/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by cnh, Fri Apr 24 02:05:40 1998 UTC revision 1.124 by jmc, Sun Sep 11 20:52:09 2005 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
       SUBROUTINE DYNAMICS(myThid)  
 C     /==========================================================\  
 C     | SUBROUTINE DYNAMICS                                      |  
 C     | o Controlling routine for the explicit part of the model |  
 C     |   dynamics.                                              |  
 C     |==========================================================|  
 C     | This routine evaluates the "dynamics" terms for each     |  
 C     | block of ocean in turn. Because the blocks of ocean have |  
 C     | overlap regions they are independent of one another.     |  
 C     | If terms involving lateral integrals are needed in this  |  
 C     | routine care will be needed. Similarly finite-difference |  
 C     | operations with stencils wider than the overlap region   |  
 C     | require special consideration.                           |  
 C     | Notes                                                    |  
 C     | =====                                                    |  
 C     | C*P* comments indicating place holders for which code is |  
 C     |      presently being developed.                          |  
 C     \==========================================================/  
6    
7    CBOP
8    C     !ROUTINE: DYNAMICS
9    C     !INTERFACE:
10          SUBROUTINE DYNAMICS(myTime, myIter, myThid)
11    C     !DESCRIPTION: \bv
12    C     *==========================================================*
13    C     | SUBROUTINE DYNAMICS                                      
14    C     | o Controlling routine for the explicit part of the model  
15    C     |   dynamics.                                              
16    C     *==========================================================*
17    C     | This routine evaluates the "dynamics" terms for each      
18    C     | block of ocean in turn. Because the blocks of ocean have  
19    C     | overlap regions they are independent of one another.      
20    C     | If terms involving lateral integrals are needed in this  
21    C     | routine care will be needed. Similarly finite-difference  
22    C     | operations with stencils wider than the overlap region    
23    C     | require special consideration.                            
24    C     | The algorithm...
25    C     |
26    C     | "Correction Step"
27    C     | =================
28    C     | Here we update the horizontal velocities with the surface
29    C     | pressure such that the resulting flow is either consistent
30    C     | with the free-surface evolution or the rigid-lid:
31    C     |   U[n] = U* + dt x d/dx P
32    C     |   V[n] = V* + dt x d/dy P
33    C     |   W[n] = W* + dt x d/dz P  (NH mode)
34    C     |
35    C     | "Calculation of Gs"
36    C     | ===================
37    C     | This is where all the accelerations and tendencies (ie.
38    C     | physics, parameterizations etc...) are calculated
39    C     |   rho = rho ( theta[n], salt[n] )
40    C     |   b   = b(rho, theta)
41    C     |   K31 = K31 ( rho )
42    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
43    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
44    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
45    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
46    C     |
47    C     | "Time-stepping" or "Prediction"
48    C     | ================================
49    C     | The models variables are stepped forward with the appropriate
50    C     | time-stepping scheme (currently we use Adams-Bashforth II)
51    C     | - For momentum, the result is always *only* a "prediction"
52    C     | in that the flow may be divergent and will be "corrected"
53    C     | later with a surface pressure gradient.
54    C     | - Normally for tracers the result is the new field at time
55    C     | level [n+1} *BUT* in the case of implicit diffusion the result
56    C     | is also *only* a prediction.
57    C     | - We denote "predictors" with an asterisk (*).
58    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
59    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
60    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
61    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62    C     | With implicit diffusion:
63    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
64    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
65    C     |   (1 + dt * K * d_zz) theta[n] = theta*
66    C     |   (1 + dt * K * d_zz) salt[n] = salt*
67    C     |
68    C     *==========================================================*
69    C     \ev
70    C     !USES:
71          IMPLICIT NONE
72  C     == Global variables ===  C     == Global variables ===
73  #include "SIZE.h"  #include "SIZE.h"
74  #include "EEPARAMS.h"  #include "EEPARAMS.h"
75  #include "CG2D.h"  #include "PARAMS.h"
76    #include "DYNVARS.h"
77    #ifdef ALLOW_CD_CODE
78    #include "CD_CODE_VARS.h"
79    #endif
80    #include "GRID.h"
81    #ifdef ALLOW_AUTODIFF_TAMC
82    # include "tamc.h"
83    # include "tamc_keys.h"
84    # include "FFIELDS.h"
85    # include "EOS.h"
86    # ifdef ALLOW_KPP
87    #  include "KPP.h"
88    # endif
89    #endif /* ALLOW_AUTODIFF_TAMC */
90    
91    C     !CALLING SEQUENCE:
92    C     DYNAMICS()
93    C      |
94    C      |-- CALC_EP_FORCING
95    C      |
96    C      |-- CALC_GRAD_PHI_SURF
97    C      |
98    C      |-- CALC_VISCOSITY
99    C      |
100    C      |-- CALC_PHI_HYD  
101    C      |
102    C      |-- MOM_FLUXFORM  
103    C      |
104    C      |-- MOM_VECINV    
105    C      |
106    C      |-- TIMESTEP      
107    C      |
108    C      |-- OBCS_APPLY_UV
109    C      |
110    C      |-- MOM_U_IMPLICIT_R      
111    C      |-- MOM_V_IMPLICIT_R      
112    C      |
113    C      |-- IMPLDIFF      
114    C      |
115    C      |-- OBCS_APPLY_UV
116    C      |
117    C      |-- CALC_GW
118    C      |
119    C      |-- DIAGNOSTICS_FILL
120    C      |-- DEBUG_STATS_RL
121    
122    C     !INPUT/OUTPUT PARAMETERS:
123  C     == Routine arguments ==  C     == Routine arguments ==
124    C     myTime - Current time in simulation
125    C     myIter - Current iteration number in simulation
126  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
127          _RL myTime
128          INTEGER myIter
129        INTEGER myThid        INTEGER myThid
130    
131    C     !LOCAL VARIABLES:
132  C     == Local variables  C     == Local variables
133  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
134  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
135  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
136  C                              o vTrans: Meridional transport  C                                    variable.
137  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
138  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
139  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
140  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
141  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
142  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
143  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
144  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
145  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
146  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
147  C                              o fZon: Zonal flux term  C     iMin, iMax     - Ranges and sub-block indices on which calculations
148  C                              o fMer: Meridional flux term  C     jMin, jMax       are applied.
 C                              o fVer: Vertical flux term - note fVer  
 C                                      is "pipelined" in the vertical  
 C                                      so we need an fVer for each  
 C                                      variable.  
 C     iMin, iMax - Ranges and sub-block indices on which calculations  
 C     jMin, jMax   are applied.  
149  C     bi, bj  C     bi, bj
150  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
151  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
152  C                          into fVerTerm  C                      index into fVerTerm.
153        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
154        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
155        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
156        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
157        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
158        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
159        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
160        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
161        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
162        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
163        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
164        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
165        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
166        INTEGER iMin, iMax        INTEGER iMin, iMax
167        INTEGER jMin, jMax        INTEGER jMin, jMax
168        INTEGER bi, bj        INTEGER bi, bj
169        INTEGER i, j        INTEGER i, j
170        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
171    
172    #ifdef ALLOW_DIAGNOSTICS
173          _RL tmpFac
174    #endif /* ALLOW_DIAGNOSTICS */
175    
176    
177    C---    The algorithm...
178    C
179    C       "Correction Step"
180    C       =================
181    C       Here we update the horizontal velocities with the surface
182    C       pressure such that the resulting flow is either consistent
183    C       with the free-surface evolution or the rigid-lid:
184    C         U[n] = U* + dt x d/dx P
185    C         V[n] = V* + dt x d/dy P
186    C
187    C       "Calculation of Gs"
188    C       ===================
189    C       This is where all the accelerations and tendencies (ie.
190    C       physics, parameterizations etc...) are calculated
191    C         rho = rho ( theta[n], salt[n] )
192    C         b   = b(rho, theta)
193    C         K31 = K31 ( rho )
194    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
195    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
196    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
197    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
198    C
199    C       "Time-stepping" or "Prediction"
200    C       ================================
201    C       The models variables are stepped forward with the appropriate
202    C       time-stepping scheme (currently we use Adams-Bashforth II)
203    C       - For momentum, the result is always *only* a "prediction"
204    C       in that the flow may be divergent and will be "corrected"
205    C       later with a surface pressure gradient.
206    C       - Normally for tracers the result is the new field at time
207    C       level [n+1} *BUT* in the case of implicit diffusion the result
208    C       is also *only* a prediction.
209    C       - We denote "predictors" with an asterisk (*).
210    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
211    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
212    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
213    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
214    C       With implicit diffusion:
215    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
216    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
217    C         (1 + dt * K * d_zz) theta[n] = theta*
218    C         (1 + dt * K * d_zz) salt[n] = salt*
219    C---
220    CEOP
221    
222    #ifdef ALLOW_DEBUG
223          IF ( debugLevel .GE. debLevB )
224         &   CALL DEBUG_ENTER( 'DYNAMICS', myThid )
225    #endif
226    
227    C-- Call to routine for calculation of
228    C   Eliassen-Palm-flux-forced U-tendency,
229    C   if desired:
230    #ifdef INCLUDE_EP_FORCING_CODE
231          CALL CALC_EP_FORCING(myThid)
232    #endif
233    
234    #ifdef ALLOW_AUTODIFF_TAMC
235    C--   HPF directive to help TAMC
236    CHPF$ INDEPENDENT
237    #endif /* ALLOW_AUTODIFF_TAMC */
238    
239          DO bj=myByLo(myThid),myByHi(myThid)
240    
241    #ifdef ALLOW_AUTODIFF_TAMC
242    C--    HPF directive to help TAMC
243    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
244    CHPF$&                  ,phiHydF
245    CHPF$&                  ,KappaRU,KappaRV
246    CHPF$&                  )
247    #endif /* ALLOW_AUTODIFF_TAMC */
248    
249           DO bi=myBxLo(myThid),myBxHi(myThid)
250    
251    #ifdef ALLOW_AUTODIFF_TAMC
252              act1 = bi - myBxLo(myThid)
253              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
254              act2 = bj - myByLo(myThid)
255              max2 = myByHi(myThid) - myByLo(myThid) + 1
256              act3 = myThid - 1
257              max3 = nTx*nTy
258              act4 = ikey_dynamics - 1
259              idynkey = (act1 + 1) + act2*max1
260         &                      + act3*max1*max2
261         &                      + act4*max1*max2*max3
262    #endif /* ALLOW_AUTODIFF_TAMC */
263    
264  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
265  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
266  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
267  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
268  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0.*1. _d 37  
         yA(i,j)      = 0.*1. _d 37  
         uTrans(i,j)  = 0.*1. _d 37  
         vTrans(i,j)  = 0.*1. _d 37  
         aTerm(i,j)   = 0.*1. _d 37  
         xTerm(i,j)   = 0.*1. _d 37  
         cTerm(i,j)   = 0.*1. _d 37  
         mTerm(i,j)   = 0.*1. _d 37  
         pTerm(i,j)   = 0.*1. _d 37  
         fZon(i,j)    = 0.*1. _d 37  
         fMer(i,j)    = 0.*1. _d 37  
         DO K=1,nZ  
          pH (i,j,k)  = 0.*1. _d 37  
         ENDDO  
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
        ENDDO  
       ENDDO  
269    
270        DO bj=myByLo(myThid),myByHi(myThid)          DO k=1,Nr
271         DO bi=myBxLo(myThid),myBxHi(myThid)           DO j=1-OLy,sNy+OLy
272              DO i=1-OLx,sNx+OLx
273               KappaRU(i,j,k) = 0. _d 0
274               KappaRV(i,j,k) = 0. _d 0
275    #ifdef ALLOW_AUTODIFF_TAMC
276    cph(
277    c--   need some re-initialisation here to break dependencies
278    cph)
279               gU(i,j,k,bi,bj) = 0. _d 0
280               gV(i,j,k,bi,bj) = 0. _d 0
281    #endif
282              ENDDO
283             ENDDO
284            ENDDO
285            DO j=1-OLy,sNy+OLy
286             DO i=1-OLx,sNx+OLx
287              fVerU  (i,j,1) = 0. _d 0
288              fVerU  (i,j,2) = 0. _d 0
289              fVerV  (i,j,1) = 0. _d 0
290              fVerV  (i,j,2) = 0. _d 0
291              phiHydF (i,j)  = 0. _d 0
292              phiHydC (i,j)  = 0. _d 0
293              dPhiHydX(i,j)  = 0. _d 0
294              dPhiHydY(i,j)  = 0. _d 0
295              phiSurfX(i,j)  = 0. _d 0
296              phiSurfY(i,j)  = 0. _d 0
297              guDissip(i,j)  = 0. _d 0
298              gvDissip(i,j)  = 0. _d 0
299             ENDDO
300            ENDDO
301    
302          iMin = 1-OLx+1  C--     Start computation of dynamics
303          iMax = sNx+OLx          iMin = 0
304          jMin = 1-OLy+1          iMax = sNx+1
305          jMax = sNy+OLy          jMin = 0
306            jMax = sNy+1
307  C--     Update fields according to tendency terms  
308          CALL TIMESTEP(  #ifdef ALLOW_AUTODIFF_TAMC
309       I       bi,bj,iMin,iMax,jMin,jMax,myThid)  CADJ STORE wvel (:,:,:,bi,bj) =
310    CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
311  C--     Calculate rho with the appropriate equation of state  #endif /* ALLOW_AUTODIFF_TAMC */
312          CALL FIND_RHO(  
313       I       bi,bj,iMin,iMax,jMin,jMax,myThid)  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
314    C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
315  C--     Calculate static stability and mix where convectively unstable          IF (implicSurfPress.NE.1.) THEN
316          CALL CONVECT(            CALL CALC_GRAD_PHI_SURF(
317       I       bi,bj,iMin,iMax,jMin,jMax,myThid)       I         bi,bj,iMin,iMax,jMin,jMax,
318         I         etaN,
319  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0       O         phiSurfX,phiSurfY,
320          CALL CALC_PH(       I         myThid )                        
321       I       bi,bj,iMin,iMax,jMin,jMax,          ENDIF
322       O       pH,  
323       I       myThid )  #ifdef ALLOW_AUTODIFF_TAMC
324    CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
325          DO K = Nz, 1, -1  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
326           kM1  =max(1,k-1)   ! Points to level above k (=k-1)  #ifdef ALLOW_KPP
327           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  CADJ STORE KPPviscAz (:,:,:,bi,bj)
328           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
329           iMin = 1-OLx+2  #endif /* ALLOW_KPP */
330           iMax = sNx+OLx-1  #endif /* ALLOW_AUTODIFF_TAMC */
331           jMin = 1-OLy+2  
332           jMax = sNy+OLy-1  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
333    C--      Calculate the total vertical diffusivity
334  C--      Get temporary terms used by tendency routines          DO k=1,Nr
335           CALL CALC_COMMON_FACTORS (           CALL CALC_VISCOSITY(
336       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,       I        bi,bj,iMin,iMax,jMin,jMax,k,
337       O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,       O        KappaRU,KappaRV,
338       I        myThid)       I        myThid)
339           ENDDO
340    #endif
341    
342  C--      Calculate accelerations in the momentum equations  #ifdef ALLOW_AUTODIFF_TAMC
343           CALL CALC_MOM_RHS(  CADJ STORE KappaRU(:,:,:)
344       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
345       I        xA,yA,uTrans,vTrans,wTrans,maskC,  CADJ STORE KappaRV(:,:,:)
346       I        pH,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
347       U        aTerm,xTerm,cTerm,mTerm,pTerm,  #endif /* ALLOW_AUTODIFF_TAMC */
348       U        fZon, fMer, fVerU, fVerV,  
349       I        myThid)  C--     Start of dynamics loop
350            DO k=1,Nr
351    
352    C--       km1    Points to level above k (=k-1)
353    C--       kup    Cycles through 1,2 to point to layer above
354    C--       kDown  Cycles through 2,1 to point to current layer
355    
356              km1  = MAX(1,k-1)
357              kp1  = MIN(k+1,Nr)
358              kup  = 1+MOD(k+1,2)
359              kDown= 1+MOD(k,2)
360    
361    #ifdef ALLOW_AUTODIFF_TAMC
362             kkey = (idynkey-1)*Nr + k
363    c
364    CADJ STORE totphihyd (:,:,k,bi,bj)
365    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
366    CADJ STORE theta (:,:,k,bi,bj)
367    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
368    CADJ STORE salt  (:,:,k,bi,bj)
369    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
370    #endif /* ALLOW_AUTODIFF_TAMC */
371    
372    C--      Integrate hydrostatic balance for phiHyd with BC of
373    C        phiHyd(z=0)=0
374             CALL CALC_PHI_HYD(
375         I        bi,bj,iMin,iMax,jMin,jMax,k,
376         I        theta, salt,
377         U        phiHydF,
378         O        phiHydC, dPhiHydX, dPhiHydY,
379         I        myTime, myIter, myThid )
380    
381    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
382    C        and step forward storing the result in gU, gV, etc...
383             IF ( momStepping ) THEN
384    #ifdef ALLOW_MOM_FLUXFORM
385               IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
386         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
387         I         KappaRU, KappaRV,
388         U         fVerU, fVerV,
389         O         guDissip, gvDissip,
390         I         myTime, myIter, myThid)
391    #endif
392    #ifdef ALLOW_MOM_VECINV
393               IF (vectorInvariantMomentum) CALL MOM_VECINV(
394         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
395         I         KappaRU, KappaRV,
396         U         fVerU, fVerV,
397         O         guDissip, gvDissip,
398         I         myTime, myIter, myThid)
399    #endif
400               CALL TIMESTEP(
401         I         bi,bj,iMin,iMax,jMin,jMax,k,
402         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
403         I         guDissip, gvDissip,
404         I         myTime, myIter, myThid)
405    
406    #ifdef   ALLOW_OBCS
407    C--      Apply open boundary conditions
408               IF (useOBCS) THEN
409                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
410               ENDIF
411    #endif   /* ALLOW_OBCS */
412    
413  C--      Calculate active tracer tendencies           ENDIF
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
414    
415    
416    C--     end of dynamics k loop (1:Nr)
417          ENDDO          ENDDO
418    
419    C--     Implicit Vertical advection & viscosity
420    #ifdef INCLUDE_IMPLVERTADV_CODE
421            IF ( momImplVertAdv ) THEN
422              CALL MOM_U_IMPLICIT_R( kappaRU,
423         I                           bi, bj, myTime, myIter, myThid )
424              CALL MOM_V_IMPLICIT_R( kappaRV,
425         I                           bi, bj, myTime, myIter, myThid )
426            ELSEIF ( implicitViscosity ) THEN
427    #else /* INCLUDE_IMPLVERTADV_CODE */
428            IF     ( implicitViscosity ) THEN
429    #endif /* INCLUDE_IMPLVERTADV_CODE */
430    #ifdef    ALLOW_AUTODIFF_TAMC
431    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
432    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
433    #endif    /* ALLOW_AUTODIFF_TAMC */
434              CALL IMPLDIFF(
435         I         bi, bj, iMin, iMax, jMin, jMax,
436         I         -1, KappaRU,recip_HFacW,
437         U         gU,
438         I         myThid )
439    #ifdef    ALLOW_AUTODIFF_TAMC
440    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
441    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
442    #endif    /* ALLOW_AUTODIFF_TAMC */
443              CALL IMPLDIFF(
444         I         bi, bj, iMin, iMax, jMin, jMax,
445         I         -2, KappaRV,recip_HFacS,
446         U         gV,
447         I         myThid )
448            ENDIF
449    
450    #ifdef   ALLOW_OBCS
451    C--      Apply open boundary conditions
452            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
453               DO K=1,Nr
454                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
455               ENDDO
456            ENDIF
457    #endif   /* ALLOW_OBCS */
458    
459    #ifdef    ALLOW_CD_CODE
460            IF (implicitViscosity.AND.useCDscheme) THEN
461    #ifdef    ALLOW_AUTODIFF_TAMC
462    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
463    #endif    /* ALLOW_AUTODIFF_TAMC */
464              CALL IMPLDIFF(
465         I         bi, bj, iMin, iMax, jMin, jMax,
466         I         0, KappaRU,recip_HFacW,
467         U         vVelD,
468         I         myThid )
469    #ifdef    ALLOW_AUTODIFF_TAMC
470    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
471    #endif    /* ALLOW_AUTODIFF_TAMC */
472              CALL IMPLDIFF(
473         I         bi, bj, iMin, iMax, jMin, jMax,
474         I         0, KappaRV,recip_HFacS,
475         U         uVelD,
476         I         myThid )
477            ENDIF
478    #endif    /* ALLOW_CD_CODE */
479    C--     End implicit Vertical advection & viscosity
480    
481         ENDDO         ENDDO
482        ENDDO        ENDDO
483    
484    #ifdef ALLOW_OBCS
485          IF (useOBCS) THEN
486           CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
487          ENDIF
488    #endif
489    
490    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
491    
492    #ifdef ALLOW_NONHYDROSTATIC
493    C--   Step forward W field in N-H algorithm
494          IF ( momStepping .AND. nonHydrostatic ) THEN
495    #ifdef ALLOW_DEBUG
496             IF ( debugLevel .GE. debLevB )
497         &     CALL DEBUG_CALL('CALC_GW', myThid )
498    #endif
499             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
500             CALL CALC_GW( myTime, myIter, myThid )
501             CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
502          ENDIF
503    #endif
504    
505    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
506    
507    Cml(
508    C     In order to compare the variance of phiHydLow of a p/z-coordinate
509    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
510    C     has to be removed by something like the following subroutine:
511    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
512    C     &                'phiHydLow', myThid )
513    Cml)
514    
515    #ifdef ALLOW_DIAGNOSTICS
516          IF ( usediagnostics ) THEN
517    
518           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
519           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
520    
521           tmpFac = 1. _d 0
522           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
523         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
524    
525           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
526         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
527    
528          ENDIF
529    #endif /* ALLOW_DIAGNOSTICS */
530          
531    #ifdef ALLOW_DEBUG
532          If ( debugLevel .GE. debLevB ) THEN
533           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
534           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
535           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
536           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
537           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
538           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
539           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
540           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
541           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
542           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
543    #ifndef ALLOW_ADAMSBASHFORTH_3
544           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
545           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
546           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
547           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
548    #endif
549          ENDIF
550    #endif
551    
552    #ifdef ALLOW_DEBUG
553          IF ( debugLevel .GE. debLevB )
554         &   CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
555    #endif
556    
557        RETURN        RETURN
558        END        END

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.124

  ViewVC Help
Powered by ViewVC 1.1.22