--- MITgcm/model/src/dynamics.F 1998/06/15 05:17:42 1.20 +++ MITgcm/model/src/dynamics.F 2001/09/27 20:12:10 1.83 @@ -1,110 +1,178 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.20 1998/06/15 05:17:42 cnh Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.83 2001/09/27 20:12:10 heimbach Exp $ +C $Name: $ -#include "CPP_EEOPTIONS.h" +#include "CPP_OPTIONS.h" +CBOP +C !ROUTINE: DYNAMICS +C !INTERFACE: SUBROUTINE DYNAMICS(myTime, myIter, myThid) -C /==========================================================\ -C | SUBROUTINE DYNAMICS | -C | o Controlling routine for the explicit part of the model | -C | dynamics. | -C |==========================================================| -C | This routine evaluates the "dynamics" terms for each | -C | block of ocean in turn. Because the blocks of ocean have | -C | overlap regions they are independent of one another. | -C | If terms involving lateral integrals are needed in this | -C | routine care will be needed. Similarly finite-difference | -C | operations with stencils wider than the overlap region | -C | require special consideration. | -C | Notes | -C | ===== | -C | C*P* comments indicating place holders for which code is | -C | presently being developed. | -C \==========================================================/ - +C !DESCRIPTION: \bv +C *==========================================================* +C | SUBROUTINE DYNAMICS +C | o Controlling routine for the explicit part of the model +C | dynamics. +C *==========================================================* +C | This routine evaluates the "dynamics" terms for each +C | block of ocean in turn. Because the blocks of ocean have +C | overlap regions they are independent of one another. +C | If terms involving lateral integrals are needed in this +C | routine care will be needed. Similarly finite-difference +C | operations with stencils wider than the overlap region +C | require special consideration. +C | The algorithm... +C | +C | "Correction Step" +C | ================= +C | Here we update the horizontal velocities with the surface +C | pressure such that the resulting flow is either consistent +C | with the free-surface evolution or the rigid-lid: +C | U[n] = U* + dt x d/dx P +C | V[n] = V* + dt x d/dy P +C | +C | "Calculation of Gs" +C | =================== +C | This is where all the accelerations and tendencies (ie. +C | physics, parameterizations etc...) are calculated +C | rho = rho ( theta[n], salt[n] ) +C | b = b(rho, theta) +C | K31 = K31 ( rho ) +C | Gu[n] = Gu( u[n], v[n], wVel, b, ... ) +C | Gv[n] = Gv( u[n], v[n], wVel, b, ... ) +C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) +C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) +C | +C | "Time-stepping" or "Prediction" +C | ================================ +C | The models variables are stepped forward with the appropriate +C | time-stepping scheme (currently we use Adams-Bashforth II) +C | - For momentum, the result is always *only* a "prediction" +C | in that the flow may be divergent and will be "corrected" +C | later with a surface pressure gradient. +C | - Normally for tracers the result is the new field at time +C | level [n+1} *BUT* in the case of implicit diffusion the result +C | is also *only* a prediction. +C | - We denote "predictors" with an asterisk (*). +C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) +C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) +C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | With implicit diffusion: +C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | (1 + dt * K * d_zz) theta[n] = theta* +C | (1 + dt * K * d_zz) salt[n] = salt* +C | +C *==========================================================* +C \ev +C !USES: + IMPLICIT NONE C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" -#include "CG2D.h" #include "PARAMS.h" #include "DYNVARS.h" +#include "GRID.h" +#ifdef ALLOW_PASSIVE_TRACER +#include "TR1.h" +#endif +#ifdef ALLOW_AUTODIFF_TAMC +# include "tamc.h" +# include "tamc_keys.h" +# include "FFIELDS.h" +# ifdef ALLOW_KPP +# include "KPP.h" +# endif +# ifdef ALLOW_GMREDI +# include "GMREDI.h" +# endif +#endif /* ALLOW_AUTODIFF_TAMC */ +#ifdef ALLOW_TIMEAVE +#include "TIMEAVE_STATV.h" +#endif + +C !CALLING SEQUENCE: +C DYNAMICS() +C | +C |-- CALC_GRAD_PHI_SURF +C | +C |-- CALC_VISCOSITY +C | +C |-- CALC_PHI_HYD +C | +C |-- MOM_FLUXFORM +C | +C |-- MOM_VECINV +C | +C |-- TIMESTEP +C | +C |-- OBCS_APPLY_UV +C | +C |-- IMPLDIFF +C | +C |-- OBCS_APPLY_UV +C | +C |-- CALL TIMEAVE_CUMUL_1T +C |-- CALL TIMEAVE_CUMULATE +C |-- CALL DEBUG_STATS_RL +C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of the routine. - INTEGER myThid _RL myTime INTEGER myIter + INTEGER myThid +C !LOCAL VARIABLES: C == Local variables -C xA, yA - Per block temporaries holding face areas -C uTrans, vTrans, wTrans - Per block temporaries holding flow transport -C wVel o uTrans: Zonal transport -C o vTrans: Meridional transport -C o wTrans: Vertical transport -C o wVel: Vertical velocity at upper and lower -C cell faces. -C maskC,maskUp o maskC: land/water mask for tracer cells -C o maskUp: land/water mask for W points -C aTerm, xTerm, cTerm - Work arrays for holding separate terms in -C mTerm, pTerm, tendency equations. -C fZon, fMer, fVer[STUV] o aTerm: Advection term -C o xTerm: Mixing term -C o cTerm: Coriolis term -C o mTerm: Metric term -C o pTerm: Pressure term -C o fZon: Zonal flux term -C o fMer: Meridional flux term -C o fVer: Vertical flux term - note fVer +C fVer[STUV] o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. -C iMin, iMax - Ranges and sub-block indices on which calculations -C jMin, jMax are applied. +C rhoK, rhoKM1 - Density at current level, and level above +C phiHyd - Hydrostatic part of the potential phiHydi. +C In z coords phiHydiHyd is the hydrostatic +C Potential (=pressure/rho0) anomaly +C In p coords phiHydiHyd is the geopotential +C surface height anomaly. +C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean) +C phiSurfY or geopotentiel (atmos) in X and Y direction +C iMin, iMax - Ranges and sub-block indices on which calculations +C jMin, jMax are applied. C bi, bj -C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown -C are switched with layer to be the appropriate index -C into fVerTerm - _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL wVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL pH (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) - _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) - _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) - _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) - _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz) - _RL KappaZS(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz) +C k, kup, - Index for layer above and below. kup and kDown +C kDown, km1 are switched with layer to be the appropriate +C index into fVerTerm. + _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) + _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) + _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + +C This is currently used by IVDC and Diagnostics + _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j - INTEGER k, kM1, kUp, kDown - LOGICAL BOTTOM_LAYER + INTEGER k, km1, kp1, kup, kDown +Cjmc : add for phiHyd output <- but not working if multi tile per CPU +c CHARACTER*(MAX_LEN_MBUF) suff +c LOGICAL DIFFERENT_MULTIPLE +c EXTERNAL DIFFERENT_MULTIPLE +Cjmc(end) + C--- The algorithm... C C "Correction Step" @@ -119,13 +187,13 @@ C =================== C This is where all the accelerations and tendencies (ie. C physics, parameterizations etc...) are calculated -C w = sum_z ( div. u[n] ) C rho = rho ( theta[n], salt[n] ) +C b = b(rho, theta) C K31 = K31 ( rho ) -C Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... ) -C Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... ) -C Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... ) -C Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... ) +C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) +C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) +C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) +C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) C C "Time-stepping" or "Prediction" C ================================ @@ -148,6 +216,7 @@ C (1 + dt * K * d_zz) theta[n] = theta* C (1 + dt * K * d_zz) salt[n] = salt* C--- +CEOP C-- Set up work arrays with valid (i.e. not NaN) values C These inital values do not alter the numerical results. They @@ -156,258 +225,274 @@ C uninitialised but inert locations. DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx - xA(i,j) = 0. _d 0 - yA(i,j) = 0. _d 0 - uTrans(i,j) = 0. _d 0 - vTrans(i,j) = 0. _d 0 - aTerm(i,j) = 0. _d 0 - xTerm(i,j) = 0. _d 0 - cTerm(i,j) = 0. _d 0 - mTerm(i,j) = 0. _d 0 - pTerm(i,j) = 0. _d 0 - fZon(i,j) = 0. _d 0 - fMer(i,j) = 0. _d 0 - DO K=1,nZ - pH (i,j,k) = 0. _d 0 - K13(i,j,k) = 0. _d 0 - K23(i,j,k) = 0. _d 0 - K33(i,j,k) = 0. _d 0 - KappaZT(i,j,k) = 0. _d 0 + DO k=1,Nr + phiHyd(i,j,k) = 0. _d 0 + KappaRU(i,j,k) = 0. _d 0 + KappaRV(i,j,k) = 0. _d 0 + sigmaX(i,j,k) = 0. _d 0 + sigmaY(i,j,k) = 0. _d 0 + sigmaR(i,j,k) = 0. _d 0 ENDDO - rhokm1(i,j) = 0. _d 0 - rhok (i,j) = 0. _d 0 - rhokp1(i,j) = 0. _d 0 - rhotmp(i,j) = 0. _d 0 - maskC (i,j) = 0. _d 0 + rhoKM1 (i,j) = 0. _d 0 + rhok (i,j) = 0. _d 0 + phiSurfX(i,j) = 0. _d 0 + phiSurfY(i,j) = 0. _d 0 ENDDO ENDDO +#ifdef ALLOW_AUTODIFF_TAMC +C-- HPF directive to help TAMC +CHPF$ INDEPENDENT +#endif /* ALLOW_AUTODIFF_TAMC */ + DO bj=myByLo(myThid),myByHi(myThid) + +#ifdef ALLOW_AUTODIFF_TAMC +C-- HPF directive to help TAMC +CHPF$ INDEPENDENT, NEW (fVerU,fVerV +CHPF$& ,phiHyd +CHPF$& ,KappaRU,KappaRV +CHPF$& ) +#endif /* ALLOW_AUTODIFF_TAMC */ + DO bi=myBxLo(myThid),myBxHi(myThid) +#ifdef ALLOW_AUTODIFF_TAMC + act1 = bi - myBxLo(myThid) + max1 = myBxHi(myThid) - myBxLo(myThid) + 1 + act2 = bj - myByLo(myThid) + max2 = myByHi(myThid) - myByLo(myThid) + 1 + act3 = myThid - 1 + max3 = nTx*nTy + act4 = ikey_dynamics - 1 + ikey = (act1 + 1) + act2*max1 + & + act3*max1*max2 + & + act4*max1*max2*max3 +#endif /* ALLOW_AUTODIFF_TAMC */ + C-- Set up work arrays that need valid initial values DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx - wTrans(i,j) = 0. _d 0 - wVel (i,j,1) = 0. _d 0 - wVel (i,j,2) = 0. _d 0 - fVerT(i,j,1) = 0. _d 0 - fVerT(i,j,2) = 0. _d 0 - fVerS(i,j,1) = 0. _d 0 - fVerS(i,j,2) = 0. _d 0 - fVerU(i,j,1) = 0. _d 0 - fVerU(i,j,2) = 0. _d 0 - fVerV(i,j,1) = 0. _d 0 - fVerV(i,j,2) = 0. _d 0 - pH(i,j,1) = 0. _d 0 - K13(i,j,1) = 0. _d 0 - K23(i,j,1) = 0. _d 0 - K33(i,j,1) = 0. _d 0 - KapGM(i,j) = 0. _d 0 + fVerU (i,j,1) = 0. _d 0 + fVerU (i,j,2) = 0. _d 0 + fVerV (i,j,1) = 0. _d 0 + fVerV (i,j,2) = 0. _d 0 ENDDO ENDDO - iMin = 1-OLx+1 - iMax = sNx+OLx - jMin = 1-OLy+1 - jMax = sNy+OLy - - K = 1 - BOTTOM_LAYER = K .EQ. Nz - -C-- Calculate gradient of surface pressure - CALL GRAD_PSURF( - I bi,bj,iMin,iMax,jMin,jMax, - O pSurfX,pSurfY, - I myThid) - -C-- Update fields in top level according to tendency terms - CALL CORRECTION_STEP( - I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid) - -C-- Density of 1st level (below W(1)) reference to level 1 - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoKm1, - I myThid ) - - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Check static stability with layer below -C and mix as needed. - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, - O rhoKp1, - I myThid ) - CALL CONVECT( - I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1, - I myTime,myIter,myThid) -C-- Recompute density after mixing - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoKm1, - I myThid ) +C-- Start computation of dynamics + iMin = 1-OLx+2 + iMax = sNx+OLx-1 + jMin = 1-OLy+2 + jMax = sNy+OLy-1 + +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP) +C (note: this loop will be replaced by CALL CALC_GRAD_ETA) + IF (implicSurfPress.NE.1.) THEN + CALL CALC_GRAD_PHI_SURF( + I bi,bj,iMin,iMax,jMin,jMax, + I etaN, + O phiSurfX,phiSurfY, + I myThid ) ENDIF -C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 - CALL CALC_PH( - I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKm1, - U pH, - I myThid ) - - DO K=2,Nz - - BOTTOM_LAYER = K .EQ. Nz - -C-- Update fields in Kth level according to tendency terms - CALL CORRECTION_STEP( - I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid) -C-- Density of K level (below W(K)) reference to K level - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoK, - I myThid ) - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Check static stability with layer below -C and mix as needed. -C-- Density of K+1 level (below W(K+1)) reference to K level - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, - O rhoKp1, - I myThid ) - CALL CONVECT( - I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1, - I myTime,myIter,myThid) -C-- Recompute density after mixing - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoK, - I myThid ) - ENDIF -C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 - CALL CALC_PH( - I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoK, - U pH, - I myThid ) -C-- Calculate iso-neutral slopes for the GM/Redi parameterisation - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType, - O rhoTmp, - I myThid ) - CALL CALC_ISOSLOPES( - I bi, bj, iMin, iMax, jMin, jMax, K, - I rhoKm1, rhoK, rhotmp, - O K13, K23, K33, KapGM, - I myThid ) - DO J=jMin,jMax - DO I=iMin,iMax - rhoKm1(I,J)=rhoK(I,J) - ENDDO - ENDDO - - ENDDO ! K - - DO K = Nz, 1, -1 - kM1 =max(1,k-1) ! Points to level above k (=k-1) - kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above - kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer - iMin = 1-OLx+2 - iMax = sNx+OLx-1 - jMin = 1-OLy+2 - jMax = sNy+OLy-1 - -C-- Get temporary terms used by tendency routines - CALL CALC_COMMON_FACTORS ( - I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, - O xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp, - I myThid) +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte +CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte +#ifdef ALLOW_KPP +CADJ STORE KPPviscAz (:,:,:,bi,bj) +CADJ & = comlev1_bibj, key=ikey, byte=isbyte +#endif /* ALLOW_KPP */ +#endif /* ALLOW_AUTODIFF_TAMC */ +#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL C-- Calculate the total vertical diffusivity - CALL CALC_DIFFUSIVITY( - I bi,bj,iMin,iMax,jMin,jMax,K, - I maskC,maskUp,KapGM,K33, - O KappaZT,KappaZS, + DO k=1,Nr + CALL CALC_VISCOSITY( + I bi,bj,iMin,iMax,jMin,jMax,k, + O KappaRU,KappaRV, I myThid) + ENDDO +#endif -C-- Calculate accelerations in the momentum equations - IF ( momStepping ) THEN - CALL CALC_MOM_RHS( - I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, - I xA,yA,uTrans,vTrans,wTrans,wVel,maskC, - I pH, - U aTerm,xTerm,cTerm,mTerm,pTerm, - U fZon, fMer, fVerU, fVerV, - I myThid) - ENDIF +C-- Start of dynamics loop + DO k=1,Nr -C-- Calculate active tracer tendencies - IF ( tempStepping ) THEN - CALL CALC_GT( - I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, - I xA,yA,uTrans,vTrans,wTrans,maskUp, - I K13,K23,KappaZT,KapGM, - U aTerm,xTerm,fZon,fMer,fVerT, - I myThid) +C-- km1 Points to level above k (=k-1) +C-- kup Cycles through 1,2 to point to layer above +C-- kDown Cycles through 2,1 to point to current layer + + km1 = MAX(1,k-1) + kp1 = MIN(k+1,Nr) + kup = 1+MOD(k+1,2) + kDown= 1+MOD(k,2) + +#ifdef ALLOW_AUTODIFF_TAMC + kkey = (ikey-1)*Nr + k +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Integrate hydrostatic balance for phiHyd with BC of +C phiHyd(z=0)=0 +C distinguishe between Stagger and Non Stagger time stepping + IF (staggerTimeStep) THEN + CALL CALC_PHI_HYD( + I bi,bj,iMin,iMax,jMin,jMax,k, + I gT, gS, + U phiHyd, + I myThid ) + ELSE + CALL CALC_PHI_HYD( + I bi,bj,iMin,iMax,jMin,jMax,k, + I theta, salt, + U phiHyd, + I myThid ) ENDIF - IF ( saltStepping ) THEN - CALL CALC_GS( - I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, - I xA,yA,uTrans,vTrans,wTrans,maskUp, - I K13,K23,KappaZS,KapGM, - U aTerm,xTerm,fZon,fMer,fVerS, - I myThid) + +C-- Calculate accelerations in the momentum equations (gU, gV, ...) +C and step forward storing the result in gUnm1, gVnm1, etc... + IF ( momStepping ) THEN +#ifndef DISABLE_MOM_FLUXFORM + IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM( + I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, + I phiHyd,KappaRU,KappaRV, + U fVerU, fVerV, + I myTime, myIter, myThid) +#endif +#ifndef DISABLE_MOM_VECINV + IF (vectorInvariantMomentum) CALL MOM_VECINV( + I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, + I phiHyd,KappaRU,KappaRV, + U fVerU, fVerV, + I myTime, myIter, myThid) +#endif + CALL TIMESTEP( + I bi,bj,iMin,iMax,jMin,jMax,k, + I phiHyd, phiSurfX, phiSurfY, + I myIter, myThid) + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) + END IF +#endif /* ALLOW_OBCS */ + +#ifdef ALLOW_AUTODIFF_TAMC +#ifdef INCLUDE_CD_CODE + ELSE + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + guCD(i,j,k,bi,bj) = 0.0 + gvCD(i,j,k,bi,bj) = 0.0 + END DO + END DO +#endif /* INCLUDE_CD_CODE */ +#endif /* ALLOW_AUTODIFF_TAMC */ ENDIF -C-- Prediction step (step forward all model variables) - CALL TIMESTEP( - I bi,bj,iMin,iMax,jMin,jMax,K, - I myThid) - -C-- Diagnose barotropic divergence of predicted fields - CALL DIV_G( - I bi,bj,iMin,iMax,jMin,jMax,K, - I xA,yA, - I myThid) - - ENDDO ! K - -C-- Implicit diffusion - IF (implicitDiffusion) THEN - CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax, - I KappaZT,KappaZS, - I myThid ) + +C-- end of dynamics k loop (1:Nr) + ENDDO + + + +C-- Implicit viscosity + IF (implicitViscosity.AND.momStepping) THEN +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 3 +CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRU,recip_HFacW, + U gUNm1, + I myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 4 +CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRV,recip_HFacS, + U gVNm1, + I myThid ) + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + DO K=1,Nr + CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) + ENDDO + END IF +#endif /* ALLOW_OBCS */ + +#ifdef INCLUDE_CD_CODE +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 5 +CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRU,recip_HFacW, + U vVelD, + I myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 6 +CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRV,recip_HFacS, + U uVelD, + I myThid ) +#endif /* INCLUDE_CD_CODE */ +C-- End If implicitViscosity.AND.momStepping ENDIF +Cjmc : add for phiHyd output <- but not working if multi tile per CPU +c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime) +c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN +c WRITE(suff,'(I10.10)') myIter+1 +c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid) +c ENDIF +Cjmc(end) + +#ifdef ALLOW_TIMEAVE + IF (taveFreq.GT.0.) THEN + CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr, + I deltaTclock, bi, bj, myThid) + IF (ivdc_kappa.NE.0.) THEN + CALL TIMEAVE_CUMULATE(ConvectCountTave, ConvectCount, Nr, + I deltaTclock, bi, bj, myThid) + ENDIF + ENDIF +#endif /* ALLOW_TIMEAVE */ + ENDDO ENDDO -C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)), -C & maxval(cg2d_x(1:sNx,1:sNy,:,:)) -C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.), -C & maxval(uVel(1:sNx,1:sNy,1,:,:)) -C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.), -C & maxval(vVel(1:sNx,1:sNy,1,:,:)) -C write(0,*) 'dynamics: wVel(1) ', -C & minval(wVel(1:sNx,1:sNy,1),mask=wVel(1:sNx,1:sNy,1).NE.0.), -C & maxval(wVel(1:sNx,1:sNy,1)) -C write(0,*) 'dynamics: wVel(2) ', -C & minval(wVel(1:sNx,1:sNy,2),mask=wVel(1:sNx,1:sNy,2).NE.0.), -C & maxval(wVel(1:sNx,1:sNy,2)) -cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)), -cblk & maxval(K13(1:sNx,1:sNy,:)) -cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)), -cblk & maxval(K23(1:sNx,1:sNy,:)) -cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)), -cblk & maxval(K33(1:sNx,1:sNy,:)) -C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)), -C & maxval(gT(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)), -C & maxval(Theta(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)), -C & maxval(gS(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)), -C & maxval(salt(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil),mask=ph.NE.0.), -C & maxval(pH/(Gravity*Rhonil)) +#ifndef DISABLE_DEBUGMODE + If (debugMode) THEN + CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid) + ENDIF +#endif RETURN END