ENDIF  
             CALL GRAD_SIGMA(  
      I             bi, bj, iMin, iMax, jMin, jMax, k,  
      I             rhoK, rhoKm1, rhoK,  
      O             sigmaX, sigmaY, sigmaR,  
      I             myThid )  
           ENDIF  
   
 C--       Implicit Vertical Diffusion for Convection  
 c ==> should use sigmaR !!!  
           IF (k.GT.1 .AND. ivdc_kappa.NE.0.) THEN  
             CALL CALC_IVDC(  
      I        bi, bj, iMin, iMax, jMin, jMax, k,  
      I        rhoKm1, rhoK,  
      U        ConvectCount, KappaRT, KappaRS,  
      I        myTime, myIter, myThid)  
           ENDIF  
   
 C--     end of diagnostic k loop (Nr:1)  
301          ENDDO          ENDDO
302    
303  #ifdef ALLOW_AUTODIFF_TAMC  C--     Start computation of dynamics
304  cph avoids recomputation of integrate_for_w          iMin = 0
305  CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte          iMax = sNx+1
306  #endif /* ALLOW_AUTODIFF_TAMC */          jMin = 0
307            jMax = sNy+1
 #ifdef  ALLOW_OBCS  
 C--     Calculate future values on open boundaries  
         IF (useOBCS) THEN  
           CALL OBCS_CALC( bi, bj, myTime+deltaT,  
      I            uVel, vVel, wVel, theta, salt,  
      I            myThid )  
         ENDIF  
 #endif  /* ALLOW_OBCS */  
   
 C--     Determines forcing terms based on external fields  
 C       relaxation terms, etc.  
         CALL EXTERNAL_FORCING_SURF(  
      I             bi, bj, iMin, iMax, jMin, jMax,  
      I             myThid )  
 #ifdef ALLOW_AUTODIFF_TAMC  
 cph needed for KPP  
 CADJ STORE surfacetendencyU(:,:,bi,bj)  
 CADJ &     = comlev1_bibj, key=ikey, byte=isbyte  
 CADJ STORE surfacetendencyV(:,:,bi,bj)  
 CADJ &     = comlev1_bibj, key=ikey, byte=isbyte  
 CADJ STORE surfacetendencyS(:,:,bi,bj)  
 CADJ &     = comlev1_bibj, key=ikey, byte=isbyte  
 CADJ STORE surfacetendencyT(:,:,bi,bj)  
 CADJ &     = comlev1_bibj, key=ikey, byte=isbyte  
 #endif /* ALLOW_AUTODIFF_TAMC */  
   
 #ifdef  ALLOW_GMREDI  
   
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE sigmaX(:,:,:) = comlev1, key=ikey, byte=isbyte  
 CADJ STORE sigmaY(:,:,:) = comlev1, key=ikey, byte=isbyte  
 CADJ STORE sigmaR(:,:,:) = comlev1, key=ikey, byte=isbyte  
 #endif /* ALLOW_AUTODIFF_TAMC */  
 C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  
         IF (useGMRedi) THEN  
           DO k=1,Nr  
             CALL GMREDI_CALC_TENSOR(  
      I             bi, bj, iMin, iMax, jMin, jMax, k,  
      I             sigmaX, sigmaY, sigmaR,  
      I             myThid )  
           ENDDO  
 #ifdef ALLOW_AUTODIFF_TAMC  
         ELSE  
           DO k=1, Nr  
             CALL GMREDI_CALC_TENSOR_DUMMY(  
      I             bi, bj, iMin, iMax, jMin, jMax, k,  
      I             sigmaX, sigmaY, sigmaR,  
      I             myThid )  
           ENDDO  
 #endif /* ALLOW_AUTODIFF_TAMC */  
         ENDIF  
308    
309  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
310  CADJ STORE Kwx(:,:,:,bi,bj)   = comlev1_bibj, key=ikey, byte=isbyte  CADJ STORE wvel (:,:,:,bi,bj) =
311  CADJ STORE Kwy(:,:,:,bi,bj)   = comlev1_bibj, key=ikey, byte=isbyte  CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
 CADJ STORE Kwz(:,:,:,bi,bj)   = comlev1_bibj, key=ikey, byte=isbyte  
312  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
313    
314  #endif  /* ALLOW_GMREDI */  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
315    C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
316  #ifdef  ALLOW_KPP          IF (implicSurfPress.NE.1.) THEN
317  C--     Compute KPP mixing coefficients            CALL CALC_GRAD_PHI_SURF(
318          IF (useKPP) THEN       I         bi,bj,iMin,iMax,jMin,jMax,
319            CALL KPP_CALC(       I         etaN,
320       I                  bi, bj, myTime, myThid )       O         phiSurfX,phiSurfY,
321  #ifdef ALLOW_AUTODIFF_TAMC       I         myThid )                        
         ELSE  
           CALL KPP_CALC_DUMMY(  
      I                  bi, bj, myTime, myThid )  
 #endif /* ALLOW_AUTODIFF_TAMC */  
322          ENDIF          ENDIF
323    
324  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
325  CADJ STORE KPPghat   (:,:,:,bi,bj)  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
326  CADJ &   , KPPviscAz (:,:,:,bi,bj)  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
327  CADJ &   , KPPdiffKzT(:,:,:,bi,bj)  #ifdef ALLOW_KPP
328  CADJ &   , KPPdiffKzS(:,:,:,bi,bj)  CADJ STORE KPPviscAz (:,:,:,bi,bj)
329  CADJ &   , KPPfrac   (:,:  ,bi,bj)  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
330  CADJ &                 = comlev1_bibj, key=ikey, byte=isbyte  #endif /* ALLOW_KPP */
 #endif /* ALLOW_AUTODIFF_TAMC */  
   
 #endif  /* ALLOW_KPP */  
   
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE KappaRT(:,:,:)     = comlev1_bibj, key = ikey, byte = isbyte  
 CADJ STORE KappaRS(:,:,:)     = comlev1_bibj, key = ikey, byte = isbyte  
 CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte  
 CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte  
 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte  
 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte  
 #endif /* ALLOW_AUTODIFF_TAMC */  
   
 #ifdef ALLOW_AIM  
 C       AIM - atmospheric intermediate model, physics package code.  
 C note(jmc) : phiHyd=0 at this point but is not really used in Molteni Physics  
         IF ( useAIM ) THEN  
          CALL TIMER_START('AIM_DO_ATMOS_PHYS      [DYNAMICS]', myThid)  
          CALL AIM_DO_ATMOS_PHYSICS( phiHyd, myTime, myThid )  
          CALL TIMER_STOP ('AIM_DO_ATMOS_PHYS      [DYNAMICS]', myThid)  
         ENDIF  
 #endif /* ALLOW_AIM */  
   
   
 C--     Start of thermodynamics loop  
         DO k=Nr,1,-1  
 #ifdef ALLOW_AUTODIFF_TAMC  
 C? Patrick Is this formula correct?  
 cph Yes, but I rewrote it.  
 cph Also, the KappaR? need the index and subscript k!  
          kkey = (ikey-1)*Nr + k  
 #endif /* ALLOW_AUTODIFF_TAMC */  
   
 C--       km1    Points to level above k (=k-1)  
 C--       kup    Cycles through 1,2 to point to layer above  
 C--       kDown  Cycles through 2,1 to point to current layer  
   
           km1  = MAX(1,k-1)  
           kup  = 1+MOD(k+1,2)  
           kDown= 1+MOD(k,2)  
   
           iMin = 1-OLx+2  
           iMax = sNx+OLx-1  
           jMin = 1-OLy+2  
           jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,  
      O        xA,yA,uTrans,vTrans,rTrans,maskUp,  
      I        myThid)  
   
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE KappaRT(:,:,k)    = comlev1_bibj_k, key=kkey, byte=isbyte  
 CADJ STORE KappaRS(:,:,k)    = comlev1_bibj_k, key=kkey, byte=isbyte  
331  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
332    
333  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
334  C--      Calculate the total vertical diffusivity  C--      Calculate the total vertical diffusivity
335           CALL CALC_DIFFUSIVITY(          DO k=1,Nr
336             CALL CALC_VISCOSITY(
337       I        bi,bj,iMin,iMax,jMin,jMax,k,       I        bi,bj,iMin,iMax,jMin,jMax,k,
338       I        maskUp,       O        KappaRU,KappaRV,
      O        KappaRT,KappaRS,KappaRU,KappaRV,  
339       I        myThid)       I        myThid)
340           ENDDO
341  #endif  #endif
342    
 C--      Calculate active tracer tendencies (gT,gS,...)  
 C        and step forward storing result in gTnm1, gSnm1, etc.  
          IF ( tempStepping ) THEN  
            CALL CALC_GT(  
      I         bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,  
      I         xA,yA,uTrans,vTrans,rTrans,maskUp,  
      I         KappaRT,  
      U         fVerT,  
      I         myTime, myThid)  
            tauAB = 0.5d0 + abEps  
            CALL TIMESTEP_TRACER(  
      I         bi,bj,iMin,iMax,jMin,jMax,k,tauAB,  
      I         theta, gT,  
      U         gTnm1,  
      I         myIter, myThid)  
          ENDIF  
          IF ( saltStepping ) THEN  
            CALL CALC_GS(  
      I         bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,  
      I         xA,yA,uTrans,vTrans,rTrans,maskUp,  
      I         KappaRS,  
      U         fVerS,  
      I         myTime, myThid)  
            tauAB = 0.5d0 + abEps  
            CALL TIMESTEP_TRACER(  
      I         bi,bj,iMin,iMax,jMin,jMax,k,tauAB,  
      I         salt, gS,  
      U         gSnm1,  
      I         myIter, myThid)  
          ENDIF  
   
 #ifdef   ALLOW_OBCS  
 C--      Apply open boundary conditions  
          IF (useOBCS) THEN  
            CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid )  
          END IF  
 #endif   /* ALLOW_OBCS */  
   
 C--      Freeze water  
          IF (allowFreezing) THEN  
343  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
344  CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k  CADJ STORE KappaRU(:,:,:)
345  CADJ &   , key = kkey, byte = isbyte  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
346    CADJ STORE KappaRV(:,:,:)
347    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
348  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
             CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid )  
          END IF  
   
 C--     end of thermodynamic k loop (Nr:1)  
         ENDDO  
   
   
 #ifdef ALLOW_AUTODIFF_TAMC  
 C? Patrick? What about this one?  
 cph Keys iikey and idkey don't seem to be needed  
 cph since storing occurs on different tape for each  
 cph impldiff call anyways.  
 cph Thus, common block comlev1_impl isn't needed either.  
 cph Storing below needed in the case useGMREDI.  
         iikey = (ikey-1)*maximpl  
 #endif /* ALLOW_AUTODIFF_TAMC */  
   
 C--     Implicit diffusion  
         IF (implicitDiffusion) THEN  
   
          IF (tempStepping) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
             idkey = iikey + 1  
 CADJ STORE gTNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  
 #endif /* ALLOW_AUTODIFF_TAMC */  
             CALL IMPLDIFF(  
      I         bi, bj, iMin, iMax, jMin, jMax,  
      I         deltaTtracer, KappaRT, recip_HFacC,  
      U         gTNm1,  
      I         myThid )  
          ENDIF  
   
          IF (saltStepping) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
          idkey = iikey + 2  
 CADJ STORE gSNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  
 #endif /* ALLOW_AUTODIFF_TAMC */  
             CALL IMPLDIFF(  
      I         bi, bj, iMin, iMax, jMin, jMax,  
      I         deltaTtracer, KappaRS, recip_HFacC,  
      U         gSNm1,  
      I         myThid )  
          ENDIF  
   
 #ifdef   ALLOW_OBCS  
 C--      Apply open boundary conditions  
          IF (useOBCS) THEN  
            DO K=1,Nr  
              CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid )  
            ENDDO  
          END IF  
 #endif   /* ALLOW_OBCS */  
   
 C--     End If implicitDiffusion  
         ENDIF  
   
 C--     Start computation of dynamics  
         iMin = 1-OLx+2  
         iMax = sNx+OLx-1  
         jMin = 1-OLy+2  
         jMax = sNy+OLy-1  
   
 C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)  
 C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)  
         IF (implicSurfPress.NE.1.) THEN  
           CALL CALC_GRAD_PHI_SURF(  
      I         bi,bj,iMin,iMax,jMin,jMax,  
      I         etaN,  
      O         phiSurfX,phiSurfY,  
      I         myThid )                          
         ENDIF  
349    
350  C--     Start of dynamics loop  C--     Start of dynamics loop
351          DO k=1,Nr          DO k=1,Nr
# Line 617  C--       kup    Cycles through 1,2 to p Line 355  C--       kup    Cycles through 1,2 to p
355  C--       kDown  Cycles through 2,1 to point to current layer  C--       kDown  Cycles through 2,1 to point to current layer
356    
357            km1  = MAX(1,k-1)            km1  = MAX(1,k-1)
358              kp1  = MIN(k+1,Nr)
359            kup  = 1+MOD(k+1,2)            kup  = 1+MOD(k+1,2)
360            kDown= 1+MOD(k,2)            kDown= 1+MOD(k,2)
361    
362    #ifdef ALLOW_AUTODIFF_TAMC
363             kkey = (idynkey-1)*Nr + k
364    c
365    CADJ STORE totphihyd (:,:,k,bi,bj)
366    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
367    CADJ STORE theta (:,:,k,bi,bj)
368    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
369    CADJ STORE salt  (:,:,k,bi,bj)
370    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
371    # ifdef NONLIN_FRSURF
372    cph-test
373    CADJ STORE  phiHydC (:,:)
374    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
375    CADJ STORE  phiHydF (:,:)
376    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
377    CADJ STORE  gudissip (:,:)
378    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
379    CADJ STORE  gvdissip (:,:)
380    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
381    CADJ STORE  fVerU (:,:,:)
382    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
383    CADJ STORE  fVerV (:,:,:)
384    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
385    CADJ STORE gu(:,:,k,bi,bj)
386    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
387    CADJ STORE gv(:,:,k,bi,bj)
388    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
389    CADJ STORE gunm1(:,:,k,bi,bj)
390    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
391    CADJ STORE gvnm1(:,:,k,bi,bj)
392    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
393    #  ifdef ALLOW_CD_CODE
394    CADJ STORE unm1(:,:,k,bi,bj)
395    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
396    CADJ STORE vnm1(:,:,k,bi,bj)
397    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
398    CADJ STORE uVelD(:,:,k,bi,bj)
399    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
400    CADJ STORE vVelD(:,:,k,bi,bj)
401    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
402    #  endif
403    # endif
404    #endif /* ALLOW_AUTODIFF_TAMC */
405    
406  C--      Integrate hydrostatic balance for phiHyd with BC of  C--      Integrate hydrostatic balance for phiHyd with BC of
407  C        phiHyd(z=0)=0  C        phiHyd(z=0)=0
408  C        distinguishe between Stagger and Non Stagger time stepping           CALL CALC_PHI_HYD(
          IF (staggerTimeStep) THEN  
            CALL CALC_PHI_HYD(  
      I        bi,bj,iMin,iMax,jMin,jMax,k,  
      I        gTnm1, gSnm1,  
      U        phiHyd,  
      I        myThid )  
          ELSE  
            CALL CALC_PHI_HYD(  
409       I        bi,bj,iMin,iMax,jMin,jMax,k,       I        bi,bj,iMin,iMax,jMin,jMax,k,
410       I        theta, salt,       I        theta, salt,
411       U        phiHyd,       U        phiHydF,
412       I        myThid )       O        phiHydC, dPhiHydX, dPhiHydY,
413           ENDIF       I        myTime, myIter, myThid )
414    
415  C--      Calculate accelerations in the momentum equations (gU, gV, ...)  C--      Calculate accelerations in the momentum equations (gU, gV, ...)
416  C        and step forward storing the result in gUnm1, gVnm1, etc...  C        and step forward storing the result in gU, gV, etc...
417           IF ( momStepping ) THEN           IF ( momStepping ) THEN
418             CALL CALC_MOM_RHS(  #ifdef ALLOW_MOM_FLUXFORM
419               IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
420       I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,       I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
421       I         phiHyd,KappaRU,KappaRV,       I         KappaRU, KappaRV,
422       U         fVerU, fVerV,       U         fVerU, fVerV,
423       I         myTime, myThid)       O         guDissip, gvDissip,
424         I         myTime, myIter, myThid)
425    #endif
426    #ifdef ALLOW_MOM_VECINV
427               IF (vectorInvariantMomentum) THEN
428    C
429    # ifdef ALLOW_AUTODIFF_TAMC
430    #  ifdef NONLIN_FRSURF
431    CADJ STORE fVerU(:,:,:)
432    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
433    CADJ STORE fVerV(:,:,:)
434    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
435    #  endif
436    # endif /* ALLOW_AUTODIFF_TAMC */
437    C
438                 CALL MOM_VECINV(
439         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
440         I         KappaRU, KappaRV,
441         U         fVerU, fVerV,
442         O         guDissip, gvDissip,
443         I         myTime, myIter, myThid)
444               ENDIF
445    #endif
446             CALL TIMESTEP(             CALL TIMESTEP(
447       I         bi,bj,iMin,iMax,jMin,jMax,k,       I         bi,bj,iMin,iMax,jMin,jMax,k,
448       I         phiHyd, phiSurfX, phiSurfY,       I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
449       I         myIter, myThid)       I         guDissip, gvDissip,
450         I         myTime, myIter, myThid)
451    
452  #ifdef   ALLOW_OBCS  #ifdef   ALLOW_OBCS
453  C--      Apply open boundary conditions  C--      Apply open boundary conditions
454           IF (useOBCS) THEN             IF (useOBCS) THEN
455             CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )               CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
456           END IF             ENDIF
457  #endif   /* ALLOW_OBCS */  #endif   /* ALLOW_OBCS */
458    
 #ifdef   ALLOW_AUTODIFF_TAMC  
 #ifdef   INCLUDE_CD_CODE  
          ELSE  
            DO j=1-OLy,sNy+OLy  
              DO i=1-OLx,sNx+OLx  
                guCD(i,j,k,bi,bj) = 0.0  
                gvCD(i,j,k,bi,bj) = 0.0  
              END DO  
            END DO  
 #endif   /* INCLUDE_CD_CODE */  
 #endif   /* ALLOW_AUTODIFF_TAMC */  
459           ENDIF           ENDIF
460    
461    
462  C--     end of dynamics k loop (1:Nr)  C--     end of dynamics k loop (1:Nr)
463          ENDDO          ENDDO
464    
465    C--     Implicit Vertical advection & viscosity
466    #ifdef INCLUDE_IMPLVERTADV_CODE
467  C--     Implicit viscosity          IF ( momImplVertAdv ) THEN
468          IF (implicitViscosity.AND.momStepping) THEN            CALL MOM_U_IMPLICIT_R( kappaRU,
469         I                           bi, bj, myTime, myIter, myThid )
470              CALL MOM_V_IMPLICIT_R( kappaRV,
471         I                           bi, bj, myTime, myIter, myThid )
472            ELSEIF ( implicitViscosity ) THEN
473    #else /* INCLUDE_IMPLVERTADV_CODE */
474            IF     ( implicitViscosity ) THEN
475    #endif /* INCLUDE_IMPLVERTADV_CODE */
476  #ifdef    ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
477            idkey = iikey + 3  CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
478  CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
479  #endif    /* ALLOW_AUTODIFF_TAMC */  #endif    /* ALLOW_AUTODIFF_TAMC */
480            CALL IMPLDIFF(            CALL IMPLDIFF(
481       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
482       I         deltaTmom, KappaRU,recip_HFacW,       I         -1, KappaRU,recip_HFacW,
483       U         gUNm1,       U         gU,
484       I         myThid )       I         myThid )
485  #ifdef    ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
486            idkey = iikey + 4  CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
487  CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
488  #endif    /* ALLOW_AUTODIFF_TAMC */  #endif    /* ALLOW_AUTODIFF_TAMC */
489            CALL IMPLDIFF(            CALL IMPLDIFF(
490       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
491       I         deltaTmom, KappaRV,recip_HFacS,       I         -2, KappaRV,recip_HFacS,
492       U         gVNm1,       U         gV,
493       I         myThid )       I         myThid )
494            ENDIF
495    
496  #ifdef   ALLOW_OBCS  #ifdef   ALLOW_OBCS
497  C--      Apply open boundary conditions  C--      Apply open boundary conditions
498           IF (useOBCS) THEN          IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
499             DO K=1,Nr             DO K=1,Nr
500               CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )               CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
501             ENDDO             ENDDO
502           END IF          ENDIF
503  #endif   /* ALLOW_OBCS */  #endif   /* ALLOW_OBCS */
504    
505  #ifdef    INCLUDE_CD_CODE  #ifdef    ALLOW_CD_CODE
506            IF (implicitViscosity.AND.useCDscheme) THEN
507  #ifdef    ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
508            idkey = iikey + 5  CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  
509  #endif    /* ALLOW_AUTODIFF_TAMC */  #endif    /* ALLOW_AUTODIFF_TAMC */
510            CALL IMPLDIFF(            CALL IMPLDIFF(
511       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
512       I         deltaTmom, KappaRU,recip_HFacW,       I         0, KappaRU,recip_HFacW,
513       U         vVelD,       U         vVelD,
514       I         myThid )       I         myThid )
515  #ifdef    ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
516            idkey = iikey + 6  CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  
517  #endif    /* ALLOW_AUTODIFF_TAMC */  #endif    /* ALLOW_AUTODIFF_TAMC */
518            CALL IMPLDIFF(            CALL IMPLDIFF(
519       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
520       I         deltaTmom, KappaRV,recip_HFacS,       I         0, KappaRV,recip_HFacS,
521       U         uVelD,       U         uVelD,
522       I         myThid )       I         myThid )
 #endif    /* INCLUDE_CD_CODE */  
 C--     End If implicitViscosity.AND.momStepping  
523          ENDIF          ENDIF
524    #endif    /* ALLOW_CD_CODE */
525    C--     End implicit Vertical advection & viscosity
526    
 Cjmc : add for phiHyd output <- but not working if multi tile per CPU  
 c       IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime)  
 c    &  .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN  
 c         WRITE(suff,'(I10.10)') myIter+1  
 c         CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid)  
 c       ENDIF  
 Cjmc(end)  
   
 #ifdef ALLOW_TIMEAVE  
         IF (taveFreq.GT.0.) THEN  
           CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr,  
      I                              deltaTclock, bi, bj, myThid)  
           IF (ivdc_kappa.NE.0.) THEN  
             CALL TIMEAVE_CUMULATE(ConvectCountTave, ConvectCount, Nr,  
      I                              deltaTclock, bi, bj, myThid)  
           ENDIF  
         ENDIF  
 #endif /* ALLOW_TIMEAVE */  
   
527         ENDDO         ENDDO
528        ENDDO        ENDDO
529    
530    #ifdef ALLOW_OBCS
531          IF (useOBCS) THEN
532           CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
533          ENDIF
534    #endif
535    
536    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
537    
538    #ifdef ALLOW_NONHYDROSTATIC
539    C--   Step forward W field in N-H algorithm
540          IF ( momStepping .AND. nonHydrostatic ) THEN
541    #ifdef ALLOW_DEBUG
542             IF ( debugLevel .GE. debLevB )
543         &     CALL DEBUG_CALL('CALC_GW', myThid )
544    #endif
545             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
546             CALL CALC_GW( myTime, myIter, myThid )
547             CALL TIMESTEP_WVEL( myTime, myIter, myThid )
548             CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
549          ENDIF
550    #endif
551    
552    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
553    
554    Cml(
555    C     In order to compare the variance of phiHydLow of a p/z-coordinate
556    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
557    C     has to be removed by something like the following subroutine:
558    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
559    C     &                'phiHydLow', myThid )
560    Cml)
561    
562    #ifdef ALLOW_DIAGNOSTICS
563          IF ( usediagnostics ) THEN
564    
565           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
566           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
567    
568           tmpFac = 1. _d 0
569           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
570         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
571    
572           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
573         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
574    
575          ENDIF
576    #endif /* ALLOW_DIAGNOSTICS */
577          
578    #ifdef ALLOW_DEBUG
579          If ( debugLevel .GE. debLevB ) THEN
580           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
581           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
582           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
583           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
584           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
585           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
586           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
587           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
588           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
589           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
590    #ifndef ALLOW_ADAMSBASHFORTH_3
591           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
592           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
593           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
594           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
595    #endif
596          ENDIF
597    #endif
598    
599    #ifdef DYNAMICS_GUGV_EXCH_CHECK
600    C- jmc: For safety checking only: This Exchange here should not change
601    C       the solution. If solution changes, it means something is wrong,
602    C       but it does not mean that it is less wrong with this exchange.
603          IF ( debugLevel .GT. debLevB ) THEN
604           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
605          ENDIF
606    #endif
607    
608    #ifdef ALLOW_DEBUG
609          IF ( debugLevel .GE. debLevB )
610         &   CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
611    #endif
612    
613        RETURN        RETURN
614        END        END

Legend:
Removed from v.1.68  
changed lines
  Added in v.1.127

  ViewVC Help
Powered by ViewVC 1.1.22