| 1 |
C $Header$ |
C $Header$ |
| 2 |
|
C $Name$ |
| 3 |
|
|
| 4 |
#include "CPP_OPTIONS.h" |
#include "CPP_OPTIONS.h" |
| 5 |
|
|
| 26 |
C == Global variables === |
C == Global variables === |
| 27 |
#include "SIZE.h" |
#include "SIZE.h" |
| 28 |
#include "EEPARAMS.h" |
#include "EEPARAMS.h" |
|
#include "CG2D.h" |
|
| 29 |
#include "PARAMS.h" |
#include "PARAMS.h" |
| 30 |
#include "DYNVARS.h" |
#include "DYNVARS.h" |
| 31 |
#include "GRID.h" |
#include "GRID.h" |
| 32 |
|
|
| 33 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 34 |
|
# include "tamc.h" |
| 35 |
|
# include "tamc_keys.h" |
| 36 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 37 |
|
|
| 38 |
#ifdef ALLOW_KPP |
#ifdef ALLOW_KPP |
| 39 |
#include "KPPMIX.h" |
# include "KPP.h" |
| 40 |
|
#endif |
| 41 |
|
|
| 42 |
|
#ifdef ALLOW_TIMEAVE |
| 43 |
|
#include "TIMEAVE_STATV.h" |
| 44 |
#endif |
#endif |
| 45 |
|
|
| 46 |
C == Routine arguments == |
C == Routine arguments == |
| 47 |
C myTime - Current time in simulation |
C myTime - Current time in simulation |
| 48 |
C myIter - Current iteration number in simulation |
C myIter - Current iteration number in simulation |
| 49 |
C myThid - Thread number for this instance of the routine. |
C myThid - Thread number for this instance of the routine. |
|
INTEGER myThid |
|
| 50 |
_RL myTime |
_RL myTime |
| 51 |
INTEGER myIter |
INTEGER myIter |
| 52 |
|
INTEGER myThid |
| 53 |
|
|
| 54 |
C == Local variables |
C == Local variables |
| 55 |
C xA, yA - Per block temporaries holding face areas |
C xA, yA - Per block temporaries holding face areas |
| 56 |
C uTrans, vTrans, rTrans - Per block temporaries holding flow |
C uTrans, vTrans, rTrans - Per block temporaries holding flow |
| 57 |
C transport |
C transport |
| 58 |
C rVel o uTrans: Zonal transport |
C o uTrans: Zonal transport |
| 59 |
C o vTrans: Meridional transport |
C o vTrans: Meridional transport |
| 60 |
C o rTrans: Vertical transport |
C o rTrans: Vertical transport |
| 61 |
C o rVel: Vertical velocity at upper and |
C maskUp o maskUp: land/water mask for W points |
| 62 |
C lower cell faces. |
C fVer[STUV] o fVer: Vertical flux term - note fVer |
|
C maskC,maskUp o maskC: land/water mask for tracer cells |
|
|
C o maskUp: land/water mask for W points |
|
|
C aTerm, xTerm, cTerm - Work arrays for holding separate terms in |
|
|
C mTerm, pTerm, tendency equations. |
|
|
C fZon, fMer, fVer[STUV] o aTerm: Advection term |
|
|
C o xTerm: Mixing term |
|
|
C o cTerm: Coriolis term |
|
|
C o mTerm: Metric term |
|
|
C o pTerm: Pressure term |
|
|
C o fZon: Zonal flux term |
|
|
C o fMer: Meridional flux term |
|
|
C o fVer: Vertical flux term - note fVer |
|
| 63 |
C is "pipelined" in the vertical |
C is "pipelined" in the vertical |
| 64 |
C so we need an fVer for each |
C so we need an fVer for each |
| 65 |
C variable. |
C variable. |
| 66 |
C rhoK, rhoKM1 - Density at current level, level above and level |
C rhoK, rhoKM1 - Density at current level, and level above |
|
C below. |
|
|
C rhoKP1 |
|
|
C buoyK, buoyKM1 - Buoyancy at current level and level above. |
|
| 67 |
C phiHyd - Hydrostatic part of the potential phiHydi. |
C phiHyd - Hydrostatic part of the potential phiHydi. |
| 68 |
C In z coords phiHydiHyd is the hydrostatic |
C In z coords phiHydiHyd is the hydrostatic |
| 69 |
C pressure anomaly |
C Potential (=pressure/rho0) anomaly |
| 70 |
C In p coords phiHydiHyd is the geopotential |
C In p coords phiHydiHyd is the geopotential |
| 71 |
C surface height |
C surface height anomaly. |
| 72 |
C anomaly. |
C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean) |
| 73 |
C etaSurfX, - Holds surface elevation gradient in X and Y. |
C phiSurfY or geopotentiel (atmos) in X and Y direction |
|
C etaSurfY |
|
|
C K13, K23, K33 - Non-zero elements of small-angle approximation |
|
|
C diffusion tensor. |
|
|
C KapGM - Spatially varying Visbeck et. al mixing coeff. |
|
| 74 |
C KappaRT, - Total diffusion in vertical for T and S. |
C KappaRT, - Total diffusion in vertical for T and S. |
| 75 |
C KappaRS (background + spatially varying, isopycnal term). |
C KappaRS (background + spatially varying, isopycnal term). |
| 76 |
C iMin, iMax - Ranges and sub-block indices on which calculations |
C iMin, iMax - Ranges and sub-block indices on which calculations |
| 77 |
C jMin, jMax are applied. |
C jMin, jMax are applied. |
| 78 |
C bi, bj |
C bi, bj |
| 79 |
C k, kUp, - Index for layer above and below. kUp and kDown |
C k, kup, - Index for layer above and below. kup and kDown |
| 80 |
C kDown, kM1 are switched with layer to be the appropriate |
C kDown, km1 are switched with layer to be the appropriate |
| 81 |
C index into fVerTerm. |
C index into fVerTerm. |
| 82 |
|
C tauAB - Adams-Bashforth timestepping weight: 0=forward ; 1/2=Adams-Bashf. |
| 83 |
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 84 |
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 85 |
_RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 86 |
_RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 87 |
_RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
_RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
|
|
_RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
| 88 |
_RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
_RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
| 89 |
_RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
_RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 90 |
_RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
_RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 91 |
_RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
_RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 92 |
_RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
_RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 93 |
_RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
_RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 94 |
_RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
_RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
| 95 |
_RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 96 |
_RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 97 |
_RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
_RL rhotmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
|
|
_RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
|
|
_RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
|
|
_RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
| 98 |
_RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
_RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 99 |
_RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
_RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 100 |
_RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
_RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 101 |
_RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
_RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 102 |
|
_RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 103 |
|
_RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 104 |
|
_RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 105 |
|
_RL tauAB |
| 106 |
|
|
| 107 |
|
C This is currently used by IVDC and Diagnostics |
| 108 |
|
_RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 109 |
|
|
| 110 |
INTEGER iMin, iMax |
INTEGER iMin, iMax |
| 111 |
INTEGER jMin, jMax |
INTEGER jMin, jMax |
| 112 |
INTEGER bi, bj |
INTEGER bi, bj |
| 113 |
INTEGER i, j |
INTEGER i, j |
| 114 |
INTEGER k, kM1, kUp, kDown |
INTEGER k, km1, kup, kDown |
| 115 |
LOGICAL BOTTOM_LAYER |
|
| 116 |
|
Cjmc : add for phiHyd output <- but not working if multi tile per CPU |
| 117 |
|
c CHARACTER*(MAX_LEN_MBUF) suff |
| 118 |
|
c LOGICAL DIFFERENT_MULTIPLE |
| 119 |
|
c EXTERNAL DIFFERENT_MULTIPLE |
| 120 |
|
Cjmc(end) |
| 121 |
|
|
| 122 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 123 |
|
INTEGER isbyte |
| 124 |
|
PARAMETER( isbyte = 4 ) |
| 125 |
|
|
| 126 |
|
INTEGER act1, act2, act3, act4 |
| 127 |
|
INTEGER max1, max2, max3 |
| 128 |
|
INTEGER iikey, kkey |
| 129 |
|
INTEGER maximpl |
| 130 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 131 |
|
|
| 132 |
C--- The algorithm... |
C--- The algorithm... |
| 133 |
C |
C |
| 142 |
C "Calculation of Gs" |
C "Calculation of Gs" |
| 143 |
C =================== |
C =================== |
| 144 |
C This is where all the accelerations and tendencies (ie. |
C This is where all the accelerations and tendencies (ie. |
| 145 |
C phiHydysics, parameterizations etc...) are calculated |
C physics, parameterizations etc...) are calculated |
|
C rVel = sum_r ( div. u[n] ) |
|
| 146 |
C rho = rho ( theta[n], salt[n] ) |
C rho = rho ( theta[n], salt[n] ) |
| 147 |
C b = b(rho, theta) |
C b = b(rho, theta) |
| 148 |
C K31 = K31 ( rho ) |
C K31 = K31 ( rho ) |
| 149 |
C Gu[n] = Gu( u[n], v[n], rVel, b, ... ) |
C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) |
| 150 |
C Gv[n] = Gv( u[n], v[n], rVel, b, ... ) |
C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) |
| 151 |
C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... ) |
C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) |
| 152 |
C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... ) |
C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) |
| 153 |
C |
C |
| 154 |
C "Time-stepping" or "Prediction" |
C "Time-stepping" or "Prediction" |
| 155 |
C ================================ |
C ================================ |
| 173 |
C (1 + dt * K * d_zz) salt[n] = salt* |
C (1 + dt * K * d_zz) salt[n] = salt* |
| 174 |
C--- |
C--- |
| 175 |
|
|
| 176 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 177 |
|
C-- dummy statement to end declaration part |
| 178 |
|
ikey = 1 |
| 179 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 180 |
|
|
| 181 |
C-- Set up work arrays with valid (i.e. not NaN) values |
C-- Set up work arrays with valid (i.e. not NaN) values |
| 182 |
C These inital values do not alter the numerical results. They |
C These inital values do not alter the numerical results. They |
| 183 |
C just ensure that all memory references are to valid floating |
C just ensure that all memory references are to valid floating |
| 189 |
yA(i,j) = 0. _d 0 |
yA(i,j) = 0. _d 0 |
| 190 |
uTrans(i,j) = 0. _d 0 |
uTrans(i,j) = 0. _d 0 |
| 191 |
vTrans(i,j) = 0. _d 0 |
vTrans(i,j) = 0. _d 0 |
| 192 |
aTerm(i,j) = 0. _d 0 |
DO k=1,Nr |
| 193 |
xTerm(i,j) = 0. _d 0 |
phiHyd(i,j,k) = 0. _d 0 |
| 194 |
cTerm(i,j) = 0. _d 0 |
KappaRU(i,j,k) = 0. _d 0 |
| 195 |
mTerm(i,j) = 0. _d 0 |
KappaRV(i,j,k) = 0. _d 0 |
| 196 |
pTerm(i,j) = 0. _d 0 |
sigmaX(i,j,k) = 0. _d 0 |
| 197 |
fZon(i,j) = 0. _d 0 |
sigmaY(i,j,k) = 0. _d 0 |
| 198 |
fMer(i,j) = 0. _d 0 |
sigmaR(i,j,k) = 0. _d 0 |
|
DO K=1,Nr |
|
|
phiHyd (i,j,k) = 0. _d 0 |
|
|
K13(i,j,k) = 0. _d 0 |
|
|
K23(i,j,k) = 0. _d 0 |
|
|
K33(i,j,k) = 0. _d 0 |
|
|
KappaRT(i,j,k) = 0. _d 0 |
|
|
KappaRS(i,j,k) = 0. _d 0 |
|
| 199 |
ENDDO |
ENDDO |
| 200 |
rhoKM1 (i,j) = 0. _d 0 |
rhoKM1 (i,j) = 0. _d 0 |
| 201 |
rhok (i,j) = 0. _d 0 |
rhok (i,j) = 0. _d 0 |
| 202 |
rhoKP1 (i,j) = 0. _d 0 |
phiSurfX(i,j) = 0. _d 0 |
| 203 |
rhoTMP (i,j) = 0. _d 0 |
phiSurfY(i,j) = 0. _d 0 |
|
buoyKM1(i,j) = 0. _d 0 |
|
|
buoyK (i,j) = 0. _d 0 |
|
|
maskC (i,j) = 0. _d 0 |
|
| 204 |
ENDDO |
ENDDO |
| 205 |
ENDDO |
ENDDO |
| 206 |
|
|
| 207 |
|
|
| 208 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 209 |
|
C-- HPF directive to help TAMC |
| 210 |
|
CHPF$ INDEPENDENT |
| 211 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 212 |
|
|
| 213 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
| 214 |
|
|
| 215 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 216 |
|
C-- HPF directive to help TAMC |
| 217 |
|
CHPF$ INDEPENDENT, NEW (rTrans,fVerT,fVerS,fVerU,fVerV |
| 218 |
|
CHPF$& ,phiHyd,utrans,vtrans,xA,yA |
| 219 |
|
CHPF$& ,KappaRT,KappaRS,KappaRU,KappaRV |
| 220 |
|
CHPF$& ) |
| 221 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 222 |
|
|
| 223 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 224 |
|
|
| 225 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 226 |
|
act1 = bi - myBxLo(myThid) |
| 227 |
|
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
| 228 |
|
|
| 229 |
|
act2 = bj - myByLo(myThid) |
| 230 |
|
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
| 231 |
|
|
| 232 |
|
act3 = myThid - 1 |
| 233 |
|
max3 = nTx*nTy |
| 234 |
|
|
| 235 |
|
act4 = ikey_dynamics - 1 |
| 236 |
|
|
| 237 |
|
ikey = (act1 + 1) + act2*max1 |
| 238 |
|
& + act3*max1*max2 |
| 239 |
|
& + act4*max1*max2*max3 |
| 240 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 241 |
|
|
| 242 |
C-- Set up work arrays that need valid initial values |
C-- Set up work arrays that need valid initial values |
| 243 |
DO j=1-OLy,sNy+OLy |
DO j=1-OLy,sNy+OLy |
| 244 |
DO i=1-OLx,sNx+OLx |
DO i=1-OLx,sNx+OLx |
| 245 |
rTrans(i,j) = 0. _d 0 |
rTrans(i,j) = 0. _d 0 |
|
rVel (i,j,1) = 0. _d 0 |
|
|
rVel (i,j,2) = 0. _d 0 |
|
| 246 |
fVerT (i,j,1) = 0. _d 0 |
fVerT (i,j,1) = 0. _d 0 |
| 247 |
fVerT (i,j,2) = 0. _d 0 |
fVerT (i,j,2) = 0. _d 0 |
| 248 |
fVerS (i,j,1) = 0. _d 0 |
fVerS (i,j,1) = 0. _d 0 |
| 251 |
fVerU (i,j,2) = 0. _d 0 |
fVerU (i,j,2) = 0. _d 0 |
| 252 |
fVerV (i,j,1) = 0. _d 0 |
fVerV (i,j,1) = 0. _d 0 |
| 253 |
fVerV (i,j,2) = 0. _d 0 |
fVerV (i,j,2) = 0. _d 0 |
| 254 |
phiHyd(i,j,1) = 0. _d 0 |
ENDDO |
| 255 |
K13 (i,j,1) = 0. _d 0 |
ENDDO |
| 256 |
K23 (i,j,1) = 0. _d 0 |
|
| 257 |
K33 (i,j,1) = 0. _d 0 |
DO k=1,Nr |
| 258 |
KapGM (i,j) = GMkbackground |
DO j=1-OLy,sNy+OLy |
| 259 |
|
DO i=1-OLx,sNx+OLx |
| 260 |
|
C This is currently also used by IVDC and Diagnostics |
| 261 |
|
ConvectCount(i,j,k) = 0. |
| 262 |
|
KappaRT(i,j,k) = 0. _d 0 |
| 263 |
|
KappaRS(i,j,k) = 0. _d 0 |
| 264 |
|
ENDDO |
| 265 |
ENDDO |
ENDDO |
| 266 |
ENDDO |
ENDDO |
| 267 |
|
|
| 271 |
jMax = sNy+OLy |
jMax = sNy+OLy |
| 272 |
|
|
| 273 |
|
|
| 274 |
K = 1 |
C-- Start of diagnostic loop |
| 275 |
BOTTOM_LAYER = K .EQ. Nr |
DO k=Nr,1,-1 |
|
|
|
|
#ifdef DO_PIPELINED_CORRECTION_STEP |
|
|
C-- Calculate gradient of surface pressure |
|
|
CALL CALC_GRAD_ETA_SURF( |
|
|
I bi,bj,iMin,iMax,jMin,jMax, |
|
|
O etaSurfX,etaSurfY, |
|
|
I myThid) |
|
|
C-- Update fields in top level according to tendency terms |
|
|
CALL CORRECTION_STEP( |
|
|
I bi,bj,iMin,iMax,jMin,jMax,K, |
|
|
I etaSurfX,etaSurfY,myTime,myThid) |
|
|
#ifdef ALLOW_OBCS |
|
|
IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K, myThid ) |
|
|
#endif |
|
|
IF ( .NOT. BOTTOM_LAYER ) THEN |
|
|
C-- Update fields in layer below according to tendency terms |
|
|
CALL CORRECTION_STEP( |
|
|
I bi,bj,iMin,iMax,jMin,jMax,K+1, |
|
|
I etaSurfX,etaSurfY,myTime,myThid) |
|
|
#ifdef ALLOW_OBCS |
|
|
IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid ) |
|
|
#endif |
|
|
ENDIF |
|
|
#endif |
|
|
C-- Density of 1st level (below W(1)) reference to level 1 |
|
|
#ifdef INCLUDE_FIND_RHO_CALL |
|
|
CALL FIND_RHO( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, |
|
|
O rhoKm1, |
|
|
I myThid ) |
|
|
#endif |
|
| 276 |
|
|
| 277 |
IF ( (.NOT. BOTTOM_LAYER) |
#ifdef ALLOW_AUTODIFF_TAMC |
| 278 |
#ifdef ALLOW_KPP |
C? Patrick, is this formula correct now that we change the loop range? |
| 279 |
& .AND. (.NOT.usingKPPmixing) ! CONVECT not needed with KPP mixing |
C? Do we still need this? |
| 280 |
#endif |
kkey = (ikey-1)*(Nr-2+1) + (k-2) + 1 |
| 281 |
& ) THEN |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 282 |
C-- Check static stability with layer below |
|
| 283 |
C-- and mix as needed. |
C-- Integrate continuity vertically for vertical velocity |
| 284 |
#ifdef INCLUDE_FIND_RHO_CALL |
CALL INTEGRATE_FOR_W( |
| 285 |
CALL FIND_RHO( |
I bi, bj, k, uVel, vVel, |
| 286 |
I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, |
O wVel, |
| 287 |
O rhoKp1, |
I myThid ) |
| 288 |
I myThid ) |
|
| 289 |
#endif |
#ifdef ALLOW_OBCS |
| 290 |
#ifdef INCLUDE_CONVECT_CALL |
#ifdef ALLOW_NONHYDROSTATIC |
| 291 |
CALL CONVECT( |
C-- Apply OBC to W if in N-H mode |
| 292 |
I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1, |
IF (useOBCS.AND.nonHydrostatic) THEN |
| 293 |
I myTime,myIter,myThid) |
CALL OBCS_APPLY_W( bi, bj, k, wVel, myThid ) |
| 294 |
#endif |
ENDIF |
| 295 |
C-- Recompute density after mixing |
#endif /* ALLOW_NONHYDROSTATIC */ |
| 296 |
#ifdef INCLUDE_FIND_RHO_CALL |
#endif /* ALLOW_OBCS */ |
| 297 |
CALL FIND_RHO( |
|
| 298 |
I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, |
C-- Calculate gradients of potential density for isoneutral |
| 299 |
O rhoKm1, |
C slope terms (e.g. GM/Redi tensor or IVDC diffusivity) |
| 300 |
I myThid ) |
c IF ( k.GT.1 .AND. (useGMRedi.OR.ivdc_kappa.NE.0.) ) THEN |
| 301 |
#endif |
IF ( useGMRedi .OR. (k.GT.1 .AND. ivdc_kappa.NE.0.) ) THEN |
| 302 |
ENDIF |
CALL FIND_RHO( |
| 303 |
C-- Calculate buoyancy |
I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, |
| 304 |
CALL CALC_BUOYANCY( |
I theta, salt, |
| 305 |
I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1, |
O rhoK, |
|
O buoyKm1, |
|
|
I myThid ) |
|
|
C-- Integrate hydrostatic balance for phiHyd with BC of |
|
|
C-- phiHyd(z=0)=0 |
|
|
CALL CALC_PHI_HYD( |
|
|
I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1, |
|
|
U phiHyd, |
|
|
I myThid ) |
|
|
|
|
|
DO K=2,Nr |
|
|
BOTTOM_LAYER = K .EQ. Nr |
|
|
#ifdef DO_PIPELINED_CORRECTION_STEP |
|
|
IF ( .NOT. BOTTOM_LAYER ) THEN |
|
|
C-- Update fields in layer below according to tendency terms |
|
|
CALL CORRECTION_STEP( |
|
|
I bi,bj,iMin,iMax,jMin,jMax,K+1, |
|
|
I etaSurfX,etaSurfY,myTime,myThid) |
|
|
#ifdef ALLOW_OBCS |
|
|
IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid ) |
|
|
#endif |
|
|
ENDIF |
|
|
#endif |
|
|
C-- Density of K level (below W(K)) reference to K level |
|
|
#ifdef INCLUDE_FIND_RHO_CALL |
|
|
CALL FIND_RHO( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, |
|
|
O rhoK, |
|
|
I myThid ) |
|
|
#endif |
|
|
IF ( (.NOT. BOTTOM_LAYER) |
|
|
#ifdef ALLOW_KPP |
|
|
& .AND. (.NOT.usingKPPmixing) ! CONVECT not needed with KPP mixing |
|
|
#endif |
|
|
& ) THEN |
|
|
C-- Check static stability with layer below and mix as needed. |
|
|
C-- Density of K+1 level (below W(K+1)) reference to K level. |
|
|
#ifdef INCLUDE_FIND_RHO_CALL |
|
|
CALL FIND_RHO( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, |
|
|
O rhoKp1, |
|
|
I myThid ) |
|
|
#endif |
|
|
#ifdef INCLUDE_CONVECT_CALL |
|
|
CALL CONVECT( |
|
|
I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1, |
|
|
I myTime,myIter,myThid) |
|
|
#endif |
|
|
C-- Recompute density after mixing |
|
|
#ifdef INCLUDE_FIND_RHO_CALL |
|
|
CALL FIND_RHO( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, |
|
|
O rhoK, |
|
|
I myThid ) |
|
|
#endif |
|
|
ENDIF |
|
|
C-- Calculate buoyancy |
|
|
CALL CALC_BUOYANCY( |
|
|
I bi,bj,iMin,iMax,jMin,jMax,K,rhoK, |
|
|
O buoyK, |
|
|
I myThid ) |
|
|
C-- Integrate hydrostatic balance for phiHyd with BC of |
|
|
C-- phiHyd(z=0)=0 |
|
|
CALL CALC_PHI_HYD( |
|
|
I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK, |
|
|
U phiHyd, |
|
|
I myThid ) |
|
|
C-- Calculate iso-neutral slopes for the GM/Redi parameterisation |
|
|
#ifdef INCLUDE_FIND_RHO_CALL |
|
|
CALL FIND_RHO( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType, |
|
|
O rhoTmp, |
|
| 306 |
I myThid ) |
I myThid ) |
| 307 |
#endif |
IF (k.GT.1) CALL FIND_RHO( |
| 308 |
#ifdef INCLUDE_CALC_ISOSLOPES_CALL |
I bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType, |
| 309 |
CALL CALC_ISOSLOPES( |
I theta, salt, |
| 310 |
I bi, bj, iMin, iMax, jMin, jMax, K, |
O rhoKm1, |
|
I rhoKm1, rhoK, rhotmp, |
|
|
O K13, K23, K33, KapGM, |
|
| 311 |
I myThid ) |
I myThid ) |
| 312 |
#endif |
CALL GRAD_SIGMA( |
| 313 |
DO J=jMin,jMax |
I bi, bj, iMin, iMax, jMin, jMax, k, |
| 314 |
DO I=iMin,iMax |
I rhoK, rhoKm1, rhoK, |
| 315 |
#ifdef INCLUDE_FIND_RHO_CALL |
O sigmaX, sigmaY, sigmaR, |
| 316 |
rhoKm1 (I,J) = rhoK(I,J) |
I myThid ) |
| 317 |
#endif |
ENDIF |
| 318 |
buoyKm1(I,J) = buoyK(I,J) |
|
| 319 |
|
C-- Implicit Vertical Diffusion for Convection |
| 320 |
|
c ==> should use sigmaR !!! |
| 321 |
|
IF (k.GT.1 .AND. ivdc_kappa.NE.0.) THEN |
| 322 |
|
CALL CALC_IVDC( |
| 323 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, |
| 324 |
|
I rhoKm1, rhoK, |
| 325 |
|
U ConvectCount, KappaRT, KappaRS, |
| 326 |
|
I myTime, myIter, myThid) |
| 327 |
|
ENDIF |
| 328 |
|
|
| 329 |
|
C-- end of diagnostic k loop (Nr:1) |
| 330 |
|
ENDDO |
| 331 |
|
|
| 332 |
|
#ifdef ALLOW_OBCS |
| 333 |
|
C-- Calculate future values on open boundaries |
| 334 |
|
IF (useOBCS) THEN |
| 335 |
|
CALL OBCS_CALC( bi, bj, myTime+deltaT, |
| 336 |
|
I uVel, vVel, wVel, theta, salt, |
| 337 |
|
I myThid ) |
| 338 |
|
ENDIF |
| 339 |
|
#endif /* ALLOW_OBCS */ |
| 340 |
|
|
| 341 |
|
C-- Determines forcing terms based on external fields |
| 342 |
|
C relaxation terms, etc. |
| 343 |
|
CALL EXTERNAL_FORCING_SURF( |
| 344 |
|
I bi, bj, iMin, iMax, jMin, jMax, |
| 345 |
|
I myThid ) |
| 346 |
|
|
| 347 |
|
#ifdef ALLOW_GMREDI |
| 348 |
|
C-- Calculate iso-neutral slopes for the GM/Redi parameterisation |
| 349 |
|
IF (useGMRedi) THEN |
| 350 |
|
DO k=1,Nr |
| 351 |
|
CALL GMREDI_CALC_TENSOR( |
| 352 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, |
| 353 |
|
I sigmaX, sigmaY, sigmaR, |
| 354 |
|
I myThid ) |
| 355 |
ENDDO |
ENDDO |
| 356 |
ENDDO |
#ifdef ALLOW_AUTODIFF_TAMC |
| 357 |
ENDDO ! K |
ELSE |
| 358 |
|
DO k=1, Nr |
| 359 |
|
CALL GMREDI_CALC_TENSOR_DUMMY( |
| 360 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, |
| 361 |
|
I sigmaX, sigmaY, sigmaR, |
| 362 |
|
I myThid ) |
| 363 |
|
ENDDO |
| 364 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 365 |
|
ENDIF |
| 366 |
|
#endif /* ALLOW_GMREDI */ |
| 367 |
|
|
| 368 |
#ifdef ALLOW_KPP |
#ifdef ALLOW_KPP |
| 369 |
C-- Compute KPP mixing coefficients |
C-- Compute KPP mixing coefficients |
| 370 |
IF (usingKPPmixing) THEN |
IF (useKPP) THEN |
| 371 |
CALL TIMER_START('KVMIX (FIND KPP COEFFICIENTS) [DYNAMICS]' |
CALL KPP_CALC( |
| 372 |
I , myThid) |
I bi, bj, myTime, myThid ) |
|
CALL KVMIX( |
|
|
I bi, bj, myTime, myThid ) |
|
|
CALL TIMER_STOP ('KVMIX (FIND KPP COEFFICIENTS) [DYNAMICS]' |
|
|
I , myThid) |
|
| 373 |
ENDIF |
ENDIF |
| 374 |
#endif |
#endif /* ALLOW_KPP */ |
| 375 |
|
|
| 376 |
DO K = Nr, 1, -1 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 377 |
|
CADJ STORE KappaRT(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte |
| 378 |
|
CADJ STORE KappaRS(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte |
| 379 |
|
CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 380 |
|
CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 381 |
|
CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 382 |
|
CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 383 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 384 |
|
|
| 385 |
|
#ifdef ALLOW_AIM |
| 386 |
|
C AIM - atmospheric intermediate model, physics package code. |
| 387 |
|
C note(jmc) : phiHyd=0 at this point but is not really used in Molteni Physics |
| 388 |
|
IF ( useAIM ) THEN |
| 389 |
|
CALL TIMER_START('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid) |
| 390 |
|
CALL AIM_DO_ATMOS_PHYSICS( phiHyd, myTime, myThid ) |
| 391 |
|
CALL TIMER_STOP ('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid) |
| 392 |
|
ENDIF |
| 393 |
|
#endif /* ALLOW_AIM */ |
| 394 |
|
|
| 395 |
kM1 =max(1,k-1) ! Points to level above k (=k-1) |
|
| 396 |
kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above |
C-- Start of thermodynamics loop |
| 397 |
kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer |
DO k=Nr,1,-1 |
| 398 |
iMin = 1-OLx+2 |
|
| 399 |
iMax = sNx+OLx-1 |
C-- km1 Points to level above k (=k-1) |
| 400 |
jMin = 1-OLy+2 |
C-- kup Cycles through 1,2 to point to layer above |
| 401 |
jMax = sNy+OLy-1 |
C-- kDown Cycles through 2,1 to point to current layer |
| 402 |
|
|
| 403 |
|
km1 = MAX(1,k-1) |
| 404 |
|
kup = 1+MOD(k+1,2) |
| 405 |
|
kDown= 1+MOD(k,2) |
| 406 |
|
|
| 407 |
|
iMin = 1-OLx+2 |
| 408 |
|
iMax = sNx+OLx-1 |
| 409 |
|
jMin = 1-OLy+2 |
| 410 |
|
jMax = sNy+OLy-1 |
| 411 |
|
|
| 412 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 413 |
|
CPatrick Is this formula correct? |
| 414 |
|
kkey = (ikey-1)*(Nr-1+1) + (k-1) + 1 |
| 415 |
|
CADJ STORE rTrans(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte |
| 416 |
|
CADJ STORE KappaRT(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte |
| 417 |
|
CADJ STORE KappaRS(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte |
| 418 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 419 |
|
|
| 420 |
C-- Get temporary terms used by tendency routines |
C-- Get temporary terms used by tendency routines |
| 421 |
CALL CALC_COMMON_FACTORS ( |
CALL CALC_COMMON_FACTORS ( |
| 422 |
I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, |
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 423 |
O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp, |
O xA,yA,uTrans,vTrans,rTrans,maskUp, |
| 424 |
I myThid) |
I myThid) |
| 425 |
|
|
| 426 |
#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL |
#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL |
| 427 |
C-- Calculate the total vertical diffusivity |
C-- Calculate the total vertical diffusivity |
| 428 |
CALL CALC_DIFFUSIVITY( |
CALL CALC_DIFFUSIVITY( |
| 429 |
I bi,bj,iMin,iMax,jMin,jMax,K, |
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 430 |
I maskC,maskUp,KapGM,K33, |
I maskUp, |
| 431 |
O KappaRT,KappaRS,KappaRU,KappaRV, |
O KappaRT,KappaRS,KappaRU,KappaRV, |
| 432 |
I myThid) |
I myThid) |
| 433 |
#endif |
#endif |
| 434 |
C-- Calculate accelerations in the momentum equations |
|
| 435 |
IF ( momStepping ) THEN |
C-- Calculate active tracer tendencies (gT,gS,...) |
| 436 |
CALL CALC_MOM_RHS( |
C and step forward storing result in gTnm1, gSnm1, etc. |
|
I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, |
|
|
I xA,yA,uTrans,vTrans,rTrans,rVel,maskC, |
|
|
I phiHyd,KappaRU,KappaRV, |
|
|
U aTerm,xTerm,cTerm,mTerm,pTerm, |
|
|
U fZon, fMer, fVerU, fVerV, |
|
|
I myTime, myThid) |
|
|
ENDIF |
|
|
C-- Calculate active tracer tendencies |
|
| 437 |
IF ( tempStepping ) THEN |
IF ( tempStepping ) THEN |
| 438 |
CALL CALC_GT( |
CALL CALC_GT( |
| 439 |
I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, |
I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, |
| 440 |
I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, |
I xA,yA,uTrans,vTrans,rTrans,maskUp, |
| 441 |
I K13,K23,KappaRT,KapGM, |
I KappaRT, |
| 442 |
U aTerm,xTerm,fZon,fMer,fVerT, |
U fVerT, |
| 443 |
I myTime, myThid) |
I myTime, myThid) |
| 444 |
|
tauAB = 0.5d0 + abEps |
| 445 |
|
CALL TIMESTEP_TRACER( |
| 446 |
|
I bi,bj,iMin,iMax,jMin,jMax,k,tauAB, |
| 447 |
|
I theta, gT, |
| 448 |
|
U gTnm1, |
| 449 |
|
I myIter, myThid) |
| 450 |
ENDIF |
ENDIF |
| 451 |
IF ( saltStepping ) THEN |
IF ( saltStepping ) THEN |
| 452 |
CALL CALC_GS( |
CALL CALC_GS( |
| 453 |
I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, |
I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, |
| 454 |
I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, |
I xA,yA,uTrans,vTrans,rTrans,maskUp, |
| 455 |
I K13,K23,KappaRS,KapGM, |
I KappaRS, |
| 456 |
U aTerm,xTerm,fZon,fMer,fVerS, |
U fVerS, |
| 457 |
I myTime, myThid) |
I myTime, myThid) |
| 458 |
|
tauAB = 0.5d0 + abEps |
| 459 |
|
CALL TIMESTEP_TRACER( |
| 460 |
|
I bi,bj,iMin,iMax,jMin,jMax,k,tauAB, |
| 461 |
|
I salt, gS, |
| 462 |
|
U gSnm1, |
| 463 |
|
I myIter, myThid) |
| 464 |
ENDIF |
ENDIF |
| 465 |
C-- Prediction step (step forward all model variables) |
|
| 466 |
CALL TIMESTEP( |
#ifdef ALLOW_OBCS |
|
I bi,bj,iMin,iMax,jMin,jMax,K, |
|
|
I myThid) |
|
|
#ifdef ALLOW_OBCS |
|
| 467 |
C-- Apply open boundary conditions |
C-- Apply open boundary conditions |
| 468 |
IF (openBoundaries) CALL APPLY_OBCS2( bi, bj, K, myThid ) |
IF (useOBCS) THEN |
| 469 |
#endif |
CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid ) |
| 470 |
|
END IF |
| 471 |
|
#endif /* ALLOW_OBCS */ |
| 472 |
|
|
| 473 |
C-- Freeze water |
C-- Freeze water |
| 474 |
IF (allowFreezing) |
IF (allowFreezing) THEN |
| 475 |
& CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, K, myThid ) |
#ifdef ALLOW_AUTODIFF_TAMC |
| 476 |
C-- Diagnose barotropic divergence of predicted fields |
CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k |
| 477 |
CALL CALC_DIV_GHAT( |
CADJ & , key = kkey, byte = isbyte |
| 478 |
I bi,bj,iMin,iMax,jMin,jMax,K, |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 479 |
I xA,yA, |
CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid ) |
| 480 |
I myThid) |
END IF |
| 481 |
|
|
| 482 |
C-- Cumulative diagnostic calculations (ie. time-averaging) |
C-- end of thermodynamic k loop (Nr:1) |
| 483 |
#ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE |
ENDDO |
| 484 |
IF (taveFreq.GT.0.) THEN |
|
|
CALL DO_TIME_AVERAGES( |
|
|
I myTime, myIter, bi, bj, K, kUp, kDown, |
|
|
I K13, K23, rVel, KapGM, |
|
|
I myThid ) |
|
|
ENDIF |
|
|
#endif |
|
| 485 |
|
|
| 486 |
ENDDO ! K |
#ifdef ALLOW_AUTODIFF_TAMC |
| 487 |
|
CPatrick? What about this one? |
| 488 |
|
maximpl = 6 |
| 489 |
|
iikey = (ikey-1)*maximpl |
| 490 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 491 |
|
|
| 492 |
C-- Implicit diffusion |
C-- Implicit diffusion |
| 493 |
IF (implicitDiffusion) THEN |
IF (implicitDiffusion) THEN |
| 494 |
IF (tempStepping) CALL IMPLDIFF( |
|
| 495 |
|
IF (tempStepping) THEN |
| 496 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 497 |
|
idkey = iikey + 1 |
| 498 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 499 |
|
CALL IMPLDIFF( |
| 500 |
I bi, bj, iMin, iMax, jMin, jMax, |
I bi, bj, iMin, iMax, jMin, jMax, |
| 501 |
I deltaTtracer, KappaRT,recip_HFacC, |
I deltaTtracer, KappaRT, recip_HFacC, |
| 502 |
U gTNm1, |
U gTNm1, |
| 503 |
I myThid ) |
I myThid ) |
| 504 |
IF (saltStepping) CALL IMPLDIFF( |
ENDIF |
| 505 |
|
|
| 506 |
|
IF (saltStepping) THEN |
| 507 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 508 |
|
idkey = iikey + 2 |
| 509 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 510 |
|
CALL IMPLDIFF( |
| 511 |
I bi, bj, iMin, iMax, jMin, jMax, |
I bi, bj, iMin, iMax, jMin, jMax, |
| 512 |
I deltaTtracer, KappaRS,recip_HFacC, |
I deltaTtracer, KappaRS, recip_HFacC, |
| 513 |
U gSNm1, |
U gSNm1, |
| 514 |
I myThid ) |
I myThid ) |
| 515 |
ENDIF ! implicitDiffusion |
ENDIF |
| 516 |
|
|
| 517 |
|
#ifdef ALLOW_OBCS |
| 518 |
|
C-- Apply open boundary conditions |
| 519 |
|
IF (useOBCS) THEN |
| 520 |
|
DO K=1,Nr |
| 521 |
|
CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid ) |
| 522 |
|
ENDDO |
| 523 |
|
END IF |
| 524 |
|
#endif /* ALLOW_OBCS */ |
| 525 |
|
|
| 526 |
|
C-- End If implicitDiffusion |
| 527 |
|
ENDIF |
| 528 |
|
|
| 529 |
|
C-- Start computation of dynamics |
| 530 |
|
iMin = 1-OLx+2 |
| 531 |
|
iMax = sNx+OLx-1 |
| 532 |
|
jMin = 1-OLy+2 |
| 533 |
|
jMax = sNy+OLy-1 |
| 534 |
|
|
| 535 |
|
C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP) |
| 536 |
|
C (note: this loop will be replaced by CALL CALC_GRAD_ETA) |
| 537 |
|
IF (implicSurfPress.NE.1.) THEN |
| 538 |
|
CALL CALC_GRAD_PHI_SURF( |
| 539 |
|
I bi,bj,iMin,iMax,jMin,jMax, |
| 540 |
|
I etaN, |
| 541 |
|
O phiSurfX,phiSurfY, |
| 542 |
|
I myThid ) |
| 543 |
|
ENDIF |
| 544 |
|
|
| 545 |
|
C-- Start of dynamics loop |
| 546 |
|
DO k=1,Nr |
| 547 |
|
|
| 548 |
|
C-- km1 Points to level above k (=k-1) |
| 549 |
|
C-- kup Cycles through 1,2 to point to layer above |
| 550 |
|
C-- kDown Cycles through 2,1 to point to current layer |
| 551 |
|
|
| 552 |
|
km1 = MAX(1,k-1) |
| 553 |
|
kup = 1+MOD(k+1,2) |
| 554 |
|
kDown= 1+MOD(k,2) |
| 555 |
|
|
| 556 |
|
C-- Integrate hydrostatic balance for phiHyd with BC of |
| 557 |
|
C phiHyd(z=0)=0 |
| 558 |
|
C distinguishe between Stagger and Non Stagger time stepping |
| 559 |
|
IF (staggerTimeStep) THEN |
| 560 |
|
CALL CALC_PHI_HYD( |
| 561 |
|
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 562 |
|
I gTnm1, gSnm1, |
| 563 |
|
U phiHyd, |
| 564 |
|
I myThid ) |
| 565 |
|
ELSE |
| 566 |
|
CALL CALC_PHI_HYD( |
| 567 |
|
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 568 |
|
I theta, salt, |
| 569 |
|
U phiHyd, |
| 570 |
|
I myThid ) |
| 571 |
|
ENDIF |
| 572 |
|
|
| 573 |
|
C-- Calculate accelerations in the momentum equations (gU, gV, ...) |
| 574 |
|
C and step forward storing the result in gUnm1, gVnm1, etc... |
| 575 |
|
IF ( momStepping ) THEN |
| 576 |
|
CALL CALC_MOM_RHS( |
| 577 |
|
I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, |
| 578 |
|
I phiHyd,KappaRU,KappaRV, |
| 579 |
|
U fVerU, fVerV, |
| 580 |
|
I myTime, myThid) |
| 581 |
|
CALL TIMESTEP( |
| 582 |
|
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 583 |
|
I phiHyd, phiSurfX, phiSurfY, |
| 584 |
|
I myIter, myThid) |
| 585 |
|
|
| 586 |
|
#ifdef ALLOW_OBCS |
| 587 |
|
C-- Apply open boundary conditions |
| 588 |
|
IF (useOBCS) THEN |
| 589 |
|
CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) |
| 590 |
|
END IF |
| 591 |
|
#endif /* ALLOW_OBCS */ |
| 592 |
|
|
| 593 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 594 |
|
#ifdef INCLUDE_CD_CODE |
| 595 |
|
ELSE |
| 596 |
|
DO j=1-OLy,sNy+OLy |
| 597 |
|
DO i=1-OLx,sNx+OLx |
| 598 |
|
guCD(i,j,k,bi,bj) = 0.0 |
| 599 |
|
gvCD(i,j,k,bi,bj) = 0.0 |
| 600 |
|
END DO |
| 601 |
|
END DO |
| 602 |
|
#endif /* INCLUDE_CD_CODE */ |
| 603 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 604 |
|
ENDIF |
| 605 |
|
|
| 606 |
|
|
| 607 |
|
C-- end of dynamics k loop (1:Nr) |
| 608 |
|
ENDDO |
| 609 |
|
|
| 610 |
|
|
| 611 |
|
|
| 612 |
C-- Implicit viscosity |
C-- Implicit viscosity |
| 613 |
IF (implicitViscosity) THEN |
IF (implicitViscosity.AND.momStepping) THEN |
| 614 |
IF (momStepping) THEN |
#ifdef ALLOW_AUTODIFF_TAMC |
| 615 |
|
idkey = iikey + 3 |
| 616 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 617 |
CALL IMPLDIFF( |
CALL IMPLDIFF( |
| 618 |
I bi, bj, iMin, iMax, jMin, jMax, |
I bi, bj, iMin, iMax, jMin, jMax, |
| 619 |
I deltaTmom, KappaRU,recip_HFacW, |
I deltaTmom, KappaRU,recip_HFacW, |
| 620 |
U gUNm1, |
U gUNm1, |
| 621 |
I myThid ) |
I myThid ) |
| 622 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 623 |
|
idkey = iikey + 4 |
| 624 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 625 |
CALL IMPLDIFF( |
CALL IMPLDIFF( |
| 626 |
I bi, bj, iMin, iMax, jMin, jMax, |
I bi, bj, iMin, iMax, jMin, jMax, |
| 627 |
I deltaTmom, KappaRV,recip_HFacS, |
I deltaTmom, KappaRV,recip_HFacS, |
| 628 |
U gVNm1, |
U gVNm1, |
| 629 |
I myThid ) |
I myThid ) |
| 630 |
#ifdef INCLUDE_CD_CODE |
|
| 631 |
|
#ifdef ALLOW_OBCS |
| 632 |
|
C-- Apply open boundary conditions |
| 633 |
|
IF (useOBCS) THEN |
| 634 |
|
DO K=1,Nr |
| 635 |
|
CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) |
| 636 |
|
ENDDO |
| 637 |
|
END IF |
| 638 |
|
#endif /* ALLOW_OBCS */ |
| 639 |
|
|
| 640 |
|
#ifdef INCLUDE_CD_CODE |
| 641 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 642 |
|
idkey = iikey + 5 |
| 643 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 644 |
CALL IMPLDIFF( |
CALL IMPLDIFF( |
| 645 |
I bi, bj, iMin, iMax, jMin, jMax, |
I bi, bj, iMin, iMax, jMin, jMax, |
| 646 |
I deltaTmom, KappaRU,recip_HFacW, |
I deltaTmom, KappaRU,recip_HFacW, |
| 647 |
U vVelD, |
U vVelD, |
| 648 |
I myThid ) |
I myThid ) |
| 649 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 650 |
|
idkey = iikey + 6 |
| 651 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 652 |
CALL IMPLDIFF( |
CALL IMPLDIFF( |
| 653 |
I bi, bj, iMin, iMax, jMin, jMax, |
I bi, bj, iMin, iMax, jMin, jMax, |
| 654 |
I deltaTmom, KappaRV,recip_HFacS, |
I deltaTmom, KappaRV,recip_HFacS, |
| 655 |
U uVelD, |
U uVelD, |
| 656 |
I myThid ) |
I myThid ) |
| 657 |
#endif |
#endif /* INCLUDE_CD_CODE */ |
| 658 |
ENDIF ! momStepping |
C-- End If implicitViscosity.AND.momStepping |
| 659 |
ENDIF ! implicitViscosity |
ENDIF |
| 660 |
|
|
| 661 |
|
Cjmc : add for phiHyd output <- but not working if multi tile per CPU |
| 662 |
|
c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime) |
| 663 |
|
c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN |
| 664 |
|
c WRITE(suff,'(I10.10)') myIter+1 |
| 665 |
|
c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid) |
| 666 |
|
c ENDIF |
| 667 |
|
Cjmc(end) |
| 668 |
|
|
| 669 |
|
#ifdef ALLOW_TIMEAVE |
| 670 |
|
IF (taveFreq.GT.0.) THEN |
| 671 |
|
CALL TIMEAVE_CUMULATE(phiHydtave, phiHyd, Nr, |
| 672 |
|
I deltaTclock, bi, bj, myThid) |
| 673 |
|
IF (ivdc_kappa.NE.0.) THEN |
| 674 |
|
CALL TIMEAVE_CUMULATE(ConvectCountTave, ConvectCount, Nr, |
| 675 |
|
I deltaTclock, bi, bj, myThid) |
| 676 |
|
ENDIF |
| 677 |
|
ENDIF |
| 678 |
|
#endif /* ALLOW_TIMEAVE */ |
| 679 |
|
|
| 680 |
ENDDO |
ENDDO |
| 681 |
ENDDO |
ENDDO |
| 682 |
|
|
|
C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)), |
|
|
C & maxval(cg2d_x(1:sNx,1:sNy,:,:)) |
|
|
C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.), |
|
|
C & maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.) |
|
|
C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.), |
|
|
C & maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.) |
|
|
C write(0,*) 'dynamics: rVel(1) ', |
|
|
C & minval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.), |
|
|
C & maxval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.) |
|
|
C write(0,*) 'dynamics: rVel(2) ', |
|
|
C & minval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.), |
|
|
C & maxval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.) |
|
|
cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)), |
|
|
cblk & maxval(K13(1:sNx,1:sNy,:)) |
|
|
cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)), |
|
|
cblk & maxval(K23(1:sNx,1:sNy,:)) |
|
|
cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)), |
|
|
cblk & maxval(K33(1:sNx,1:sNy,:)) |
|
|
C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)), |
|
|
C & maxval(gT(1:sNx,1:sNy,:,:,:)) |
|
|
C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)), |
|
|
C & maxval(Theta(1:sNx,1:sNy,:,:,:)) |
|
|
C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)), |
|
|
C & maxval(gS(1:sNx,1:sNy,:,:,:)) |
|
|
C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)), |
|
|
C & maxval(salt(1:sNx,1:sNy,:,:,:)) |
|
|
C write(0,*) 'dynamics: phiHyd ',minval(phiHyd/(Gravity*Rhonil),mask=phiHyd.NE.0.), |
|
|
C & maxval(phiHyd/(Gravity*Rhonil)) |
|
|
C CALL PLOT_FIELD_XYZRL( gU, ' GU exiting dyanmics ' , |
|
|
C &Nr, 1, myThid ) |
|
|
C CALL PLOT_FIELD_XYZRL( gV, ' GV exiting dyanmics ' , |
|
|
C &Nr, 1, myThid ) |
|
|
C CALL PLOT_FIELD_XYZRL( gS, ' GS exiting dyanmics ' , |
|
|
C &Nr, 1, myThid ) |
|
|
C CALL PLOT_FIELD_XYZRL( gT, ' GT exiting dyanmics ' , |
|
|
C &Nr, 1, myThid ) |
|
|
C CALL PLOT_FIELD_XYZRL( phiHyd, ' phiHyd exiting dyanmics ' , |
|
|
C &Nr, 1, myThid ) |
|
|
|
|
|
|
|
| 683 |
RETURN |
RETURN |
| 684 |
END |
END |