/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.49 by heimbach, Fri Jun 9 02:45:04 2000 UTC revision 1.135 by baylor, Tue Jun 20 20:57:37 2006 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4    #include "PACKAGES_CONFIG.h"
5  #include "CPP_OPTIONS.h"  #include "CPP_OPTIONS.h"
6    #ifdef ALLOW_OBCS
7    # include "OBCS_OPTIONS.h"
8    #endif
9    
10        SUBROUTINE DYNAMICS(myTime, myIter, myThid)  #undef DYNAMICS_GUGV_EXCH_CHECK
 C     /==========================================================\  
 C     | SUBROUTINE DYNAMICS                                      |  
 C     | o Controlling routine for the explicit part of the model |  
 C     |   dynamics.                                              |  
 C     |==========================================================|  
 C     | This routine evaluates the "dynamics" terms for each     |  
 C     | block of ocean in turn. Because the blocks of ocean have |  
 C     | overlap regions they are independent of one another.     |  
 C     | If terms involving lateral integrals are needed in this  |  
 C     | routine care will be needed. Similarly finite-difference |  
 C     | operations with stencils wider than the overlap region   |  
 C     | require special consideration.                           |  
 C     | Notes                                                    |  
 C     | =====                                                    |  
 C     | C*P* comments indicating place holders for which code is |  
 C     |      presently being developed.                          |  
 C     \==========================================================/  
 c  
 c     changed: Patrick Heimbach heimbach@mit.edu 6-Jun-2000  
 c              - computation of ikey wrong for nTx,nTy > 1  
 c                and/or nsx,nsy > 1: act1 and act2 were  
 c                mixed up.  
11    
12    CBOP
13    C     !ROUTINE: DYNAMICS
14    C     !INTERFACE:
15          SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16    C     !DESCRIPTION: \bv
17    C     *==========================================================*
18    C     | SUBROUTINE DYNAMICS                                      
19    C     | o Controlling routine for the explicit part of the model  
20    C     |   dynamics.                                              
21    C     *==========================================================*
22    C     | This routine evaluates the "dynamics" terms for each      
23    C     | block of ocean in turn. Because the blocks of ocean have  
24    C     | overlap regions they are independent of one another.      
25    C     | If terms involving lateral integrals are needed in this  
26    C     | routine care will be needed. Similarly finite-difference  
27    C     | operations with stencils wider than the overlap region    
28    C     | require special consideration.                            
29    C     | The algorithm...
30    C     |
31    C     | "Correction Step"
32    C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76        IMPLICIT NONE        IMPLICIT NONE
   
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
80  #include "PARAMS.h"  #include "PARAMS.h"
81  #include "DYNVARS.h"  #include "DYNVARS.h"
82  #include "GRID.h"  #ifdef ALLOW_CD_CODE
83    #include "CD_CODE_VARS.h"
 #ifdef ALLOW_KPP  
 #include "KPPMIX.h"  
84  #endif  #endif
85    #include "GRID.h"
86  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
87  #include "tamc.h"  # include "tamc.h"
88  #include "tamc_keys.h"  # include "tamc_keys.h"
89  #endif  # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #  include "OBCS.h"
100    #  ifdef ALLOW_PTRACERS
101    #   include "OBCS_PTRACERS.h"
102    #  endif
103    # endif
104    # ifdef ALLOW_MOM_FLUXFORM
105    #  include "MOM_FLUXFORM.h"
106    # endif
107    #endif /* ALLOW_AUTODIFF_TAMC */
108    
109    C     !CALLING SEQUENCE:
110    C     DYNAMICS()
111    C      |
112    C      |-- CALC_EP_FORCING
113    C      |
114    C      |-- CALC_GRAD_PHI_SURF
115    C      |
116    C      |-- CALC_VISCOSITY
117    C      |
118    C      |-- CALC_PHI_HYD  
119    C      |
120    C      |-- MOM_FLUXFORM  
121    C      |
122    C      |-- MOM_VECINV    
123    C      |
124    C      |-- TIMESTEP      
125    C      |
126    C      |-- OBCS_APPLY_UV
127    C      |
128    C      |-- MOM_U_IMPLICIT_R      
129    C      |-- MOM_V_IMPLICIT_R      
130    C      |
131    C      |-- IMPLDIFF      
132    C      |
133    C      |-- OBCS_APPLY_UV
134    C      |
135    C      |-- CALC_GW
136    C      |
137    C      |-- DIAGNOSTICS_FILL
138    C      |-- DEBUG_STATS_RL
139    
140    C     !INPUT/OUTPUT PARAMETERS:
141  C     == Routine arguments ==  C     == Routine arguments ==
142  C     myTime - Current time in simulation  C     myTime - Current time in simulation
143  C     myIter - Current iteration number in simulation  C     myIter - Current iteration number in simulation
# Line 53  C     myThid - Thread number for this in Line 146  C     myThid - Thread number for this in
146        INTEGER myIter        INTEGER myIter
147        INTEGER myThid        INTEGER myThid
148    
149    C     !LOCAL VARIABLES:
150  C     == Local variables  C     == Local variables
151  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
152  C     uTrans, vTrans, rTrans - Per block temporaries holding flow  C                                    is "pipelined" in the vertical
153  C                              transport  C                                    so we need an fVer for each
154  C     rVel                     o uTrans: Zonal transport  C                                    variable.
155  C                              o vTrans: Meridional transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
156  C                              o rTrans: Vertical transport  C                   In z coords phiHyd is the hydrostatic potential
157  C                              o rVel:   Vertical velocity at upper and  C                      (=pressure/rho0) anomaly
158  C                                        lower cell faces.  C                   In p coords phiHyd is the geopotential height anomaly.
159  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
160  C                              o maskUp: land/water mask for W points  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
161  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
162  C     mTerm, pTerm,            tendency equations.  C     phiSurfY             or geopotential (atmos) in X and Y direction
163  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     guDissip   :: dissipation tendency (all explicit terms), u component
164  C                              o xTerm: Mixing term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
165  C                              o cTerm: Coriolis term  C     KappaRU:: vertical viscosity
166  C                              o mTerm: Metric term  C     KappaRV:: vertical viscosity
 C                              o pTerm: Pressure term  
 C                              o fZon: Zonal flux term  
 C                              o fMer: Meridional flux term  
 C                              o fVer: Vertical flux term - note fVer  
 C                                      is "pipelined" in the vertical  
 C                                      so we need an fVer for each  
 C                                      variable.  
 C     rhoK, rhoKM1   - Density at current level, level above and level  
 C                      below.  
 C     rhoKP1                                                                    
 C     buoyK, buoyKM1 - Buoyancy at current level and level above.  
 C     phiHyd         - Hydrostatic part of the potential phiHydi.  
 C                      In z coords phiHydiHyd is the hydrostatic  
 C                      pressure anomaly  
 C                      In p coords phiHydiHyd is the geopotential  
 C                      surface height  
 C                      anomaly.  
 C     etaSurfX,      - Holds surface elevation gradient in X and Y.  
 C     etaSurfY  
 C     K13, K23, K33  - Non-zero elements of small-angle approximation  
 C                      diffusion tensor.  
 C     KapGM          - Spatially varying Visbeck et. al mixing coeff.  
 C     KappaRT,       - Total diffusion in vertical for T and S.  
 C     KappaRS          (background + spatially varying, isopycnal term).  
167  C     iMin, iMax     - Ranges and sub-block indices on which calculations  C     iMin, iMax     - Ranges and sub-block indices on which calculations
168  C     jMin, jMax       are applied.  C     jMin, jMax       are applied.
169  C     bi, bj  C     bi, bj
170  C     k, kUp,        - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
171  C     kDown, kM1       are switched with layer to be the appropriate  C     kDown, km1       are switched with layer to be the appropriate
172  C                      index into fVerTerm.  C                      index into fVerTerm.
       _RS xA      (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RS yA      (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL uTrans  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL vTrans  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rTrans  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rVel    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RS maskC   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RS maskUp  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL aTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL xTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL cTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL mTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
173        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
174        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
175        _RL phiHyd  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
176        _RL rhokm1  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
177        _RL rhokp1  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
178        _RL rhok    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
179        _RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
180        _RL buoyK   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
181        _RL rhotmp  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182        _RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
       _RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL K13     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL K23     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL K33     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL KapGM   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)  
       _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)  
183        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
184        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
185    
 #ifdef INCLUDE_CONVECT_CALL  
       _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
 #endif  
   
186        INTEGER iMin, iMax        INTEGER iMin, iMax
187        INTEGER jMin, jMax        INTEGER jMin, jMax
188        INTEGER bi, bj        INTEGER bi, bj
189        INTEGER i, j        INTEGER i, j
190        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
       LOGICAL BOTTOM_LAYER  
   
 #ifdef ALLOW_AUTODIFF_TAMC  
       INTEGER    isbyte  
       PARAMETER( isbyte = 4 )  
191    
192        INTEGER act1, act2, act3, act4  #ifdef ALLOW_DIAGNOSTICS
193        INTEGER max1, max2, max3        _RL tmpFac
194        INTEGER ikact, iikey,kkey  #endif /* ALLOW_DIAGNOSTICS */
       INTEGER maximpl  
 #endif  
195    
196    
197  C---    The algorithm...  C---    The algorithm...
198  C  C
199  C       "Correction Step"  C       "Correction Step"
# Line 171  C Line 207  C
207  C       "Calculation of Gs"  C       "Calculation of Gs"
208  C       ===================  C       ===================
209  C       This is where all the accelerations and tendencies (ie.  C       This is where all the accelerations and tendencies (ie.
210  C       phiHydysics, parameterizations etc...) are calculated  C       physics, parameterizations etc...) are calculated
 C         rVel = sum_r ( div. u[n] )  
211  C         rho = rho ( theta[n], salt[n] )  C         rho = rho ( theta[n], salt[n] )
212  C         b   = b(rho, theta)  C         b   = b(rho, theta)
213  C         K31 = K31 ( rho )  C         K31 = K31 ( rho )
214  C         Gu[n] = Gu( u[n], v[n], rVel, b, ... )  C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
215  C         Gv[n] = Gv( u[n], v[n], rVel, b, ... )  C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
216  C         Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... )  C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
217  C         Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... )  C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
218  C  C
219  C       "Time-stepping" or "Prediction"  C       "Time-stepping" or "Prediction"
220  C       ================================  C       ================================
# Line 202  C         salt* = salt[n] + dt x ( 3/2 G Line 237  C         salt* = salt[n] + dt x ( 3/2 G
237  C         (1 + dt * K * d_zz) theta[n] = theta*  C         (1 + dt * K * d_zz) theta[n] = theta*
238  C         (1 + dt * K * d_zz) salt[n] = salt*  C         (1 + dt * K * d_zz) salt[n] = salt*
239  C---  C---
240    CEOP
241    
242  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_DEBUG
243  C--   dummy statement to end declaration part        IF ( debugLevel .GE. debLevB )
244        ikey = 1       &   CALL DEBUG_ENTER( 'DYNAMICS', myThid )
245  #endif  #endif
246    
247  C--   Set up work arrays with valid (i.e. not NaN) values  C-- Call to routine for calculation of
248  C     These inital values do not alter the numerical results. They  C   Eliassen-Palm-flux-forced U-tendency,
249  C     just ensure that all memory references are to valid floating  C   if desired:
250  C     point numbers. This prevents spurious hardware signals due to  #ifdef INCLUDE_EP_FORCING_CODE
251  C     uninitialised but inert locations.        CALL CALC_EP_FORCING(myThid)
252        DO j=1-OLy,sNy+OLy  #endif
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0. _d 0  
         yA(i,j)      = 0. _d 0  
         uTrans(i,j)  = 0. _d 0  
         vTrans(i,j)  = 0. _d 0  
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,Nr  
          phiHyd (i,j,k)  = 0. _d 0  
          K13(i,j,k)  = 0. _d 0  
          K23(i,j,k)  = 0. _d 0  
          K33(i,j,k)  = 0. _d 0  
          KappaRU(i,j,k) = 0. _d 0  
          KappaRV(i,j,k) = 0. _d 0  
         ENDDO  
         rhoKM1 (i,j) = 0. _d 0  
         rhok   (i,j) = 0. _d 0  
         rhoKP1 (i,j) = 0. _d 0  
         rhoTMP (i,j) = 0. _d 0  
         buoyKM1(i,j) = 0. _d 0  
         buoyK  (i,j) = 0. _d 0  
         maskC  (i,j) = 0. _d 0  
        ENDDO  
       ENDDO  
   
253    
254  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
255  C--   HPF directive to help TAMC  C--   HPF directive to help TAMC
256  !HPF$ INDEPENDENT  CHPF$ INDEPENDENT
257  #endif  #endif /* ALLOW_AUTODIFF_TAMC */
258    
259        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
260    
261  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
262  C--    HPF directive to help TAMC  C--    HPF directive to help TAMC
263  !HPF$  INDEPENDENT, NEW (rTrans,rVel,fVerT,fVerS,fVerU,fVerV  CHPF$  INDEPENDENT, NEW (fVerU,fVerV
264  !HPF$&                  ,phiHyd,K13,K23,K33,KapGM  CHPF$&                  ,phiHydF
265  !HPF$&                  ,utrans,vtrans,maskc,xA,yA  CHPF$&                  ,KappaRU,KappaRV
266  !HPF$&                  ,KappaRT,KappaRS,KappaRU,KappaRV  CHPF$&                  )
267  !HPF$&                  )  #endif /* ALLOW_AUTODIFF_TAMC */
 #endif  
268    
269         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
270    
271  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
272            act1 = bi - myBxLo(myThid)            act1 = bi - myBxLo(myThid)
273            max1 = myBxHi(myThid) - myBxLo(myThid) + 1            max1 = myBxHi(myThid) - myBxLo(myThid) + 1
   
274            act2 = bj - myByLo(myThid)            act2 = bj - myByLo(myThid)
275            max2 = myByHi(myThid) - myByLo(myThid) + 1            max2 = myByHi(myThid) - myByLo(myThid) + 1
   
276            act3 = myThid - 1            act3 = myThid - 1
277            max3 = nTx*nTy            max3 = nTx*nTy
   
278            act4 = ikey_dynamics - 1            act4 = ikey_dynamics - 1
279              idynkey = (act1 + 1) + act2*max1
           ikey = (act1 + 1) + act2*max1  
280       &                      + act3*max1*max2       &                      + act3*max1*max2
281       &                      + act4*max1*max2*max3       &                      + act4*max1*max2*max3
282  #endif  #endif /* ALLOW_AUTODIFF_TAMC */
283    
284  C--     Set up work arrays that need valid initial values  C--   Set up work arrays with valid (i.e. not NaN) values
285          DO j=1-OLy,sNy+OLy  C     These inital values do not alter the numerical results. They
286           DO i=1-OLx,sNx+OLx  C     just ensure that all memory references are to valid floating
287            rTrans(i,j)   = 0. _d 0  C     point numbers. This prevents spurious hardware signals due to
288            rVel  (i,j,1) = 0. _d 0  C     uninitialised but inert locations.
           rVel  (i,j,2) = 0. _d 0  
           fVerT (i,j,1) = 0. _d 0  
           fVerT (i,j,2) = 0. _d 0  
           fVerS (i,j,1) = 0. _d 0  
           fVerS (i,j,2) = 0. _d 0  
           fVerU (i,j,1) = 0. _d 0  
           fVerU (i,j,2) = 0. _d 0  
           fVerV (i,j,1) = 0. _d 0  
           fVerV (i,j,2) = 0. _d 0  
           phiHyd(i,j,1) = 0. _d 0  
           K13   (i,j,1) = 0. _d 0  
           K23   (i,j,1) = 0. _d 0  
           K33   (i,j,1) = 0. _d 0  
           KapGM (i,j)   = GMkbackground  
          ENDDO  
         ENDDO  
289    
290          DO k=1,Nr          DO k=1,Nr
291           DO j=1-OLy,sNy+OLy           DO j=1-OLy,sNy+OLy
292            DO i=1-OLx,sNx+OLx            DO i=1-OLx,sNx+OLx
293  #ifdef INCLUDE_CONVECT_CALL             KappaRU(i,j,k) = 0. _d 0
294             ConvectCount(i,j,k) = 0.             KappaRV(i,j,k) = 0. _d 0
295    #ifdef ALLOW_AUTODIFF_TAMC
296    cph(
297    c--   need some re-initialisation here to break dependencies
298    cph)
299               gU(i,j,k,bi,bj) = 0. _d 0
300               gV(i,j,k,bi,bj) = 0. _d 0
301  #endif  #endif
            KappaRT(i,j,k) = 0. _d 0  
            KappaRS(i,j,k) = 0. _d 0  
302            ENDDO            ENDDO
303           ENDDO           ENDDO
304          ENDDO          ENDDO
305            DO j=1-OLy,sNy+OLy
306             DO i=1-OLx,sNx+OLx
307              fVerU  (i,j,1) = 0. _d 0
308              fVerU  (i,j,2) = 0. _d 0
309              fVerV  (i,j,1) = 0. _d 0
310              fVerV  (i,j,2) = 0. _d 0
311              phiHydF (i,j)  = 0. _d 0
312              phiHydC (i,j)  = 0. _d 0
313              dPhiHydX(i,j)  = 0. _d 0
314              dPhiHydY(i,j)  = 0. _d 0
315              phiSurfX(i,j)  = 0. _d 0
316              phiSurfY(i,j)  = 0. _d 0
317              guDissip(i,j)  = 0. _d 0
318              gvDissip(i,j)  = 0. _d 0
319    #ifdef ALLOW_AUTODIFF_TAMC
320    cph(
321    c--   need some re-initialisation here to break dependencies
322    cph)
323    # ifdef NONLIN_FRSURF
324    #  ifndef DISABLE_RSTAR_CODE
325              dWtransC(i,j,bi,bj)  = 0. _d 0
326              dWtransU(i,j,bi,bj)  = 0. _d 0
327              dWtransV(i,j,bi,bj)  = 0. _d 0
328    #  endif
329    # endif /* NONLIN_FRSURF */
330    #endif /* ALLOW_AUTODIFF_TAMC */
331             ENDDO
332            ENDDO
333    
334          iMin = 1-OLx+1  C--     Start computation of dynamics
335          iMax = sNx+OLx          iMin = 0
336          jMin = 1-OLy+1          iMax = sNx+1
337          jMax = sNy+OLy          jMin = 0
338            jMax = sNy+1
339    
340          K = 1  #ifdef ALLOW_AUTODIFF_TAMC
341          BOTTOM_LAYER = K .EQ. Nr  CADJ STORE wvel (:,:,:,bi,bj) =
342    CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
343  #ifdef DO_PIPELINED_CORRECTION_STEP  #endif /* ALLOW_AUTODIFF_TAMC */
344  C--     Calculate gradient of surface pressure  
345          CALL CALC_GRAD_ETA_SURF(  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
346       I       bi,bj,iMin,iMax,jMin,jMax,  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
347       O       etaSurfX,etaSurfY,          IF (implicSurfPress.NE.1.) THEN
348       I       myThid)            CALL CALC_GRAD_PHI_SURF(
349  C--     Update fields in top level according to tendency terms       I         bi,bj,iMin,iMax,jMin,jMax,
350          CALL CORRECTION_STEP(       I         etaN,
351       I       bi,bj,iMin,iMax,jMin,jMax,K,       O         phiSurfX,phiSurfY,
352       I       etaSurfX,etaSurfY,myTime,myThid)       I         myThid )                        
   
 #ifdef ALLOW_OBCS  
         IF (openBoundaries) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE uvel (:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE vvel (:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE theta(:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE salt(:,:,k,bi,bj)   = comlev1_2d, key = ikey, byte = isbyte  
 #endif  
            CALL APPLY_OBCS1( bi, bj, K, myThid )  
         END IF  
 #endif  
   
         IF ( .NOT. BOTTOM_LAYER ) THEN  
 C--      Update fields in layer below according to tendency terms  
          CALL CORRECTION_STEP(  
      I        bi,bj,iMin,iMax,jMin,jMax,K+1,  
      I        etaSurfX,etaSurfY,myTime,myThid)  
 #ifdef ALLOW_OBCS  
          IF (openBoundaries) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE uvel (:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE vvel (:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE theta(:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE salt(:,:,k,bi,bj)   = comlev1_2d, key = ikey, byte = isbyte  
 #endif  
             CALL APPLY_OBCS1( bi, bj, K+1, myThid )  
          END IF  
 #endif  
         ENDIF  
 #endif  
 C--     Density of 1st level (below W(1)) reference to level 1  
 #ifdef  INCLUDE_FIND_RHO_CALL  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE theta(:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE salt (:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 #endif  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,  
      O     rhoKm1,  
      I     myThid )  
 #endif  
   
         IF (       (.NOT. BOTTOM_LAYER)  
 #ifdef ALLOW_KPP  
      &       .AND. (.NOT.usingKPPmixing) ! CONVECT not needed with KPP mixing  
 #endif  
      &     ) THEN  
 C--      Check static stability with layer below  
 C--      and mix as needed.  
 #ifdef  INCLUDE_FIND_RHO_CALL  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE theta(:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE salt (:,:,k,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 #endif  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,  
      O      rhoKp1,  
      I      myThid )  
 #endif  
   
 #ifdef  INCLUDE_CONVECT_CALL  
   
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE rhoKm1(:,:)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE rhoKp1(:,:)  = comlev1_2d, key = ikey, byte = isbyte  
 #endif  
          CALL CONVECT(  
      I       bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,  
      U       ConvectCount,  
      I       myTime,myIter,myThid)  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE theta(:,:,k+1,bi,bj),theta(:,:,k,bi,bj)  
 CADJ &     = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE salt (:,:,k+1,bi,bj),salt (:,:,k,bi,bj)  
 CADJ &     = comlev1_2d, key = ikey, byte = isbyte  
 #endif  
   
 #endif  
   
 C--      Implicit Vertical Diffusion for Convection  
          IF (ivdc_kappa.NE.0.) CALL CALC_IVDC(  
      I       bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,  
      U       ConvectCount, KappaRT, KappaRS,  
      I       myTime,myIter,myThid)  
 CRG: do we need do store STORE KappaRT, KappaRS ?  
   
 C--      Recompute density after mixing  
 #ifdef  INCLUDE_FIND_RHO_CALL  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,  
      O      rhoKm1,  
      I      myThid )  
 #endif  
353          ENDIF          ENDIF
 C--     Calculate buoyancy  
         CALL CALC_BUOYANCY(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,  
      O      buoyKm1,  
      I      myThid )  
 C--     Integrate hydrostatic balance for phiHyd with BC of  
 C--     phiHyd(z=0)=0  
         CALL CALC_PHI_HYD(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1,  
      U      phiHyd,  
      I      myThid )  
   
 C----------------------------------------------  
 C--     start of downward loop  
 C----------------------------------------------  
         DO K=2,Nr  
   
 #ifdef ALLOW_AUTODIFF_TAMC  
          kkey = ikact*(Nr-2+1) + (k-2) + 1  
 #endif  
   
          BOTTOM_LAYER = K .EQ. Nr  
   
 #ifdef DO_PIPELINED_CORRECTION_STEP  
          IF ( .NOT. BOTTOM_LAYER ) THEN  
 C--       Update fields in layer below according to tendency terms  
           CALL CORRECTION_STEP(  
      I         bi,bj,iMin,iMax,jMin,jMax,K+1,  
      I         etaSurfX,etaSurfY,myTime,myThid)  
 #ifdef ALLOW_OBCS  
           IF (openBoundaries) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE uvel (:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE vvel (:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE theta(:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE salt(:,:,k,bi,bj)   = comlev1_2d, key = ikey, byte = isbyte  
 #endif  
              CALL APPLY_OBCS1( bi, bj, K+1, myThid )  
           END IF  
 #endif  
          ENDIF  
 #endif  
354    
 C--      Density of K level (below W(K)) reference to K level  
 #ifdef  INCLUDE_FIND_RHO_CALL  
355  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
356  CADJ STORE theta(:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
357  CADJ STORE salt (:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
 #endif  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax,  K, K, eosType,  
      O      rhoK,  
      I      myThid )  
 #endif  
          IF (       (.NOT. BOTTOM_LAYER)  
358  #ifdef ALLOW_KPP  #ifdef ALLOW_KPP
359       &       .AND. (.NOT.usingKPPmixing) ! CONVECT not needed with KPP mixing  CADJ STORE KPPviscAz (:,:,:,bi,bj)
360  #endif  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
361       &      ) THEN  #endif /* ALLOW_KPP */
362  C--       Check static stability with layer below and mix as needed.  #endif /* ALLOW_AUTODIFF_TAMC */
 C--       Density of K+1 level (below W(K+1)) reference to K level.  
 #ifdef  INCLUDE_FIND_RHO_CALL  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE theta(:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE salt (:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  
 #endif  
           CALL FIND_RHO(  
      I       bi, bj, iMin, iMax, jMin, jMax,  K+1, K, eosType,  
      O       rhoKp1,  
      I       myThid )  
 #endif  
   
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE rhok  (:,:)   = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE rhoKm1(:,:)   = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE rhoKp1(:,:)   = comlev1_3d, key = kkey, byte = isbyte  
 #endif  
363    
364  #ifdef  INCLUDE_CONVECT_CALL  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
365            CALL CONVECT(  C--      Calculate the total vertical diffusivity
366       I        bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1,          DO k=1,Nr
367       U        ConvectCount,           CALL CALC_VISCOSITY(
368       I        myTime,myIter,myThid)       I        bi,bj,iMin,iMax,jMin,jMax,k,
369  #ifdef ALLOW_AUTODIFF_TAMC       O        KappaRU,KappaRV,
370  CADJ STORE theta(:,:,k+1,bi,bj),theta(:,:,k,bi,bj)       I        myThid)
371  CADJ &     = comlev1_3d, key = kkey, byte = isbyte         ENDDO
 CADJ STORE salt (:,:,k+1,bi,bj),salt (:,:,k,bi,bj)  
 CADJ &     = comlev1_3d, key = kkey, byte = isbyte  
 #endif  
 #endif  
   
 C--      Implicit Vertical Diffusion for Convection  
          IF (ivdc_kappa.NE.0.) THEN  
             CALL CALC_IVDC(  
      I       bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,  
      U       ConvectCount, KappaRT, KappaRS,  
      I       myTime,myIter,myThid)  
 CRG: do we need do store STORE KappaRT, KappaRS ?  
          END IF  
   
 C--       Recompute density after mixing  
 #ifdef  INCLUDE_FIND_RHO_CALL  
           CALL FIND_RHO(  
      I       bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,  
      O       rhoK,  
      I       myThid )  
 #endif  
          ENDIF  
 C--      Calculate buoyancy  
          CALL CALC_BUOYANCY(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,rhoK,  
      O       buoyK,  
      I       myThid )  
 C--      Integrate hydrostatic balance for phiHyd with BC of  
 C--      phiHyd(z=0)=0  
          CALL CALC_PHI_HYD(  
      I        bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK,  
      U        phiHyd,  
      I        myThid )  
 C--      Calculate iso-neutral slopes for the GM/Redi parameterisation  
 #ifdef  INCLUDE_FIND_RHO_CALL  
          CALL FIND_RHO(  
      I        bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,  
      O        rhoTmp,  
      I        myThid )  
 #endif  
   
 #ifdef  INCLUDE_CALC_ISOSLOPES_CALL  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE rhoTmp(:,:)  = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE rhok  (:,:)  = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE rhoKm1(:,:)  = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE kapgm (:,:)  = comlev1_3d, key = kkey, byte = isbyte  
 #endif  
          CALL CALC_ISOSLOPES(  
      I        bi, bj, iMin, iMax, jMin, jMax, K,  
      I        rhoKm1, rhoK, rhotmp,  
      O        K13, K23, K33, KapGM,  
      I        myThid )  
 #endif  
   
          DO J=jMin,jMax  
           DO I=iMin,iMax  
 #ifdef  INCLUDE_FIND_RHO_CALL  
            rhoKm1 (I,J) = rhoK(I,J)  
372  #endif  #endif
            buoyKm1(I,J) = buoyK(I,J)  
           ENDDO  
          ENDDO  
         ENDDO  
 C--     end of k loop  
373    
374  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
375  CADJ STORE theta(:,:,:,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  CADJ STORE KappaRU(:,:,:)
376  CADJ STORE salt (:,:,:,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
377  CADJ STORE uvel (:,:,:,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  CADJ STORE KappaRV(:,:,:)
378  CADJ STORE vvel (:,:,:,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
379  #endif  #endif /* ALLOW_AUTODIFF_TAMC */
380    
381  #ifdef ALLOW_KPP  C--     Start of dynamics loop
382  C----------------------------------------------          DO k=1,Nr
 C--     Compute KPP mixing coefficients  
 C----------------------------------------------  
         IF (usingKPPmixing) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE fu  (:,:  ,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 CADJ STORE fv  (:,:  ,bi,bj)  = comlev1_2d, key = ikey, byte = isbyte  
 #endif  
          CALL TIMER_START('KVMIX (FIND KPP COEFFICIENTS) [DYNAMICS]'  
      I          , myThid)  
          CALL KVMIX(  
      I               bi, bj, myTime, myThid )  
          CALL TIMER_STOP ('KVMIX (FIND KPP COEFFICIENTS) [DYNAMICS]'  
      I        , myThid)  
         ENDIF  
 #endif  
383    
384  C----------------------------------------------  C--       km1    Points to level above k (=k-1)
385  C--     start of upward loop  C--       kup    Cycles through 1,2 to point to layer above
386  C----------------------------------------------  C--       kDown  Cycles through 2,1 to point to current layer
387          DO K = Nr, 1, -1  
388              km1  = MAX(1,k-1)
389           kM1  =max(1,k-1)   ! Points to level above k (=k-1)            kp1  = MIN(k+1,Nr)
390           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above            kup  = 1+MOD(k+1,2)
391           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer            kDown= 1+MOD(k,2)
   
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
392    
393  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
394           kkey = ikact*(Nr-1+1) + (k-1) + 1           kkey = (idynkey-1)*Nr + k
395  #endif  c
396    CADJ STORE totphihyd (:,:,k,bi,bj)
397  #ifdef ALLOW_AUTODIFF_TAMC  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
398  CADJ STORE rvel  (:,:,kDown)  = comlev1_3d, key = kkey, byte = isbyte  CADJ STORE theta (:,:,k,bi,bj)
399  CADJ STORE rTrans(:,:)        = comlev1_3d, key = kkey, byte = isbyte  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
400  CADJ STORE KappaRT(:,:,:)     = comlev1_3d, key = kkey, byte = isbyte  CADJ STORE salt  (:,:,k,bi,bj)
401  CADJ STORE KappaRS(:,:,:)     = comlev1_3d, key = kkey, byte = isbyte  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
402  #endif  CADJ STORE gt(:,:,k,bi,bj)
403    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
404  C--      Get temporary terms used by tendency routines  CADJ STORE gs(:,:,k,bi,bj)
405           CALL CALC_COMMON_FACTORS (  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
406       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  # ifdef NONLIN_FRSURF
407       O        xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp,  cph-test
408       I        myThid)  CADJ STORE  phiHydC (:,:)
409    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
410  #ifdef ALLOW_OBCS  CADJ STORE  phiHydF (:,:)
411          IF (openBoundaries) THEN  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
412           CALL APPLY_OBCS3( bi, bj, K, Kup, rTrans, rVel, myThid )  CADJ STORE  gudissip (:,:)
413          ENDIF  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
414  #endif  CADJ STORE  gvdissip (:,:)
415    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
416    CADJ STORE  fVerU (:,:,:)
417    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
418    CADJ STORE  fVerV (:,:,:)
419    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
420    CADJ STORE gu(:,:,k,bi,bj)
421    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
422    CADJ STORE gv(:,:,k,bi,bj)
423    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
424    CADJ STORE gunm1(:,:,k,bi,bj)
425    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
426    CADJ STORE gvnm1(:,:,k,bi,bj)
427    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
428    #  ifndef DISABLE_RSTAR_CODE
429    CADJ STORE dwtransc(:,:,bi,bj)
430    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
431    CADJ STORE dwtransu(:,:,bi,bj)
432    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
433    CADJ STORE dwtransv(:,:,bi,bj)
434    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
435    #  endif
436    #  ifdef ALLOW_CD_CODE
437    CADJ STORE unm1(:,:,k,bi,bj)
438    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
439    CADJ STORE vnm1(:,:,k,bi,bj)
440    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
441    CADJ STORE uVelD(:,:,k,bi,bj)
442    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
443    CADJ STORE vVelD(:,:,k,bi,bj)
444    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
445    #  endif
446    # endif
447    # ifdef ALLOW_DEPTH_CONTROL
448    CADJ STORE  fVerU (:,:,:)
449    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
450    CADJ STORE  fVerV (:,:,:)
451    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
452    # endif
453    #endif /* ALLOW_AUTODIFF_TAMC */
454    
455  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL  C--      Integrate hydrostatic balance for phiHyd with BC of
456  C--      Calculate the total vertical diffusivity  C        phiHyd(z=0)=0
457           CALL CALC_DIFFUSIVITY(           IF ( implicitIntGravWave ) THEN
458       I        bi,bj,iMin,iMax,jMin,jMax,K,             CALL CALC_PHI_HYD(
459       I        maskC,maskUp,KapGM,K33,       I        bi,bj,iMin,iMax,jMin,jMax,k,
460       O        KappaRT,KappaRS,KappaRU,KappaRV,       I        gT, gS,
461       I        myThid)       U        phiHydF,
462  #endif       O        phiHydC, dPhiHydX, dPhiHydY,
463  C--      Calculate accelerations in the momentum equations       I        myTime, myIter, myThid )
          IF ( momStepping ) THEN  
           CALL CALC_MOM_RHS(  
      I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      I         xA,yA,uTrans,vTrans,rTrans,rVel,maskC,  
      I         phiHyd,KappaRU,KappaRV,  
      U         aTerm,xTerm,cTerm,mTerm,pTerm,  
      U         fZon, fMer, fVerU, fVerV,  
      I         myTime, myThid)  
 #ifdef ALLOW_AUTODIFF_TAMC  
 #ifdef INCLUDE_CD_CODE  
464           ELSE           ELSE
465              DO j=1-OLy,sNy+OLy             CALL CALC_PHI_HYD(
466                 DO i=1-OLx,sNx+OLx       I        bi,bj,iMin,iMax,jMin,jMax,k,
467                    guCD(i,j,k,bi,bj) = 0.0       I        theta, salt,
468                    gvCD(i,j,k,bi,bj) = 0.0       U        phiHydF,
469                 END DO       O        phiHydC, dPhiHydX, dPhiHydY,
470              END DO       I        myTime, myIter, myThid )
 #endif  
 #endif  
          ENDIF  
 C--      Calculate active tracer tendencies  
          IF ( tempStepping ) THEN  
           CALL CALC_GT(  
      I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I         xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,  
      I         K13,K23,KappaRT,KapGM,  
      U         aTerm,xTerm,fZon,fMer,fVerT,  
      I         myTime, myThid)  
          ENDIF  
          IF ( saltStepping ) THEN  
           CALL CALC_GS(  
      I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I         xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,  
      I         K13,K23,KappaRS,KapGM,  
      U         aTerm,xTerm,fZon,fMer,fVerS,  
      I         myTime, myThid)  
          ENDIF  
 #ifdef ALLOW_OBCS  
 C--      Calculate future values on open boundaries  
          IF (openBoundaries) THEN  
 Caja      CALL CYCLE_OBCS( K, bi, bj, myThid )  
           CALL SET_OBCS( K, bi, bj, myTime+deltaTclock, myThid )  
471           ENDIF           ENDIF
 #endif  
 C--      Prediction step (step forward all model variables)  
          CALL TIMESTEP(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,  
      I       myIter, myThid)  
 #ifdef ALLOW_OBCS  
 C--      Apply open boundary conditions  
          IF (openBoundaries) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE gunm1(:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE gvnm1(:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  
 CADJ STORE gwnm1(:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  
 #endif  
             CALL APPLY_OBCS2( bi, bj, K, myThid )  
          END IF  
 #endif  
 C--      Freeze water  
          IF (allowFreezing) THEN  
 #ifdef ALLOW_AUTODIFF_TAMC  
 CADJ STORE gTNm1(:,:,k,bi,bj)  = comlev1_3d, key = kkey, byte = isbyte  
 #endif  
             CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, K, myThid )  
          END IF  
472    
473  #ifdef DIVG_IN_DYNAMICS  C--      Calculate accelerations in the momentum equations (gU, gV, ...)
474  C--      Diagnose barotropic divergence of predicted fields  C        and step forward storing the result in gU, gV, etc...
475           CALL CALC_DIV_GHAT(           IF ( momStepping ) THEN
476       I       bi,bj,iMin,iMax,jMin,jMax,K,             IF (.NOT. vectorInvariantMomentum) THEN
477       I       xA,yA,  #ifdef ALLOW_MOM_FLUXFORM
478       I       myThid)  C
479  #endif /* DIVG_IN_DYNAMICS */  # ifdef ALLOW_AUTODIFF_TAMC
480    #  ifdef NONLIN_FRSURF
481  C--      Cumulative diagnostic calculations (ie. time-averaging)  #   ifndef DISABLE_RSTAR_CODE
482  #ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE  CADJ STORE dwtransc(:,:,bi,bj)
483           IF (taveFreq.GT.0.) THEN  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
484            CALL DO_TIME_AVERAGES(  CADJ STORE dwtransu(:,:,bi,bj)
485       I                           myTime, myIter, bi, bj, K, kUp, kDown,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
486       I                           K13, K23, rVel, KapGM, ConvectCount,  CADJ STORE dwtransv(:,:,bi,bj)
487       I                           myThid )  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
488           ENDIF  #   endif
489    #  endif
490    # endif /* ALLOW_AUTODIFF_TAMC */
491    C
492                  CALL MOM_FLUXFORM(
493         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
494         I         KappaRU, KappaRV,
495         U         fVerU, fVerV,
496         O         guDissip, gvDissip,
497         I         myTime, myIter, myThid)
498  #endif  #endif
499               ELSE
500    #ifdef ALLOW_MOM_VECINV
501          ENDDO ! K  C
502    # ifdef ALLOW_AUTODIFF_TAMC
503  C--     Implicit diffusion  #  ifdef NONLIN_FRSURF
504          IF (implicitDiffusion) THEN  CADJ STORE fVerU(:,:,:)
505    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
506  #ifdef ALLOW_AUTODIFF_TAMC  CADJ STORE fVerV(:,:,:)
507             maximpl = 6  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
508             iikey = ikact*maximpl  #  endif
509    # endif /* ALLOW_AUTODIFF_TAMC */
510    C
511                 CALL MOM_VECINV(
512         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
513         I         KappaRU, KappaRV,
514         U         fVerU, fVerV,
515         O         guDissip, gvDissip,
516         I         myTime, myIter, myThid)
517  #endif  #endif
518               ENDIF
519    C
520               CALL TIMESTEP(
521         I         bi,bj,iMin,iMax,jMin,jMax,k,
522         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
523         I         guDissip, gvDissip,
524         I         myTime, myIter, myThid)
525    
526           IF (tempStepping) THEN  #ifdef   ALLOW_OBCS
527  #ifdef ALLOW_AUTODIFF_TAMC  C--      Apply open boundary conditions
528              idkey = iikey + 1             IF (useOBCS) THEN
529  #endif               CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
530              CALL IMPLDIFF(             ENDIF
531       I         bi, bj, iMin, iMax, jMin, jMax,  #endif   /* ALLOW_OBCS */
      I         deltaTtracer, KappaRT,recip_HFacC,  
      U         gTNm1,  
      I         myThid )  
          END IF  
532    
533           IF (saltStepping) THEN           ENDIF
 #ifdef ALLOW_AUTODIFF_TAMC  
          idkey = iikey + 2  
 #endif  
             CALL IMPLDIFF(  
      I         bi, bj, iMin, iMax, jMin, jMax,  
      I         deltaTtracer, KappaRS,recip_HFacC,  
      U         gSNm1,  
      I         myThid )  
          END IF  
534    
         ENDIF ! implicitDiffusion  
535    
536  C--     Implicit viscosity  C--     end of dynamics k loop (1:Nr)
537          IF (implicitViscosity) THEN          ENDDO
538    
539           IF (momStepping) THEN  C--     Implicit Vertical advection & viscosity
540  #ifdef ALLOW_AUTODIFF_TAMC  #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON))
541           idkey = iikey + 3          IF ( momImplVertAdv ) THEN
542  #endif            CALL MOM_U_IMPLICIT_R( kappaRU,
543         I                           bi, bj, myTime, myIter, myThid )
544              CALL MOM_V_IMPLICIT_R( kappaRV,
545         I                           bi, bj, myTime, myIter, myThid )
546            ELSEIF ( implicitViscosity ) THEN
547    #else /* INCLUDE_IMPLVERTADV_CODE */
548            IF     ( implicitViscosity ) THEN
549    #endif /* INCLUDE_IMPLVERTADV_CODE */
550    #ifdef    ALLOW_AUTODIFF_TAMC
551    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
552    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
553    #endif    /* ALLOW_AUTODIFF_TAMC */
554            CALL IMPLDIFF(            CALL IMPLDIFF(
555       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
556       I         deltaTmom, KappaRU,recip_HFacW,       I         -1, KappaRU,recip_HFacW,
557       U         gUNm1,       U         gU,
558       I         myThid )       I         myThid )
559  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
560           idkey = iikey + 4  CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
561  #endif  CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
562    #endif    /* ALLOW_AUTODIFF_TAMC */
563            CALL IMPLDIFF(            CALL IMPLDIFF(
564       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
565       I         deltaTmom, KappaRV,recip_HFacS,       I         -2, KappaRV,recip_HFacS,
566       U         gVNm1,       U         gV,
567       I         myThid )       I         myThid )
568            ENDIF
569    
570  #ifdef INCLUDE_CD_CODE  #ifdef   ALLOW_OBCS
571    C--      Apply open boundary conditions
572            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
573               DO K=1,Nr
574                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
575               ENDDO
576            ENDIF
577    #endif   /* ALLOW_OBCS */
578    
579  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_CD_CODE
580           idkey = iikey + 5          IF (implicitViscosity.AND.useCDscheme) THEN
581  #endif  #ifdef    ALLOW_AUTODIFF_TAMC
582    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
583    #endif    /* ALLOW_AUTODIFF_TAMC */
584            CALL IMPLDIFF(            CALL IMPLDIFF(
585       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
586       I         deltaTmom, KappaRU,recip_HFacW,       I         0, KappaRU,recip_HFacW,
587       U         vVelD,       U         vVelD,
588       I         myThid )       I         myThid )
589  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
590          idkey = iikey + 6  CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
591  #endif  #endif    /* ALLOW_AUTODIFF_TAMC */
592            CALL IMPLDIFF(            CALL IMPLDIFF(
593       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
594       I         deltaTmom, KappaRV,recip_HFacS,       I         0, KappaRV,recip_HFacS,
595       U         uVelD,       U         uVelD,
596       I         myThid )       I         myThid )
597            ENDIF
598  #endif  #endif    /* ALLOW_CD_CODE */
599    C--     End implicit Vertical advection & viscosity
          ENDIF ! momStepping  
         ENDIF ! implicitViscosity  
600    
601         ENDDO         ENDDO
602        ENDDO        ENDDO
603    
604  C     write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),  #ifdef ALLOW_OBCS
605  C    &                           maxval(cg2d_x(1:sNx,1:sNy,:,:))        IF (useOBCS) THEN
606  C     write(0,*) 'dynamics: U  ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.),         CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
607  C    &                           maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.)        ENDIF
608  C     write(0,*) 'dynamics: V  ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.),  #endif
609  C    &                           maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.)  
610  C     write(0,*) 'dynamics: rVel(1) ',  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
611  C    &            minval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.),  
612  C    &            maxval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.)  #ifdef ALLOW_NONHYDROSTATIC
613  C     write(0,*) 'dynamics: rVel(2) ',  C--   Step forward W field in N-H algorithm
614  C    &            minval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.),        IF ( nonHydrostatic ) THEN
615  C    &            maxval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.)  #ifdef ALLOW_DEBUG
616  cblk  write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),           IF ( debugLevel .GE. debLevB )
617  cblk &                           maxval(K13(1:sNx,1:sNy,:))       &     CALL DEBUG_CALL('CALC_GW', myThid )
618  cblk  write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),  #endif
619  cblk &                           maxval(K23(1:sNx,1:sNy,:))           CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
620  cblk  write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),           CALL CALC_GW(
621  cblk &                           maxval(K33(1:sNx,1:sNy,:))       I         KappaRU, KappaRV,
622  C     write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),       I         myTime, myIter, myThid )
623  C    &                           maxval(gT(1:sNx,1:sNy,:,:,:))        ENDIF
624  C     write(0,*) 'dynamics: T  ',minval(Theta(1:sNx,1:sNy,:,:,:)),        IF ( nonHydrostatic.OR.implicitIntGravWave )
625  C    &                           maxval(Theta(1:sNx,1:sNy,:,:,:))       &   CALL TIMESTEP_WVEL( myTime, myIter, myThid )
626  C     write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),        IF ( nonHydrostatic )
627  C    &                           maxval(gS(1:sNx,1:sNy,:,:,:))       &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
628  C     write(0,*) 'dynamics: S  ',minval(salt(1:sNx,1:sNy,:,:,:)),  #endif
629  C    &                           maxval(salt(1:sNx,1:sNy,:,:,:))  
630  C     write(0,*) 'dynamics: phiHyd ',minval(phiHyd/(Gravity*Rhonil),mask=phiHyd.NE.0.),  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
631  C    &                           maxval(phiHyd/(Gravity*Rhonil))  
632  C     CALL PLOT_FIELD_XYZRL( gU, ' GU exiting dyanmics ' ,  Cml(
633  C    &Nr, 1, myThid )  C     In order to compare the variance of phiHydLow of a p/z-coordinate
634  C     CALL PLOT_FIELD_XYZRL( gV, ' GV exiting dyanmics ' ,  C     run with etaH of a z/p-coordinate run the drift of phiHydLow
635  C    &Nr, 1, myThid )  C     has to be removed by something like the following subroutine:
636  C     CALL PLOT_FIELD_XYZRL( gS, ' GS exiting dyanmics ' ,  C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
637  C    &Nr, 1, myThid )  C     &                'phiHydLow', myThid )
638  C     CALL PLOT_FIELD_XYZRL( gT, ' GT exiting dyanmics ' ,  Cml)
639  C    &Nr, 1, myThid )  
640  C     CALL PLOT_FIELD_XYZRL( phiHyd, ' phiHyd exiting dyanmics ' ,  #ifdef ALLOW_DIAGNOSTICS
641  C    &Nr, 1, myThid )        IF ( useDiagnostics ) THEN
642    
643           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
644           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
645    
646           tmpFac = 1. _d 0
647           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
648         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
649    
650           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
651         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
652    
653          ENDIF
654    #endif /* ALLOW_DIAGNOSTICS */
655          
656    #ifdef ALLOW_DEBUG
657          If ( debugLevel .GE. debLevB ) THEN
658           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
659           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
660           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
661           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
662           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
663           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
664           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
665           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
666           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
667           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
668    #ifndef ALLOW_ADAMSBASHFORTH_3
669           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
670           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
671           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
672           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
673    #endif
674          ENDIF
675    #endif
676    
677    #ifdef DYNAMICS_GUGV_EXCH_CHECK
678    C- jmc: For safety checking only: This Exchange here should not change
679    C       the solution. If solution changes, it means something is wrong,
680    C       but it does not mean that it is less wrong with this exchange.
681          IF ( debugLevel .GT. debLevB ) THEN
682           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
683          ENDIF
684    #endif
685    
686    #ifdef ALLOW_DEBUG
687          IF ( debugLevel .GE. debLevB )
688         &   CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
689    #endif
690    
691        RETURN        RETURN
692        END        END

Legend:
Removed from v.1.49  
changed lines
  Added in v.1.135

  ViewVC Help
Powered by ViewVC 1.1.22