| 1 |
C $Header$ |
C $Header$ |
| 2 |
|
|
| 3 |
#include "CPP_EEOPTIONS.h" |
#include "CPP_OPTIONS.h" |
| 4 |
|
|
| 5 |
SUBROUTINE DYNAMICS(myTime, myIter, myThid) |
SUBROUTINE DYNAMICS(myTime, myIter, myThid) |
| 6 |
C /==========================================================\ |
C /==========================================================\ |
| 20 |
C | C*P* comments indicating place holders for which code is | |
C | C*P* comments indicating place holders for which code is | |
| 21 |
C | presently being developed. | |
C | presently being developed. | |
| 22 |
C \==========================================================/ |
C \==========================================================/ |
| 23 |
|
IMPLICIT NONE |
| 24 |
|
|
| 25 |
C == Global variables === |
C == Global variables === |
| 26 |
#include "SIZE.h" |
#include "SIZE.h" |
| 28 |
#include "CG2D.h" |
#include "CG2D.h" |
| 29 |
#include "PARAMS.h" |
#include "PARAMS.h" |
| 30 |
#include "DYNVARS.h" |
#include "DYNVARS.h" |
| 31 |
|
#include "GRID.h" |
| 32 |
|
|
| 33 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 34 |
|
# include "tamc.h" |
| 35 |
|
# include "tamc_keys.h" |
| 36 |
|
# include "FFIELDS.h" |
| 37 |
|
# ifdef ALLOW_KPP |
| 38 |
|
# include "KPP.h" |
| 39 |
|
# endif |
| 40 |
|
# ifdef ALLOW_GMREDI |
| 41 |
|
# include "GMREDI.h" |
| 42 |
|
# endif |
| 43 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 44 |
|
|
| 45 |
C == Routine arguments == |
C == Routine arguments == |
| 46 |
C myTime - Current time in simulation |
C myTime - Current time in simulation |
| 47 |
C myIter - Current iteration number in simulation |
C myIter - Current iteration number in simulation |
| 48 |
C myThid - Thread number for this instance of the routine. |
C myThid - Thread number for this instance of the routine. |
|
INTEGER myThid |
|
| 49 |
_RL myTime |
_RL myTime |
| 50 |
INTEGER myIter |
INTEGER myIter |
| 51 |
|
INTEGER myThid |
| 52 |
|
|
| 53 |
C == Local variables |
C == Local variables |
| 54 |
C xA, yA - Per block temporaries holding face areas |
C xA, yA - Per block temporaries holding face areas |
| 55 |
C uTrans, vTrans, wTrans - Per block temporaries holding flow transport |
C uTrans, vTrans, rTrans - Per block temporaries holding flow |
| 56 |
C o uTrans: Zonal transport |
C transport |
| 57 |
|
C rVel o uTrans: Zonal transport |
| 58 |
C o vTrans: Meridional transport |
C o vTrans: Meridional transport |
| 59 |
C o wTrans: Vertical transport |
C o rTrans: Vertical transport |
| 60 |
|
C o rVel: Vertical velocity at upper and |
| 61 |
|
C lower cell faces. |
| 62 |
C maskC,maskUp o maskC: land/water mask for tracer cells |
C maskC,maskUp o maskC: land/water mask for tracer cells |
| 63 |
C o maskUp: land/water mask for W points |
C o maskUp: land/water mask for W points |
| 64 |
C aTerm, xTerm, cTerm - Work arrays for holding separate terms in |
C aTerm, xTerm, cTerm - Work arrays for holding separate terms in |
| 74 |
C is "pipelined" in the vertical |
C is "pipelined" in the vertical |
| 75 |
C so we need an fVer for each |
C so we need an fVer for each |
| 76 |
C variable. |
C variable. |
| 77 |
C iMin, iMax - Ranges and sub-block indices on which calculations |
C rhoK, rhoKM1 - Density at current level, level above and level |
| 78 |
C jMin, jMax are applied. |
C below. |
| 79 |
|
C rhoKP1 |
| 80 |
|
C buoyK, buoyKM1 - Buoyancy at current level and level above. |
| 81 |
|
C phiHyd - Hydrostatic part of the potential phiHydi. |
| 82 |
|
C In z coords phiHydiHyd is the hydrostatic |
| 83 |
|
C pressure anomaly |
| 84 |
|
C In p coords phiHydiHyd is the geopotential |
| 85 |
|
C surface height |
| 86 |
|
C anomaly. |
| 87 |
|
C etaSurfX, - Holds surface elevation gradient in X and Y. |
| 88 |
|
C etaSurfY |
| 89 |
|
C KappaRT, - Total diffusion in vertical for T and S. |
| 90 |
|
C KappaRS (background + spatially varying, isopycnal term). |
| 91 |
|
C iMin, iMax - Ranges and sub-block indices on which calculations |
| 92 |
|
C jMin, jMax are applied. |
| 93 |
C bi, bj |
C bi, bj |
| 94 |
C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown |
C k, kup, - Index for layer above and below. kup and kDown |
| 95 |
C are switched with layer to be the appropriate index |
C kDown, km1 are switched with layer to be the appropriate |
| 96 |
C into fVerTerm |
C index into fVerTerm. |
| 97 |
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 98 |
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 99 |
_RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 100 |
_RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 101 |
_RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 102 |
_RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 103 |
_RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 104 |
_RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 105 |
_RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 106 |
_RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 107 |
_RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 108 |
_RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 109 |
_RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 110 |
_RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 111 |
_RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
_RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 112 |
_RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
_RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 113 |
_RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
_RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 114 |
_RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
_RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 115 |
_RL pH (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) |
_RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 116 |
_RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 117 |
_RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 118 |
_RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 119 |
_RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 120 |
_RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 121 |
_RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) |
_RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 122 |
_RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) |
_RL rhotmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 123 |
_RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) |
_RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 124 |
_RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 125 |
|
_RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 126 |
|
_RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 127 |
|
_RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 128 |
|
_RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) |
| 129 |
|
_RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 130 |
|
_RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 131 |
|
_RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 132 |
|
|
| 133 |
|
C This is currently also used by IVDC and Diagnostics |
| 134 |
|
C #ifdef INCLUDE_CONVECT_CALL |
| 135 |
|
_RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 136 |
|
C #endif |
| 137 |
|
|
| 138 |
INTEGER iMin, iMax |
INTEGER iMin, iMax |
| 139 |
INTEGER jMin, jMax |
INTEGER jMin, jMax |
| 140 |
INTEGER bi, bj |
INTEGER bi, bj |
| 141 |
INTEGER i, j |
INTEGER i, j |
| 142 |
INTEGER k, kM1, kUp, kDown |
INTEGER k, km1, kup, kDown |
| 143 |
|
LOGICAL BOTTOM_LAYER |
| 144 |
|
|
| 145 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 146 |
|
INTEGER isbyte |
| 147 |
|
PARAMETER( isbyte = 4 ) |
| 148 |
|
|
| 149 |
|
INTEGER act1, act2, act3, act4 |
| 150 |
|
INTEGER max1, max2, max3 |
| 151 |
|
INTEGER iikey, kkey |
| 152 |
|
INTEGER maximpl |
| 153 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 154 |
|
|
| 155 |
|
C--- The algorithm... |
| 156 |
|
C |
| 157 |
|
C "Correction Step" |
| 158 |
|
C ================= |
| 159 |
|
C Here we update the horizontal velocities with the surface |
| 160 |
|
C pressure such that the resulting flow is either consistent |
| 161 |
|
C with the free-surface evolution or the rigid-lid: |
| 162 |
|
C U[n] = U* + dt x d/dx P |
| 163 |
|
C V[n] = V* + dt x d/dy P |
| 164 |
|
C |
| 165 |
|
C "Calculation of Gs" |
| 166 |
|
C =================== |
| 167 |
|
C This is where all the accelerations and tendencies (ie. |
| 168 |
|
C physics, parameterizations etc...) are calculated |
| 169 |
|
C rVel = sum_r ( div. u[n] ) |
| 170 |
|
C rho = rho ( theta[n], salt[n] ) |
| 171 |
|
C b = b(rho, theta) |
| 172 |
|
C K31 = K31 ( rho ) |
| 173 |
|
C Gu[n] = Gu( u[n], v[n], rVel, b, ... ) |
| 174 |
|
C Gv[n] = Gv( u[n], v[n], rVel, b, ... ) |
| 175 |
|
C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... ) |
| 176 |
|
C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... ) |
| 177 |
|
C |
| 178 |
|
C "Time-stepping" or "Prediction" |
| 179 |
|
C ================================ |
| 180 |
|
C The models variables are stepped forward with the appropriate |
| 181 |
|
C time-stepping scheme (currently we use Adams-Bashforth II) |
| 182 |
|
C - For momentum, the result is always *only* a "prediction" |
| 183 |
|
C in that the flow may be divergent and will be "corrected" |
| 184 |
|
C later with a surface pressure gradient. |
| 185 |
|
C - Normally for tracers the result is the new field at time |
| 186 |
|
C level [n+1} *BUT* in the case of implicit diffusion the result |
| 187 |
|
C is also *only* a prediction. |
| 188 |
|
C - We denote "predictors" with an asterisk (*). |
| 189 |
|
C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) |
| 190 |
|
C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) |
| 191 |
|
C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 192 |
|
C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 193 |
|
C With implicit diffusion: |
| 194 |
|
C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 195 |
|
C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) |
| 196 |
|
C (1 + dt * K * d_zz) theta[n] = theta* |
| 197 |
|
C (1 + dt * K * d_zz) salt[n] = salt* |
| 198 |
|
C--- |
| 199 |
|
|
| 200 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 201 |
|
C-- dummy statement to end declaration part |
| 202 |
|
ikey = 1 |
| 203 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 204 |
|
|
| 205 |
|
|
| 206 |
C-- Set up work arrays with valid (i.e. not NaN) values |
C-- Set up work arrays with valid (i.e. not NaN) values |
| 207 |
C These inital values do not alter the numerical results. They |
C These inital values do not alter the numerical results. They |
| 221 |
pTerm(i,j) = 0. _d 0 |
pTerm(i,j) = 0. _d 0 |
| 222 |
fZon(i,j) = 0. _d 0 |
fZon(i,j) = 0. _d 0 |
| 223 |
fMer(i,j) = 0. _d 0 |
fMer(i,j) = 0. _d 0 |
| 224 |
DO K=1,nZ |
DO k=1,Nr |
| 225 |
pH (i,j,k) = 0. _d 0 |
phiHyd (i,j,k) = 0. _d 0 |
| 226 |
K13(i,j,k) = 0. _d 0 |
KappaRU(i,j,k) = 0. _d 0 |
| 227 |
K23(i,j,k) = 0. _d 0 |
KappaRV(i,j,k) = 0. _d 0 |
| 228 |
K33(i,j,k) = 0. _d 0 |
sigmaX(i,j,k) = 0. _d 0 |
| 229 |
|
sigmaY(i,j,k) = 0. _d 0 |
| 230 |
|
sigmaR(i,j,k) = 0. _d 0 |
| 231 |
ENDDO |
ENDDO |
| 232 |
rhokm1(i,j) = 0. _d 0 |
rhoKM1 (i,j) = 0. _d 0 |
| 233 |
rhokp1(i,j) = 0. _d 0 |
rhok (i,j) = 0. _d 0 |
| 234 |
rhotmp(i,j) = 0. _d 0 |
rhoKP1 (i,j) = 0. _d 0 |
| 235 |
|
rhoTMP (i,j) = 0. _d 0 |
| 236 |
|
buoyKM1(i,j) = 0. _d 0 |
| 237 |
|
buoyK (i,j) = 0. _d 0 |
| 238 |
|
maskC (i,j) = 0. _d 0 |
| 239 |
ENDDO |
ENDDO |
| 240 |
ENDDO |
ENDDO |
| 241 |
|
|
| 242 |
|
|
| 243 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 244 |
|
C-- HPF directive to help TAMC |
| 245 |
|
CHPF$ INDEPENDENT |
| 246 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 247 |
|
|
| 248 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
| 249 |
|
|
| 250 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 251 |
|
C-- HPF directive to help TAMC |
| 252 |
|
CHPF$ INDEPENDENT, NEW (rTrans,rVel,fVerT,fVerS,fVerU,fVerV |
| 253 |
|
CHPF$& ,phiHyd,utrans,vtrans,maskc,xA,yA |
| 254 |
|
CHPF$& ,KappaRT,KappaRS,KappaRU,KappaRV |
| 255 |
|
CHPF$& ) |
| 256 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 257 |
|
|
| 258 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 259 |
|
|
| 260 |
C-- Boundary condition on hydrostatic pressure is pH(z=0)=0 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 261 |
|
act1 = bi - myBxLo(myThid) |
| 262 |
|
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
| 263 |
|
|
| 264 |
|
act2 = bj - myByLo(myThid) |
| 265 |
|
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
| 266 |
|
|
| 267 |
|
act3 = myThid - 1 |
| 268 |
|
max3 = nTx*nTy |
| 269 |
|
|
| 270 |
|
act4 = ikey_dynamics - 1 |
| 271 |
|
|
| 272 |
|
ikey = (act1 + 1) + act2*max1 |
| 273 |
|
& + act3*max1*max2 |
| 274 |
|
& + act4*max1*max2*max3 |
| 275 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 276 |
|
|
| 277 |
|
C-- Set up work arrays that need valid initial values |
| 278 |
DO j=1-OLy,sNy+OLy |
DO j=1-OLy,sNy+OLy |
| 279 |
DO i=1-OLx,sNx+OLx |
DO i=1-OLx,sNx+OLx |
| 280 |
pH(i,j,1) = 0. _d 0 |
rTrans(i,j) = 0. _d 0 |
| 281 |
K13(i,j,1) = 0. _d 0 |
rVel (i,j,1) = 0. _d 0 |
| 282 |
K23(i,j,1) = 0. _d 0 |
rVel (i,j,2) = 0. _d 0 |
| 283 |
K33(i,j,1) = 0. _d 0 |
fVerT (i,j,1) = 0. _d 0 |
| 284 |
KapGM(i,j) = 0. _d 0 |
fVerT (i,j,2) = 0. _d 0 |
| 285 |
|
fVerS (i,j,1) = 0. _d 0 |
| 286 |
|
fVerS (i,j,2) = 0. _d 0 |
| 287 |
|
fVerU (i,j,1) = 0. _d 0 |
| 288 |
|
fVerU (i,j,2) = 0. _d 0 |
| 289 |
|
fVerV (i,j,1) = 0. _d 0 |
| 290 |
|
fVerV (i,j,2) = 0. _d 0 |
| 291 |
|
phiHyd(i,j,1) = 0. _d 0 |
| 292 |
ENDDO |
ENDDO |
| 293 |
ENDDO |
ENDDO |
| 294 |
|
|
| 295 |
C-- Set up work arrays that need valid initial values |
DO k=1,Nr |
| 296 |
DO j=1-OLy,sNy+OLy |
DO j=1-OLy,sNy+OLy |
| 297 |
DO i=1-OLx,sNx+OLx |
DO i=1-OLx,sNx+OLx |
| 298 |
wTrans(i,j) = 0. _d 0 |
#ifdef INCLUDE_CONVECT_CALL |
| 299 |
fVerT(i,j,1) = 0. _d 0 |
ConvectCount(i,j,k) = 0. |
| 300 |
fVerT(i,j,2) = 0. _d 0 |
#endif |
| 301 |
fVerS(i,j,1) = 0. _d 0 |
KappaRT(i,j,k) = 0. _d 0 |
| 302 |
fVerS(i,j,2) = 0. _d 0 |
KappaRS(i,j,k) = 0. _d 0 |
| 303 |
fVerU(i,j,1) = 0. _d 0 |
ENDDO |
|
fVerU(i,j,2) = 0. _d 0 |
|
|
fVerV(i,j,1) = 0. _d 0 |
|
|
fVerV(i,j,2) = 0. _d 0 |
|
| 304 |
ENDDO |
ENDDO |
| 305 |
ENDDO |
ENDDO |
| 306 |
|
|
| 309 |
jMin = 1-OLy+1 |
jMin = 1-OLy+1 |
| 310 |
jMax = sNy+OLy |
jMax = sNy+OLy |
| 311 |
|
|
| 312 |
|
k = 1 |
| 313 |
|
BOTTOM_LAYER = k .EQ. Nr |
| 314 |
|
|
| 315 |
|
#ifdef DO_PIPELINED_CORRECTION_STEP |
| 316 |
C-- Calculate gradient of surface pressure |
C-- Calculate gradient of surface pressure |
| 317 |
CALL GRAD_PSURF( |
CALL CALC_GRAD_ETA_SURF( |
| 318 |
I bi,bj,iMin,iMax,jMin,jMax, |
I bi,bj,iMin,iMax,jMin,jMax, |
| 319 |
O pSurfX,pSurfY, |
O etaSurfX,etaSurfY, |
| 320 |
I myThid) |
I myThid) |
|
|
|
| 321 |
C-- Update fields in top level according to tendency terms |
C-- Update fields in top level according to tendency terms |
| 322 |
CALL TIMESTEP( |
CALL CORRECTION_STEP( |
| 323 |
I bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid) |
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 324 |
|
I etaSurfX,etaSurfY,myTime,myThid) |
| 325 |
|
|
| 326 |
|
#ifdef ALLOW_OBCS |
| 327 |
|
IF (openBoundaries) THEN |
| 328 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 329 |
|
CADJ STORE uvel (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 330 |
|
CADJ STORE vvel (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 331 |
|
CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 332 |
|
CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 333 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 334 |
|
CALL APPLY_OBCS1( bi, bj, k, myThid ) |
| 335 |
|
END IF |
| 336 |
|
#endif |
| 337 |
|
|
| 338 |
|
IF ( .NOT. BOTTOM_LAYER ) THEN |
| 339 |
|
C-- Update fields in layer below according to tendency terms |
| 340 |
|
CALL CORRECTION_STEP( |
| 341 |
|
I bi,bj,iMin,iMax,jMin,jMax,k+1, |
| 342 |
|
I etaSurfX,etaSurfY,myTime,myThid) |
| 343 |
|
#ifdef ALLOW_OBCS |
| 344 |
|
IF (openBoundaries) THEN |
| 345 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 346 |
|
CADJ STORE uvel (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 347 |
|
CADJ STORE vvel (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 348 |
|
CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 349 |
|
CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 350 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 351 |
|
CALL APPLY_OBCS1( bi, bj, k+1, myThid ) |
| 352 |
|
END IF |
| 353 |
|
#endif |
| 354 |
|
ENDIF |
| 355 |
|
#endif |
| 356 |
|
|
| 357 |
C-- Density of 1st level (below W(1)) reference to level 1 |
C-- Density of 1st level (below W(1)) reference to level 1 |
| 358 |
|
#ifdef INCLUDE_FIND_RHO_CALL |
| 359 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 360 |
|
CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 361 |
|
CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte |
| 362 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 363 |
CALL FIND_RHO( |
CALL FIND_RHO( |
| 364 |
I bi, bj, iMin, iMax, jMin, jMax, 1, 1, eosType, |
I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, |
| 365 |
O rhoKm1, |
O rhoKm1, |
| 366 |
I myThid ) |
I myThid ) |
| 367 |
C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 |
#endif |
| 368 |
CALL CALC_PH( |
|
| 369 |
I bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1, |
IF (.NOT. BOTTOM_LAYER) THEN |
| 370 |
U pH, |
|
| 371 |
|
C-- Check static stability with layer below |
| 372 |
|
C-- and mix as needed. |
| 373 |
|
#ifdef INCLUDE_FIND_RHO_CALL |
| 374 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 375 |
|
CADJ STORE theta(:,:,k+1,bi,bj) = comlev1_bibj |
| 376 |
|
CADJ & , key = ikey, byte = isbyte |
| 377 |
|
CADJ STORE salt (:,:,k+1,bi,bj) = comlev1_bibj |
| 378 |
|
CADJ & , key = ikey, byte = isbyte |
| 379 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 380 |
|
CALL FIND_RHO( |
| 381 |
|
I bi, bj, iMin, iMax, jMin, jMax, k+1, k, eosType, |
| 382 |
|
O rhoKp1, |
| 383 |
I myThid ) |
I myThid ) |
| 384 |
DO J=1-Oly,sNy+Oly |
#endif |
| 385 |
DO I=1-Olx,sNx+Olx |
|
| 386 |
rhoKp1(I,J)=rhoKm1(I,J) |
#ifdef ALLOW_AUTODIFF_TAMC |
| 387 |
|
CADJ STORE rhoKm1(:,:) = comlev1_bibj, key = ikey, byte = isbyte |
| 388 |
|
CADJ STORE rhoKp1(:,:) = comlev1_bibj, key = ikey, byte = isbyte |
| 389 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 390 |
|
|
| 391 |
|
#ifdef INCLUDE_CONVECT_CALL |
| 392 |
|
|
| 393 |
|
CALL CONVECT( |
| 394 |
|
I bi,bj,iMin,iMax,jMin,jMax,k+1,rhoKm1,rhoKp1, |
| 395 |
|
U ConvectCount, |
| 396 |
|
I myTime,myIter,myThid) |
| 397 |
|
|
| 398 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 399 |
|
CADJ STORE theta(:,:,k+1,bi,bj),theta(:,:,k,bi,bj) |
| 400 |
|
CADJ & = comlev1_bibj, key = ikey, byte = isbyte |
| 401 |
|
CADJ STORE salt (:,:,k+1,bi,bj),salt (:,:,k,bi,bj) |
| 402 |
|
CADJ & = comlev1_bibj, key = ikey, byte = isbyte |
| 403 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 404 |
|
|
| 405 |
|
#endif |
| 406 |
|
|
| 407 |
|
C-- Implicit Vertical Diffusion for Convection |
| 408 |
|
IF (ivdc_kappa.NE.0.) THEN |
| 409 |
|
CALL CALC_IVDC( |
| 410 |
|
I bi,bj,iMin,iMax,jMin,jMax,k+1,rhoKm1,rhoKp1, |
| 411 |
|
U ConvectCount, KappaRT, KappaRS, |
| 412 |
|
I myTime,myIter,myThid) |
| 413 |
|
ENDIF |
| 414 |
|
|
| 415 |
|
C-- Recompute density after mixing |
| 416 |
|
#ifdef INCLUDE_FIND_RHO_CALL |
| 417 |
|
CALL FIND_RHO( |
| 418 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, |
| 419 |
|
O rhoKm1, |
| 420 |
|
I myThid ) |
| 421 |
|
#endif |
| 422 |
|
ENDIF |
| 423 |
|
|
| 424 |
|
C-- Calculate buoyancy |
| 425 |
|
CALL CALC_BUOYANCY( |
| 426 |
|
I bi,bj,iMin,iMax,jMin,jMax,k,rhoKm1, |
| 427 |
|
O buoyKm1, |
| 428 |
|
I myThid ) |
| 429 |
|
|
| 430 |
|
C-- Integrate hydrostatic balance for phiHyd with BC of |
| 431 |
|
C-- phiHyd(z=0)=0 |
| 432 |
|
CALL CALC_PHI_HYD( |
| 433 |
|
I bi,bj,iMin,iMax,jMin,jMax,k,buoyKm1,buoyKm1, |
| 434 |
|
U phiHyd, |
| 435 |
|
I myThid ) |
| 436 |
|
|
| 437 |
|
#ifdef ALLOW_GMREDI |
| 438 |
|
IF ( useGMRedi ) THEN |
| 439 |
|
CALL GRAD_SIGMA( |
| 440 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, |
| 441 |
|
I rhoKm1, rhoKm1, rhoKm1, |
| 442 |
|
O sigmaX, sigmaY, sigmaR, |
| 443 |
|
I myThid ) |
| 444 |
|
ELSE |
| 445 |
|
DO j=1-OLy,sNy+OLy |
| 446 |
|
DO i=1-OLx,sNx+OLx |
| 447 |
|
sigmaX(i,j,k) = 0. _d 0 |
| 448 |
|
sigmaY(i,j,k) = 0. _d 0 |
| 449 |
|
sigmaR(i,j,k) = 0. _d 0 |
| 450 |
|
ENDDO |
| 451 |
ENDDO |
ENDDO |
| 452 |
ENDDO |
ENDIF |
| 453 |
|
#endif |
| 454 |
|
|
| 455 |
|
C-- Start of downward loop |
| 456 |
|
DO k=2,Nr |
| 457 |
|
|
| 458 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 459 |
|
kkey = (ikey-1)*(Nr-2+1) + (k-2) + 1 |
| 460 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 461 |
|
|
| 462 |
|
BOTTOM_LAYER = k .EQ. Nr |
| 463 |
|
|
| 464 |
|
#ifdef DO_PIPELINED_CORRECTION_STEP |
| 465 |
|
IF ( .NOT. BOTTOM_LAYER ) THEN |
| 466 |
|
C-- Update fields in layer below according to tendency terms |
| 467 |
|
CALL CORRECTION_STEP( |
| 468 |
|
I bi,bj,iMin,iMax,jMin,jMax,k+1, |
| 469 |
|
I etaSurfX,etaSurfY,myTime,myThid) |
| 470 |
|
#ifdef ALLOW_OBCS |
| 471 |
|
IF (openBoundaries) THEN |
| 472 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 473 |
|
CADJ STORE uvel (:,:,k,bi,bj) = comlev1_bibj_k |
| 474 |
|
CADJ & , key = kkey, byte = isbyte |
| 475 |
|
CADJ STORE vvel (:,:,k,bi,bj) = comlev1_bibj_k |
| 476 |
|
CADJ & , key = kkey, byte = isbyte |
| 477 |
|
CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k |
| 478 |
|
CADJ & , key = kkey, byte = isbyte |
| 479 |
|
CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k |
| 480 |
|
CADJ & , key = kkey, byte = isbyte |
| 481 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 482 |
|
CALL APPLY_OBCS1( bi, bj, k+1, myThid ) |
| 483 |
|
END IF |
| 484 |
|
#endif |
| 485 |
|
ENDIF |
| 486 |
|
#endif /* DO_PIPELINED_CORRECTION_STEP */ |
| 487 |
|
|
| 488 |
|
C-- Density of k level (below W(k)) reference to k level |
| 489 |
|
#ifdef INCLUDE_FIND_RHO_CALL |
| 490 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 491 |
|
CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k |
| 492 |
|
CADJ & , key = kkey, byte = isbyte |
| 493 |
|
CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k |
| 494 |
|
CADJ & , key = kkey, byte = isbyte |
| 495 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 496 |
|
CALL FIND_RHO( |
| 497 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, |
| 498 |
|
O rhoK, |
| 499 |
|
I myThid ) |
| 500 |
|
|
| 501 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 502 |
|
cph( storing not necessary |
| 503 |
|
cphCADJ STORE rhoK(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte |
| 504 |
|
cph) |
| 505 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 506 |
|
#endif |
| 507 |
|
|
| 508 |
|
IF (.NOT. BOTTOM_LAYER) THEN |
| 509 |
|
|
| 510 |
|
C-- Check static stability with layer below and mix as needed. |
| 511 |
|
C-- Density of k+1 level (below W(k+1)) reference to k level. |
| 512 |
|
#ifdef INCLUDE_FIND_RHO_CALL |
| 513 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 514 |
|
CADJ STORE theta(:,:,k+1,bi,bj) = comlev1_bibj_k |
| 515 |
|
CADJ & , key = kkey, byte = isbyte |
| 516 |
|
CADJ STORE salt (:,:,k+1,bi,bj) = comlev1_bibj_k |
| 517 |
|
CADJ & , key = kkey, byte = isbyte |
| 518 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 519 |
|
CALL FIND_RHO( |
| 520 |
|
I bi, bj, iMin, iMax, jMin, jMax, k+1, k, eosType, |
| 521 |
|
O rhoKp1, |
| 522 |
|
I myThid ) |
| 523 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 524 |
|
CADJ STORE rhoKp1(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte |
| 525 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 526 |
|
#endif |
| 527 |
|
|
| 528 |
|
#ifdef INCLUDE_CONVECT_CALL |
| 529 |
|
CALL CONVECT( |
| 530 |
|
I bi,bj,iMin,iMax,jMin,jMax,k+1,rhoK,rhoKp1, |
| 531 |
|
U ConvectCount, |
| 532 |
|
I myTime,myIter,myThid) |
| 533 |
|
|
| 534 |
|
#endif |
| 535 |
|
|
| 536 |
|
C-- Implicit Vertical Diffusion for Convection |
| 537 |
|
IF (ivdc_kappa.NE.0.) THEN |
| 538 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 539 |
|
CADJ STORE rhoKm1(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte |
| 540 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 541 |
|
CALL CALC_IVDC( |
| 542 |
|
I bi,bj,iMin,iMax,jMin,jMax,k+1,rhoKm1,rhoKp1, |
| 543 |
|
U ConvectCount, KappaRT, KappaRS, |
| 544 |
|
I myTime,myIter,myThid) |
| 545 |
|
END IF |
| 546 |
|
|
| 547 |
|
C-- Recompute density after mixing |
| 548 |
|
#ifdef INCLUDE_FIND_RHO_CALL |
| 549 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 550 |
|
CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k |
| 551 |
|
CADJ & , key = kkey, byte = isbyte |
| 552 |
|
CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k |
| 553 |
|
CADJ & , key = kkey, byte = isbyte |
| 554 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 555 |
|
CALL FIND_RHO( |
| 556 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, |
| 557 |
|
O rhoK, |
| 558 |
|
I myThid ) |
| 559 |
|
#endif |
| 560 |
|
|
| 561 |
DO K=2,Nz |
C-- IF (.NOT. BOTTOM_LAYER) ends here |
| 562 |
C-- Update fields in Kth level according to tendency terms |
ENDIF |
| 563 |
CALL TIMESTEP( |
|
| 564 |
I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid) |
C-- Calculate buoyancy |
| 565 |
C-- Density of K-1 level (above W(K)) reference to K-1 level |
CALL CALC_BUOYANCY( |
| 566 |
copt CALL FIND_RHO( |
I bi,bj,iMin,iMax,jMin,jMax,k,rhoK, |
| 567 |
copt I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType, |
O buoyK, |
| 568 |
copt O rhoKm1, |
I myThid ) |
| 569 |
copt I myThid ) |
|
| 570 |
C rhoKm1=rhoKp1 |
C-- Integrate hydrostatic balance for phiHyd with BC of |
| 571 |
DO J=1-Oly,sNy+Oly |
C-- phiHyd(z=0)=0 |
| 572 |
DO I=1-Olx,sNx+Olx |
CALL CALC_PHI_HYD( |
| 573 |
rhoKm1(I,J)=rhoKp1(I,J) |
I bi,bj,iMin,iMax,jMin,jMax,k,buoyKm1,buoyK, |
| 574 |
|
U phiHyd, |
| 575 |
|
I myThid ) |
| 576 |
|
|
| 577 |
|
#ifdef INCLUDE_FIND_RHO_CALL |
| 578 |
|
C-- Calculate iso-neutral slopes for the GM/Redi parameterisation |
| 579 |
|
|
| 580 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 581 |
|
CADJ STORE theta(:,:,k-1,bi,bj) = comlev1_bibj_k |
| 582 |
|
CADJ & , key = kkey, byte = isbyte |
| 583 |
|
CADJ STORE salt (:,:,k-1,bi,bj) = comlev1_bibj_k |
| 584 |
|
CADJ & , key = kkey, byte = isbyte |
| 585 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 586 |
|
|
| 587 |
|
CALL FIND_RHO( |
| 588 |
|
I bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType, |
| 589 |
|
O rhoTmp, |
| 590 |
|
I myThid ) |
| 591 |
|
#endif |
| 592 |
|
|
| 593 |
|
|
| 594 |
|
#ifdef ALLOW_GMREDI |
| 595 |
|
IF ( useGMRedi ) THEN |
| 596 |
|
CALL GRAD_SIGMA( |
| 597 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, |
| 598 |
|
I rhoK, rhotmp, rhoK, |
| 599 |
|
O sigmaX, sigmaY, sigmaR, |
| 600 |
|
I myThid ) |
| 601 |
|
ELSE |
| 602 |
|
DO j=1-OLy,sNy+OLy |
| 603 |
|
DO i=1-OLx,sNx+OLx |
| 604 |
|
sigmaX(i,j,k) = 0. _d 0 |
| 605 |
|
sigmaY(i,j,k) = 0. _d 0 |
| 606 |
|
sigmaR(i,j,k) = 0. _d 0 |
| 607 |
|
ENDDO |
| 608 |
|
ENDDO |
| 609 |
|
ENDIF |
| 610 |
|
#endif |
| 611 |
|
|
| 612 |
|
DO J=jMin,jMax |
| 613 |
|
DO I=iMin,iMax |
| 614 |
|
#ifdef INCLUDE_FIND_RHO_CALL |
| 615 |
|
rhoKm1 (I,J) = rhoK(I,J) |
| 616 |
|
#endif |
| 617 |
|
buoyKm1(I,J) = buoyK(I,J) |
| 618 |
|
ENDDO |
| 619 |
ENDDO |
ENDDO |
| 620 |
|
|
| 621 |
|
C-- end of k loop |
| 622 |
ENDDO |
ENDDO |
|
C-- Density of K level (below W(K)) reference to K level |
|
|
CALL FIND_RHO( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, |
|
|
O rhoKp1, |
|
|
I myThid ) |
|
|
C-- Density of K-1 level (above W(K)) reference to K level |
|
|
CALL FIND_RHO( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType, |
|
|
O rhotmp, |
|
|
I myThid ) |
|
|
C-- Calculate iso-neutral slopes for the GM/Redi parameterisation |
|
|
CALL CALC_ISOSLOPES( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K, |
|
|
I rhoKm1, rhoKp1, rhotmp, |
|
|
O K13, K23, K33, KapGM, |
|
|
I myThid ) |
|
|
C-- Calculate static stability and mix where convectively unstable |
|
|
CALL CONVECT( |
|
|
I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1, |
|
|
I myTime,myIter,myThid) |
|
|
C-- Density of K-1 level (above W(K)) reference to K-1 level |
|
|
CALL FIND_RHO( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType, |
|
|
O rhoKm1, |
|
|
I myThid ) |
|
|
C-- Density of K level (below W(K)) referenced to K level |
|
|
CALL FIND_RHO( |
|
|
I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, |
|
|
O rhoKp1, |
|
|
I myThid ) |
|
|
C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 |
|
|
CALL CALC_PH( |
|
|
I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1, |
|
|
U pH, |
|
|
I myThid ) |
|
| 623 |
|
|
| 624 |
|
C Determines forcing terms based on external fields |
| 625 |
|
C relaxation terms, etc. |
| 626 |
|
CALL EXTERNAL_FORCING_SURF( |
| 627 |
|
I bi, bj, iMin, iMax, jMin, jMax, |
| 628 |
|
I myThid ) |
| 629 |
|
|
| 630 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 631 |
|
|
| 632 |
|
CADJ STORE surfacetendencyu(:,:,bi,bj) |
| 633 |
|
CADJ & , surfacetendencyv(:,:,bi,bj) |
| 634 |
|
CADJ & , surfacetendencys(:,:,bi,bj) |
| 635 |
|
CADJ & , surfacetendencyt(:,:,bi,bj) |
| 636 |
|
CADJ & = comlev1_bibj, key=ikey, byte=isbyte |
| 637 |
|
|
| 638 |
|
# ifdef ALLOW_GMREDI |
| 639 |
|
CADJ STORE sigmaX(:,:,:) = comlev1, key=ikey, byte=isbyte |
| 640 |
|
CADJ STORE sigmaY(:,:,:) = comlev1, key=ikey, byte=isbyte |
| 641 |
|
CADJ STORE sigmaR(:,:,:) = comlev1, key=ikey, byte=isbyte |
| 642 |
|
# endif /* ALLOW_GMREDI */ |
| 643 |
|
|
| 644 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 645 |
|
|
| 646 |
|
#ifdef ALLOW_GMREDI |
| 647 |
|
IF (useGMRedi) THEN |
| 648 |
|
DO k=1, Nr |
| 649 |
|
CALL GMREDI_CALC_TENSOR( |
| 650 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, |
| 651 |
|
I sigmaX, sigmaY, sigmaR, |
| 652 |
|
I myThid ) |
| 653 |
|
ENDDO |
| 654 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 655 |
|
ELSE |
| 656 |
|
DO k=1, Nr |
| 657 |
|
CALL GMREDI_CALC_TENSOR_DUMMY( |
| 658 |
|
I bi, bj, iMin, iMax, jMin, jMax, k, |
| 659 |
|
I sigmaX, sigmaY, sigmaR, |
| 660 |
|
I myThid ) |
| 661 |
|
ENDDO |
| 662 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 663 |
|
ENDIF |
| 664 |
|
#endif |
| 665 |
|
|
| 666 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 667 |
|
CADJ STORE KappaRT(:,:,:) = comlev1_bibj, key=ikey, byte=isbyte |
| 668 |
|
CADJ STORE KappaRS(:,:,:) = comlev1_bibj, key=ikey, byte=isbyte |
| 669 |
|
|
| 670 |
|
#ifdef ALLOW_GMREDI |
| 671 |
|
C-- R.G. We need to define a new tape since Kw use mythid instead of bi,bj |
| 672 |
|
CADJ STORE Kwx(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte |
| 673 |
|
CADJ STORE Kwy(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte |
| 674 |
|
CADJ STORE Kwz(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte |
| 675 |
|
#endif |
| 676 |
|
|
| 677 |
|
CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 678 |
|
CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 679 |
|
CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 680 |
|
CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 681 |
|
======= |
| 682 |
|
C-- R.G. We need to define a new tape since Kw use mythid instead of bi,bj |
| 683 |
|
CADJ STORE Kwx(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte |
| 684 |
|
CADJ STORE Kwy(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte |
| 685 |
|
CADJ STORE Kwz(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte |
| 686 |
|
|
| 687 |
|
CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 688 |
|
CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 689 |
|
CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 690 |
|
CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte |
| 691 |
|
|
| 692 |
|
C-- dummy initialization to break data flow because |
| 693 |
|
C-- calc_div_ghat has a condition for initialization |
| 694 |
|
DO J=jMin,jMax |
| 695 |
|
DO I=iMin,iMax |
| 696 |
|
cg2d_b(i,j,bi,bj) = 0.0 |
| 697 |
|
ENDDO |
| 698 |
ENDDO |
ENDDO |
| 699 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 700 |
|
|
| 701 |
|
#ifdef ALLOW_KPP |
| 702 |
|
C-- Compute KPP mixing coefficients |
| 703 |
|
IF (useKPP) THEN |
| 704 |
|
|
| 705 |
|
CALL TIMER_START('KPP_CALC [DYNAMICS]', myThid) |
| 706 |
|
CALL KPP_CALC( |
| 707 |
|
I bi, bj, myTime, myThid ) |
| 708 |
|
CALL TIMER_STOP ('KPP_CALC [DYNAMICS]', myThid) |
| 709 |
|
|
| 710 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 711 |
|
ELSE |
| 712 |
|
DO j=1-OLy,sNy+OLy |
| 713 |
|
DO i=1-OLx,sNx+OLx |
| 714 |
|
KPPhbl (i,j,bi,bj) = 1.0 |
| 715 |
|
KPPfrac(i,j,bi,bj) = 0.0 |
| 716 |
|
DO k = 1,Nr |
| 717 |
|
KPPghat (i,j,k,bi,bj) = 0.0 |
| 718 |
|
KPPviscAz (i,j,k,bi,bj) = viscAz |
| 719 |
|
KPPdiffKzT(i,j,k,bi,bj) = diffKzT |
| 720 |
|
KPPdiffKzS(i,j,k,bi,bj) = diffKzS |
| 721 |
|
ENDDO |
| 722 |
|
ENDDO |
| 723 |
|
ENDDO |
| 724 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 725 |
|
ENDIF |
| 726 |
|
|
| 727 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 728 |
|
CADJ STORE KPPghat (:,:,:,bi,bj) |
| 729 |
|
CADJ & , KPPviscAz (:,:,:,bi,bj) |
| 730 |
|
CADJ & , KPPdiffKzT(:,:,:,bi,bj) |
| 731 |
|
CADJ & , KPPdiffKzS(:,:,:,bi,bj) |
| 732 |
|
CADJ & , KPPfrac (:,: ,bi,bj) |
| 733 |
|
CADJ & = comlev1_bibj, key=ikey, byte=isbyte |
| 734 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 735 |
|
|
| 736 |
|
#endif /* ALLOW_KPP */ |
| 737 |
|
|
| 738 |
|
C-- Start of upward loop |
| 739 |
|
DO k = Nr, 1, -1 |
| 740 |
|
|
| 741 |
|
C-- km1 Points to level above k (=k-1) |
| 742 |
|
C-- kup Cycles through 1,2 to point to layer above |
| 743 |
|
C-- kDown Cycles through 2,1 to point to current layer |
| 744 |
|
|
| 745 |
|
km1 =max(1,k-1) |
| 746 |
|
kup =1+MOD(k+1,2) |
| 747 |
|
kDown=1+MOD(k,2) |
| 748 |
|
|
|
DO K = Nz, 1, -1 |
|
|
kM1 =max(1,k-1) ! Points to level above k (=k-1) |
|
|
kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above |
|
|
kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer |
|
| 749 |
iMin = 1-OLx+2 |
iMin = 1-OLx+2 |
| 750 |
iMax = sNx+OLx-1 |
iMax = sNx+OLx-1 |
| 751 |
jMin = 1-OLy+2 |
jMin = 1-OLy+2 |
| 752 |
jMax = sNy+OLy-1 |
jMax = sNy+OLy-1 |
| 753 |
|
|
| 754 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 755 |
|
kkey = (ikey-1)*(Nr-1+1) + (k-1) + 1 |
| 756 |
|
CADJ STORE rvel (:,:,kdown) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 757 |
|
CADJ STORE rTrans(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 758 |
|
CADJ STORE KappaRT(:,:,k) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 759 |
|
CADJ STORE KappaRS(:,:,k) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 760 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 761 |
|
|
| 762 |
C-- Get temporary terms used by tendency routines |
C-- Get temporary terms used by tendency routines |
| 763 |
CALL CALC_COMMON_FACTORS ( |
CALL CALC_COMMON_FACTORS ( |
| 764 |
I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, |
I bi,bj,iMin,iMax,jMin,jMax,k,km1,kup,kDown, |
| 765 |
O xA,yA,uTrans,vTrans,wTrans,maskC,maskUp, |
O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp, |
| 766 |
I myThid) |
I myThid) |
| 767 |
|
|
| 768 |
|
#ifdef ALLOW_OBCS |
| 769 |
|
IF (openBoundaries) THEN |
| 770 |
|
CALL APPLY_OBCS3( bi, bj, k, kup, rTrans, rVel, myThid ) |
| 771 |
|
ENDIF |
| 772 |
|
#endif |
| 773 |
|
|
| 774 |
|
#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL |
| 775 |
|
C-- Calculate the total vertical diffusivity |
| 776 |
|
CALL CALC_DIFFUSIVITY( |
| 777 |
|
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 778 |
|
I maskC,maskUp, |
| 779 |
|
O KappaRT,KappaRS,KappaRU,KappaRV, |
| 780 |
|
I myThid) |
| 781 |
|
#endif |
| 782 |
C-- Calculate accelerations in the momentum equations |
C-- Calculate accelerations in the momentum equations |
| 783 |
IF ( momStepping ) THEN |
IF ( momStepping ) THEN |
| 784 |
CALL CALC_MOM_RHS( |
CALL CALC_MOM_RHS( |
| 785 |
I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, |
I bi,bj,iMin,iMax,jMin,jMax,k,km1,kup,kDown, |
| 786 |
I xA,yA,uTrans,vTrans,wTrans,maskC, |
I xA,yA,uTrans,vTrans,rTrans,rVel,maskC, |
| 787 |
I pH, |
I phiHyd,KappaRU,KappaRV, |
| 788 |
U aTerm,xTerm,cTerm,mTerm,pTerm, |
U aTerm,xTerm,cTerm,mTerm,pTerm, |
| 789 |
U fZon, fMer, fVerU, fVerV, |
U fZon, fMer, fVerU, fVerV, |
| 790 |
I myThid) |
I myTime, myThid) |
| 791 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 792 |
|
#ifdef INCLUDE_CD_CODE |
| 793 |
|
ELSE |
| 794 |
|
DO j=1-OLy,sNy+OLy |
| 795 |
|
DO i=1-OLx,sNx+OLx |
| 796 |
|
guCD(i,j,k,bi,bj) = 0.0 |
| 797 |
|
gvCD(i,j,k,bi,bj) = 0.0 |
| 798 |
|
END DO |
| 799 |
|
END DO |
| 800 |
|
#endif |
| 801 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 802 |
ENDIF |
ENDIF |
|
|
|
| 803 |
C-- Calculate active tracer tendencies |
C-- Calculate active tracer tendencies |
| 804 |
IF ( tempStepping ) THEN |
IF ( tempStepping ) THEN |
| 805 |
CALL CALC_GT( |
CALL CALC_GT( |
| 806 |
I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, |
I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, |
| 807 |
I xA,yA,uTrans,vTrans,wTrans,maskUp, |
I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, |
| 808 |
I K13,K23,K33,KapGM, |
I KappaRT, |
| 809 |
U aTerm,xTerm,fZon,fMer,fVerT, |
U aTerm,xTerm,fZon,fMer,fVerT, |
| 810 |
I myThid) |
I myTime, myThid) |
| 811 |
ENDIF |
ENDIF |
| 812 |
Cdbg CALL CALC_GS( |
IF ( saltStepping ) THEN |
| 813 |
Cdbg I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, |
CALL CALC_GS( |
| 814 |
Cdbg I xA,yA,uTrans,vTrans,wTrans,maskUp, |
I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, |
| 815 |
Cdbg I K13,K23,K33,KapGM, |
I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, |
| 816 |
Cdbg U aTerm,xTerm,fZon,fMer,fVerS, |
I KappaRS, |
| 817 |
Cdbg I myThid) |
U aTerm,xTerm,fZon,fMer,fVerS, |
| 818 |
|
I myTime, myThid) |
| 819 |
|
ENDIF |
| 820 |
|
#ifdef ALLOW_OBCS |
| 821 |
|
C-- Calculate future values on open boundaries |
| 822 |
|
IF (openBoundaries) THEN |
| 823 |
|
Caja CALL CYCLE_OBCS( k, bi, bj, myThid ) |
| 824 |
|
CALL SET_OBCS( k, bi, bj, myTime+deltaTclock, myThid ) |
| 825 |
|
ENDIF |
| 826 |
|
#endif |
| 827 |
|
C-- Prediction step (step forward all model variables) |
| 828 |
|
CALL TIMESTEP( |
| 829 |
|
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 830 |
|
I myIter, myThid) |
| 831 |
|
#ifdef ALLOW_OBCS |
| 832 |
|
C-- Apply open boundary conditions |
| 833 |
|
IF (openBoundaries) THEN |
| 834 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 835 |
|
CADJ STORE gunm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 836 |
|
CADJ STORE gvnm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 837 |
|
CADJ STORE gwnm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 838 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 839 |
|
|
| 840 |
|
CALL APPLY_OBCS2( bi, bj, k, myThid ) |
| 841 |
|
END IF |
| 842 |
|
#endif |
| 843 |
|
C-- Freeze water |
| 844 |
|
IF (allowFreezing) THEN |
| 845 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 846 |
|
CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte |
| 847 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 848 |
|
CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid ) |
| 849 |
|
END IF |
| 850 |
|
|
| 851 |
|
#ifdef DIVG_IN_DYNAMICS |
| 852 |
|
C-- Diagnose barotropic divergence of predicted fields |
| 853 |
|
CALL CALC_DIV_GHAT( |
| 854 |
|
I bi,bj,iMin,iMax,jMin,jMax,k, |
| 855 |
|
I xA,yA, |
| 856 |
|
I myThid) |
| 857 |
|
#endif /* DIVG_IN_DYNAMICS */ |
| 858 |
|
|
| 859 |
|
C-- Cumulative diagnostic calculations (ie. time-averaging) |
| 860 |
|
#ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE |
| 861 |
|
IF (taveFreq.GT.0.) THEN |
| 862 |
|
CALL DO_TIME_AVERAGES( |
| 863 |
|
I myTime, myIter, bi, bj, k, kup, kDown, |
| 864 |
|
I rVel, ConvectCount, |
| 865 |
|
I myThid ) |
| 866 |
|
ENDIF |
| 867 |
|
#endif |
| 868 |
|
|
| 869 |
|
|
| 870 |
|
C-- k loop |
| 871 |
ENDDO |
ENDDO |
| 872 |
|
|
| 873 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 874 |
|
maximpl = 6 |
| 875 |
|
iikey = (ikey-1)*maximpl |
| 876 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 877 |
|
|
| 878 |
|
C-- Implicit diffusion |
| 879 |
|
IF (implicitDiffusion) THEN |
| 880 |
|
|
| 881 |
|
IF (tempStepping) THEN |
| 882 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 883 |
|
idkey = iikey + 1 |
| 884 |
|
CADJ STORE gTNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 885 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 886 |
|
CALL IMPLDIFF( |
| 887 |
|
I bi, bj, iMin, iMax, jMin, jMax, |
| 888 |
|
I deltaTtracer, KappaRT,recip_HFacC, |
| 889 |
|
U gTNm1, |
| 890 |
|
I myThid ) |
| 891 |
|
END IF |
| 892 |
|
|
| 893 |
|
IF (saltStepping) THEN |
| 894 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 895 |
|
idkey = iikey + 2 |
| 896 |
|
CADJ STORE gSNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 897 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 898 |
|
CALL IMPLDIFF( |
| 899 |
|
I bi, bj, iMin, iMax, jMin, jMax, |
| 900 |
|
I deltaTtracer, KappaRS,recip_HFacC, |
| 901 |
|
U gSNm1, |
| 902 |
|
I myThid ) |
| 903 |
|
END IF |
| 904 |
|
|
| 905 |
|
C-- implicitDiffusion |
| 906 |
|
ENDIF |
| 907 |
|
|
| 908 |
|
C-- Implicit viscosity |
| 909 |
|
IF (implicitViscosity) THEN |
| 910 |
|
|
| 911 |
|
IF (momStepping) THEN |
| 912 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 913 |
|
idkey = iikey + 3 |
| 914 |
|
CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 915 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 916 |
|
CALL IMPLDIFF( |
| 917 |
|
I bi, bj, iMin, iMax, jMin, jMax, |
| 918 |
|
I deltaTmom, KappaRU,recip_HFacW, |
| 919 |
|
U gUNm1, |
| 920 |
|
I myThid ) |
| 921 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 922 |
|
idkey = iikey + 4 |
| 923 |
|
CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 924 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 925 |
|
CALL IMPLDIFF( |
| 926 |
|
I bi, bj, iMin, iMax, jMin, jMax, |
| 927 |
|
I deltaTmom, KappaRV,recip_HFacS, |
| 928 |
|
U gVNm1, |
| 929 |
|
I myThid ) |
| 930 |
|
|
| 931 |
|
#ifdef INCLUDE_CD_CODE |
| 932 |
|
|
| 933 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 934 |
|
idkey = iikey + 5 |
| 935 |
|
CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 936 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 937 |
|
CALL IMPLDIFF( |
| 938 |
|
I bi, bj, iMin, iMax, jMin, jMax, |
| 939 |
|
I deltaTmom, KappaRU,recip_HFacW, |
| 940 |
|
U vVelD, |
| 941 |
|
I myThid ) |
| 942 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 943 |
|
idkey = iikey + 6 |
| 944 |
|
CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte |
| 945 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 946 |
|
CALL IMPLDIFF( |
| 947 |
|
I bi, bj, iMin, iMax, jMin, jMax, |
| 948 |
|
I deltaTmom, KappaRV,recip_HFacS, |
| 949 |
|
U uVelD, |
| 950 |
|
I myThid ) |
| 951 |
|
|
| 952 |
|
#endif |
| 953 |
|
|
| 954 |
|
C-- momStepping |
| 955 |
|
ENDIF |
| 956 |
|
|
| 957 |
|
C-- implicitViscosity |
| 958 |
|
ENDIF |
| 959 |
|
|
| 960 |
ENDDO |
ENDDO |
| 961 |
ENDDO |
ENDDO |
| 962 |
|
|
|
!dbg write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x) |
|
|
!dbg write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)), |
|
|
!dbg & maxval(uVel(1:sNx,1:sNy,:,:,:)) |
|
|
!dbg write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)), |
|
|
!dbg & maxval(vVel(1:sNx,1:sNy,:,:,:)) |
|
|
!dbg write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)), |
|
|
!dbg & maxval(K13(1:sNx,1:sNy,:)) |
|
|
!dbg write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)), |
|
|
!dbg & maxval(K23(1:sNx,1:sNy,:)) |
|
|
!dbg write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)), |
|
|
!dbg & maxval(K33(1:sNx,1:sNy,:)) |
|
|
!dbg write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)), |
|
|
!dbg & maxval(gT(1:sNx,1:sNy,:,:,:)) |
|
|
!dbg write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)), |
|
|
!dbg & maxval(Theta(1:sNx,1:sNy,:,:,:)) |
|
|
!dbg write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)), |
|
|
!dbg & maxval(pH/(Gravity*Rhonil)) |
|
|
|
|
| 963 |
RETURN |
RETURN |
| 964 |
END |
END |