--- MITgcm/model/src/dynamics.F 2001/09/19 02:43:27 1.81 +++ MITgcm/model/src/dynamics.F 2013/11/05 13:34:31 1.167 @@ -1,109 +1,249 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.81 2001/09/19 02:43:27 adcroft Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.167 2013/11/05 13:34:31 jmc Exp $ C $Name: $ +#include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" +#ifdef ALLOW_MOM_COMMON +# include "MOM_COMMON_OPTIONS.h" +#endif +#ifdef ALLOW_OBCS +# include "OBCS_OPTIONS.h" +#endif +#undef DYNAMICS_GUGV_EXCH_CHECK + +CBOP +C !ROUTINE: DYNAMICS +C !INTERFACE: SUBROUTINE DYNAMICS(myTime, myIter, myThid) -C /==========================================================\ -C | SUBROUTINE DYNAMICS | -C | o Controlling routine for the explicit part of the model | -C | dynamics. | -C |==========================================================| -C | This routine evaluates the "dynamics" terms for each | -C | block of ocean in turn. Because the blocks of ocean have | -C | overlap regions they are independent of one another. | -C | If terms involving lateral integrals are needed in this | -C | routine care will be needed. Similarly finite-difference | -C | operations with stencils wider than the overlap region | -C | require special consideration. | -C | Notes | -C | ===== | -C | C*P* comments indicating place holders for which code is | -C | presently being developed. | -C \==========================================================/ +C !DESCRIPTION: \bv +C *==========================================================* +C | SUBROUTINE DYNAMICS +C | o Controlling routine for the explicit part of the model +C | dynamics. +C *==========================================================* +C | This routine evaluates the "dynamics" terms for each +C | block of ocean in turn. Because the blocks of ocean have +C | overlap regions they are independent of one another. +C | If terms involving lateral integrals are needed in this +C | routine care will be needed. Similarly finite-difference +C | operations with stencils wider than the overlap region +C | require special consideration. +C | The algorithm... +C | +C | "Correction Step" +C | ================= +C | Here we update the horizontal velocities with the surface +C | pressure such that the resulting flow is either consistent +C | with the free-surface evolution or the rigid-lid: +C | U[n] = U* + dt x d/dx P +C | V[n] = V* + dt x d/dy P +C | W[n] = W* + dt x d/dz P (NH mode) +C | +C | "Calculation of Gs" +C | =================== +C | This is where all the accelerations and tendencies (ie. +C | physics, parameterizations etc...) are calculated +C | rho = rho ( theta[n], salt[n] ) +C | b = b(rho, theta) +C | K31 = K31 ( rho ) +C | Gu[n] = Gu( u[n], v[n], wVel, b, ... ) +C | Gv[n] = Gv( u[n], v[n], wVel, b, ... ) +C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) +C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) +C | +C | "Time-stepping" or "Prediction" +C | ================================ +C | The models variables are stepped forward with the appropriate +C | time-stepping scheme (currently we use Adams-Bashforth II) +C | - For momentum, the result is always *only* a "prediction" +C | in that the flow may be divergent and will be "corrected" +C | later with a surface pressure gradient. +C | - Normally for tracers the result is the new field at time +C | level [n+1} *BUT* in the case of implicit diffusion the result +C | is also *only* a prediction. +C | - We denote "predictors" with an asterisk (*). +C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) +C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) +C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | With implicit diffusion: +C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | (1 + dt * K * d_zz) theta[n] = theta* +C | (1 + dt * K * d_zz) salt[n] = salt* +C | +C *==========================================================* +C \ev +C !USES: IMPLICIT NONE - C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" -#include "DYNVARS.h" #include "GRID.h" -#ifdef ALLOW_PASSIVE_TRACER -#include "TR1.h" +#include "DYNVARS.h" +#ifdef ALLOW_MOM_COMMON +# include "MOM_VISC.h" +#endif +#ifdef ALLOW_CD_CODE +# include "CD_CODE_VARS.h" #endif - #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" # include "tamc_keys.h" # include "FFIELDS.h" +# include "EOS.h" # ifdef ALLOW_KPP # include "KPP.h" # endif -# ifdef ALLOW_GMREDI -# include "GMREDI.h" +# ifdef ALLOW_PTRACERS +# include "PTRACERS_SIZE.h" +# include "PTRACERS_FIELDS.h" +# endif +# ifdef ALLOW_OBCS +# include "OBCS_PARAMS.h" +# include "OBCS_FIELDS.h" +# ifdef ALLOW_PTRACERS +# include "OBCS_PTRACERS.h" +# endif +# endif +# ifdef ALLOW_MOM_FLUXFORM +# include "MOM_FLUXFORM.h" # endif #endif /* ALLOW_AUTODIFF_TAMC */ -#ifdef ALLOW_TIMEAVE -#include "TIMEAVE_STATV.h" -#endif +C !CALLING SEQUENCE: +C DYNAMICS() +C | +C |-- CALC_EP_FORCING +C | +C |-- CALC_GRAD_PHI_SURF +C | +C |-- CALC_VISCOSITY +C | +C |-- MOM_CALC_3D_STRAIN +C | +C |-- CALC_EDDY_STRESS +C | +C |-- CALC_PHI_HYD +C | +C |-- MOM_FLUXFORM +C | +C |-- MOM_VECINV +C | +C |-- MOM_CALC_SMAG_3D +C |-- MOM_UV_SMAG_3D +C | +C |-- TIMESTEP +C | +C |-- MOM_U_IMPLICIT_R +C |-- MOM_V_IMPLICIT_R +C | +C |-- IMPLDIFF +C | +C |-- OBCS_APPLY_UV +C | +C |-- CALC_GW +C | +C |-- DIAGNOSTICS_FILL +C |-- DEBUG_STATS_RL +C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == -C myTime - Current time in simulation -C myIter - Current iteration number in simulation -C myThid - Thread number for this instance of the routine. +C myTime :: Current time in simulation +C myIter :: Current iteration number in simulation +C myThid :: Thread number for this instance of the routine. _RL myTime INTEGER myIter INTEGER myThid +C !FUNCTIONS: +#ifdef ALLOW_DIAGNOSTICS + LOGICAL DIAGNOSTICS_IS_ON + EXTERNAL DIAGNOSTICS_IS_ON +#endif + +C !LOCAL VARIABLES: C == Local variables -C fVer[STUV] o fVer: Vertical flux term - note fVer -C is "pipelined" in the vertical -C so we need an fVer for each -C variable. -C rhoK, rhoKM1 - Density at current level, and level above -C phiHyd - Hydrostatic part of the potential phiHydi. -C In z coords phiHydiHyd is the hydrostatic -C Potential (=pressure/rho0) anomaly -C In p coords phiHydiHyd is the geopotential -C surface height anomaly. -C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean) -C phiSurfY or geopotentiel (atmos) in X and Y direction -C iMin, iMax - Ranges and sub-block indices on which calculations -C jMin, jMax are applied. -C bi, bj -C k, kup, - Index for layer above and below. kup and kDown -C kDown, km1 are switched with layer to be the appropriate -C index into fVerTerm. +C fVer[UV] o fVer: Vertical flux term - note fVer +C is "pipelined" in the vertical +C so we need an fVer for each +C variable. +C phiHydC :: hydrostatic potential anomaly at cell center +C In z coords phiHyd is the hydrostatic potential +C (=pressure/rho0) anomaly +C In p coords phiHyd is the geopotential height anomaly. +C phiHydF :: hydrostatic potential anomaly at middle between 2 centers +C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom. +C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean) +C phiSurfY or geopotential (atmos) in X and Y direction +C guDissip :: dissipation tendency (all explicit terms), u component +C gvDissip :: dissipation tendency (all explicit terms), v component +C KappaRU :: vertical viscosity for velocity U-component +C KappaRV :: vertical viscosity for velocity V-component +C iMin, iMax :: Ranges and sub-block indices on which calculations +C jMin, jMax are applied. +C bi, bj :: tile indices +C k :: current level index +C km1, kp1 :: index of level above (k-1) and below (k+1) +C kUp, kDown :: Index for interface above and below. kUp and kDown are +C are switched with k to be the appropriate index into fVerU,V _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) - _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) - _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - -C This is currently used by IVDC and Diagnostics - _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) +#ifdef ALLOW_SMAG_3D +C str11 :: strain component Vxx @ grid-cell center +C str22 :: strain component Vyy @ grid-cell center +C str33 :: strain component Vzz @ grid-cell center +C str12 :: strain component Vxy @ grid-cell corner +C str13 :: strain component Vxz @ above uVel +C str23 :: strain component Vyz @ above vVel +C viscAh3d_00 :: Smagorinsky viscosity @ grid-cell center +C viscAh3d_12 :: Smagorinsky viscosity @ grid-cell corner +C viscAh3d_13 :: Smagorinsky viscosity @ above uVel +C viscAh3d_23 :: Smagorinsky viscosity @ above vVel +C addDissU :: zonal momentum tendency from 3-D Smag. viscosity +C addDissV :: merid momentum tendency from 3-D Smag. viscosity + _RL str11(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) + _RL str22(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) + _RL str33(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) + _RL str12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) + _RL str13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) + _RL str23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) + _RL viscAh3d_00(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) + _RL viscAh3d_12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr ) + _RL viscAh3d_13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) + _RL viscAh3d_23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) + _RL addDissU(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL addDissV(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +#elif ( defined ALLOW_NONHYDROSTATIC ) + _RL str13(1), str23(1), str33(1) + _RL viscAh3d_00(1), viscAh3d_13(1), viscAh3d_23(1) +#endif - INTEGER iMin, iMax - INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j - INTEGER k, km1, kp1, kup, kDown + INTEGER k, km1, kp1, kUp, kDown + INTEGER iMin, iMax + INTEGER jMin, jMax + PARAMETER( iMin = 0 , iMax = sNx+1 ) + PARAMETER( jMin = 0 , jMax = sNy+1 ) + +#ifdef ALLOW_DIAGNOSTICS + LOGICAL dPhiHydDiagIsOn + _RL tmpFac +#endif /* ALLOW_DIAGNOSTICS */ -Cjmc : add for phiHyd output <- but not working if multi tile per CPU -c CHARACTER*(MAX_LEN_MBUF) suff -c LOGICAL DIFFERENT_MULTIPLE -c EXTERNAL DIFFERENT_MULTIPLE -Cjmc(end) - C--- The algorithm... C C "Correction Step" @@ -147,28 +287,28 @@ C (1 + dt * K * d_zz) theta[n] = theta* C (1 + dt * K * d_zz) salt[n] = salt* C--- +CEOP -C-- Set up work arrays with valid (i.e. not NaN) values -C These inital values do not alter the numerical results. They -C just ensure that all memory references are to valid floating -C point numbers. This prevents spurious hardware signals due to -C uninitialised but inert locations. - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - DO k=1,Nr - phiHyd(i,j,k) = 0. _d 0 - KappaRU(i,j,k) = 0. _d 0 - KappaRV(i,j,k) = 0. _d 0 - sigmaX(i,j,k) = 0. _d 0 - sigmaY(i,j,k) = 0. _d 0 - sigmaR(i,j,k) = 0. _d 0 - ENDDO - rhoKM1 (i,j) = 0. _d 0 - rhok (i,j) = 0. _d 0 - phiSurfX(i,j) = 0. _d 0 - phiSurfY(i,j) = 0. _d 0 - ENDDO - ENDDO +#ifdef ALLOW_DEBUG + IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid ) +#endif + +#ifdef ALLOW_DIAGNOSTICS + dPhiHydDiagIsOn = .FALSE. + IF ( useDiagnostics ) + & dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid ) + & .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid ) +#endif + +C-- Call to routine for calculation of Eliassen-Palm-flux-forced +C U-tendency, if desired: +#ifdef INCLUDE_EP_FORCING_CODE + CALL CALC_EP_FORCING(myThid) +#endif + +#ifdef ALLOW_AUTODIFF_MONITOR_DIAG + CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid ) +#endif #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC @@ -180,7 +320,7 @@ #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC CHPF$ INDEPENDENT, NEW (fVerU,fVerV -CHPF$& ,phiHyd +CHPF$& ,phiHydF CHPF$& ,KappaRU,KappaRV CHPF$& ) #endif /* ALLOW_AUTODIFF_TAMC */ @@ -190,60 +330,145 @@ #ifdef ALLOW_AUTODIFF_TAMC act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 - act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 - act3 = myThid - 1 max3 = nTx*nTy - act4 = ikey_dynamics - 1 - - ikey = (act1 + 1) + act2*max1 + idynkey = (act1 + 1) + act2*max1 & + act3*max1*max2 & + act4*max1*max2*max3 #endif /* ALLOW_AUTODIFF_TAMC */ -C-- Set up work arrays that need valid initial values +C-- Set up work arrays with valid (i.e. not NaN) values +C These initial values do not alter the numerical results. They +C just ensure that all memory references are to valid floating +C point numbers. This prevents spurious hardware signals due to +C uninitialised but inert locations. + +#ifdef ALLOW_AUTODIFF_TAMC + DO k=1,Nr + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx +cph( +c-- need some re-initialisation here to break dependencies +cph) + gU(i,j,k,bi,bj) = 0. _d 0 + gV(i,j,k,bi,bj) = 0. _d 0 + ENDDO + ENDDO + ENDDO +#endif /* ALLOW_AUTODIFF_TAMC */ DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fVerU (i,j,1) = 0. _d 0 fVerU (i,j,2) = 0. _d 0 fVerV (i,j,1) = 0. _d 0 fVerV (i,j,2) = 0. _d 0 + phiHydF (i,j) = 0. _d 0 + phiHydC (i,j) = 0. _d 0 +#ifndef INCLUDE_PHIHYD_CALCULATION_CODE + dPhiHydX(i,j) = 0. _d 0 + dPhiHydY(i,j) = 0. _d 0 +#endif + phiSurfX(i,j) = 0. _d 0 + phiSurfY(i,j) = 0. _d 0 + guDissip(i,j) = 0. _d 0 + gvDissip(i,j) = 0. _d 0 +#ifdef ALLOW_AUTODIFF_TAMC + phiHydLow(i,j,bi,bj) = 0. _d 0 +# if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM) +# ifndef DISABLE_RSTAR_CODE +# ifndef ALLOW_AUTODIFF_OPENAD + dWtransC(i,j,bi,bj) = 0. _d 0 + dWtransU(i,j,bi,bj) = 0. _d 0 + dWtransV(i,j,bi,bj) = 0. _d 0 +# endif +# endif +# endif +#endif ENDDO ENDDO C-- Start computation of dynamics - iMin = 1-OLx+2 - iMax = sNx+OLx-1 - jMin = 1-OLy+2 - jMax = sNy+OLy-1 #ifdef ALLOW_AUTODIFF_TAMC -CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte -CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte -CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE wVel (:,:,:,bi,bj) = +CADJ & comlev1_bibj, key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ -C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP) +C-- Explicit part of the Surface Potential Gradient (add in TIMESTEP) C (note: this loop will be replaced by CALL CALC_GRAD_ETA) IF (implicSurfPress.NE.1.) THEN CALL CALC_GRAD_PHI_SURF( I bi,bj,iMin,iMax,jMin,jMax, I etaN, O phiSurfX,phiSurfY, - I myThid ) + I myThid ) ENDIF -#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL -C-- Calculate the total vertical diffusivity - DO k=1,Nr - CALL CALC_VISCOSITY( - I bi,bj,iMin,iMax,jMin,jMax,k, - O KappaRU,KappaRV, - I myThid) - ENDDO +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte +CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte +#ifdef ALLOW_KPP +CADJ STORE KPPviscAz (:,:,:,bi,bj) +CADJ & = comlev1_bibj, key=idynkey, byte=isbyte +#endif /* ALLOW_KPP */ +#endif /* ALLOW_AUTODIFF_TAMC */ + +#if (defined INCLUDE_CALC_DIFFUSIVITY_CALL) && !(defined ALLOW_AUTODIFF) + IF ( .NOT.momViscosity ) THEN +#endif /* INCLUDE_CALC_DIFFUSIVITY_CALL and not ALLOW_AUTODIFF */ + DO k=1,Nr + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + KappaRU(i,j,k) = 0. _d 0 + KappaRV(i,j,k) = 0. _d 0 + ENDDO + ENDDO + ENDDO +#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL +C-- Calculate the total vertical viscosity +#ifdef ALLOW_AUTODIFF + IF ( momViscosity ) THEN +#else + ELSE +#endif + CALL CALC_VISCOSITY( + I bi,bj, iMin,iMax,jMin,jMax, + O KappaRU, KappaRV, + I myThid ) + ENDIF +#endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */ + +#ifdef ALLOW_SMAG_3D + IF ( useSmag3D ) THEN + CALL MOM_CALC_3D_STRAIN( + O str11, str22, str33, str12, str13, str23, + I bi, bj, myThid ) + ENDIF +#endif /* ALLOW_SMAG_3D */ + +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE KappaRU(:,:,:) +CADJ & = comlev1_bibj, key=idynkey, byte=isbyte +CADJ STORE KappaRV(:,:,:) +CADJ & = comlev1_bibj, key=idynkey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + +#ifdef ALLOW_OBCS +C-- For Stevens boundary conditions velocities need to be extrapolated +C (copied) to a narrow strip outside the domain + IF ( useOBCS ) THEN + CALL OBCS_COPY_UV_N( + U uVel(1-OLx,1-OLy,1,bi,bj), + U vVel(1-OLx,1-OLy,1,bi,bj), + I Nr, bi, bj, myThid ) + ENDIF +#endif /* ALLOW_OBCS */ + +#ifdef ALLOW_EDDYPSI + CALL CALC_EDDY_STRESS(bi,bj,myThid) #endif C-- Start of dynamics loop @@ -258,168 +483,328 @@ kup = 1+MOD(k+1,2) kDown= 1+MOD(k,2) -#ifdef ALLOW_AUTODIFF_TAMC - kkey = (ikey-1)*Nr + k +#ifdef ALLOW_AUTODIFF_TAMC + kkey = (idynkey-1)*Nr + k +c +CADJ STORE totPhiHyd (:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE phiHydLow (:,:,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE theta (:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE salt (:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE gT(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE gS(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +# ifdef NONLIN_FRSURF +cph-test +CADJ STORE phiHydC (:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE phiHydF (:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE guDissip (:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE gvDissip (:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE fVerU (:,:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE fVerV (:,:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE gU(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE gV(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +# ifndef ALLOW_ADAMSBASHFORTH_3 +CADJ STORE guNm1(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE gvNm1(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +# else +CADJ STORE guNm(:,:,k,bi,bj,1) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE guNm(:,:,k,bi,bj,2) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE gvNm(:,:,k,bi,bj,1) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE gvNm(:,:,k,bi,bj,2) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +# endif +# ifdef ALLOW_CD_CODE +CADJ STORE uNM1(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE vNM1(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE uVelD(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE vVelD(:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +# endif +# endif +# ifdef ALLOW_DEPTH_CONTROL +CADJ STORE fVerU (:,:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE fVerV (:,:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +# endif #endif /* ALLOW_AUTODIFF_TAMC */ -C-- Integrate hydrostatic balance for phiHyd with BC of -C phiHyd(z=0)=0 -C distinguishe between Stagger and Non Stagger time stepping - IF (staggerTimeStep) THEN +C-- Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0 + IF ( implicitIntGravWave ) THEN CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,k, I gT, gS, - U phiHyd, - I myThid ) + U phiHydF, + O phiHydC, dPhiHydX, dPhiHydY, + I myTime, myIter, myThid ) ELSE CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,k, I theta, salt, - U phiHyd, - I myThid ) + U phiHydF, + O phiHydC, dPhiHydX, dPhiHydY, + I myTime, myIter, myThid ) + ENDIF +#ifdef ALLOW_DIAGNOSTICS + IF ( dPhiHydDiagIsOn ) THEN + tmpFac = -1. _d 0 + CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1, + & 'Um_dPHdx', k, 1, 2, bi, bj, myThid ) + CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1, + & 'Vm_dPHdy', k, 1, 2, bi, bj, myThid ) ENDIF +#endif /* ALLOW_DIAGNOSTICS */ C-- Calculate accelerations in the momentum equations (gU, gV, ...) -C and step forward storing the result in gUnm1, gVnm1, etc... +C and step forward storing the result in gU, gV, etc... IF ( momStepping ) THEN -#ifndef DISABLE_MOM_FLUXFORM - IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM( - I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, - I phiHyd,KappaRU,KappaRV, - U fVerU, fVerV, +#ifdef ALLOW_AUTODIFF_TAMC +# ifdef NONLIN_FRSURF +# if (defined ALLOW_MOM_FLUXFORM) && !(defined DISABLE_RSTAR_CODE) +CADJ STORE dWtransC(:,:,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE dWtransU(:,:,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE dWtransV(:,:,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +# endif +CADJ STORE fVerU(:,:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE fVerV(:,:,:) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +# endif /* NONLIN_FRSURF */ +#endif /* ALLOW_AUTODIFF_TAMC */ + IF (.NOT. vectorInvariantMomentum) THEN +#ifdef ALLOW_MOM_FLUXFORM + CALL MOM_FLUXFORM( + I bi,bj,k,iMin,iMax,jMin,jMax, + I KappaRU, KappaRV, + U fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp), + O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown), + O guDissip, gvDissip, I myTime, myIter, myThid) #endif -#ifndef DISABLE_MOM_VECINV - IF (vectorInvariantMomentum) CALL MOM_VECINV( - I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, - I phiHyd,KappaRU,KappaRV, - U fVerU, fVerV, + ELSE +#ifdef ALLOW_MOM_VECINV + CALL MOM_VECINV( + I bi,bj,k,iMin,iMax,jMin,jMax, + I KappaRU, KappaRV, + I fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp), + O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown), + O guDissip, gvDissip, I myTime, myIter, myThid) #endif + ENDIF + +#ifdef ALLOW_SMAG_3D + IF ( useSmag3D ) THEN + CALL MOM_CALC_SMAG_3D( + I str11, str22, str33, str12, str13, str23, + O viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23, + I smag3D_hLsC, smag3D_hLsW, smag3D_hLsS, smag3D_hLsZ, + I k, bi, bj, myThid ) + CALL MOM_UV_SMAG_3D( + I str11, str22, str12, str13, str23, + I viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23, + O addDissU, addDissV, + I iMin,iMax,jMin,jMax, k, bi, bj, myThid ) + DO j= jMin,jMax + DO i= iMin,iMax + guDissip(i,j) = guDissip(i,j) + addDissU(i,j) + gvDissip(i,j) = gvDissip(i,j) + addDissV(i,j) + ENDDO + ENDDO + ENDIF +#endif /* ALLOW_SMAG_3D */ + CALL TIMESTEP( I bi,bj,iMin,iMax,jMin,jMax,k, - I phiHyd, phiSurfX, phiSurfY, - I myIter, myThid) - -#ifdef ALLOW_OBCS -C-- Apply open boundary conditions - IF (useOBCS) THEN - CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) - END IF -#endif /* ALLOW_OBCS */ + I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY, + I guDissip, gvDissip, + I myTime, myIter, myThid) -#ifdef ALLOW_AUTODIFF_TAMC -#ifdef INCLUDE_CD_CODE - ELSE - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - guCD(i,j,k,bi,bj) = 0.0 - gvCD(i,j,k,bi,bj) = 0.0 - END DO - END DO -#endif /* INCLUDE_CD_CODE */ -#endif /* ALLOW_AUTODIFF_TAMC */ ENDIF - C-- end of dynamics k loop (1:Nr) ENDDO - - -C-- Implicit viscosity - IF (implicitViscosity.AND.momStepping) THEN +C-- Implicit Vertical advection & viscosity +#if (defined (INCLUDE_IMPLVERTADV_CODE) && \ + defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC)) + IF ( momImplVertAdv ) THEN + CALL MOM_U_IMPLICIT_R( kappaRU, + I bi, bj, myTime, myIter, myThid ) + CALL MOM_V_IMPLICIT_R( kappaRV, + I bi, bj, myTime, myIter, myThid ) + ELSEIF ( implicitViscosity ) THEN +#else /* INCLUDE_IMPLVERTADV_CODE */ + IF ( implicitViscosity ) THEN +#endif /* INCLUDE_IMPLVERTADV_CODE */ #ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 3 -CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte +CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, - I deltaTmom, KappaRU,recip_HFacW, - U gUNm1, + I -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj), + U gU, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 4 -CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte +CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, - I deltaTmom, KappaRV,recip_HFacS, - U gVNm1, + I -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj), + U gV, I myThid ) + ENDIF -#ifdef ALLOW_OBCS +#ifdef ALLOW_OBCS C-- Apply open boundary conditions - IF (useOBCS) THEN - DO K=1,Nr - CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) - ENDDO - END IF -#endif /* ALLOW_OBCS */ + IF ( useOBCS ) THEN +C-- but first save intermediate velocities to be used in the +C next time step for the Stevens boundary conditions + CALL OBCS_SAVE_UV_N( + I bi, bj, iMin, iMax, jMin, jMax, 0, + I gU, gV, myThid ) + CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid ) + ENDIF +#endif /* ALLOW_OBCS */ -#ifdef INCLUDE_CD_CODE +#ifdef ALLOW_CD_CODE + IF (implicitViscosity.AND.useCDscheme) THEN #ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 5 -CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, - I deltaTmom, KappaRU,recip_HFacW, + I 0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj), U vVelD, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 6 -CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, - I deltaTmom, KappaRV,recip_HFacS, + I 0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj), U uVelD, I myThid ) -#endif /* INCLUDE_CD_CODE */ -C-- End If implicitViscosity.AND.momStepping ENDIF - -Cjmc : add for phiHyd output <- but not working if multi tile per CPU -c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime) -c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN -c WRITE(suff,'(I10.10)') myIter+1 -c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid) -c ENDIF -Cjmc(end) - -#ifdef ALLOW_TIMEAVE - IF (taveFreq.GT.0.) THEN - CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr, - I deltaTclock, bi, bj, myThid) - IF (ivdc_kappa.NE.0.) THEN - CALL TIMEAVE_CUMULATE(ConvectCountTave, ConvectCount, Nr, - I deltaTclock, bi, bj, myThid) - ENDIF +#endif /* ALLOW_CD_CODE */ +C-- End implicit Vertical advection & viscosity + +C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| + +#ifdef ALLOW_NONHYDROSTATIC +C-- Step forward W field in N-H algorithm + IF ( nonHydrostatic ) THEN +#ifdef ALLOW_DEBUG + IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid ) +#endif + CALL TIMER_START('CALC_GW [DYNAMICS]',myThid) + CALL CALC_GW( + I bi,bj, KappaRU, KappaRV, + I str13, str23, str33, + I viscAh3d_00, viscAh3d_13, viscAh3d_23, + I myTime, myIter, myThid ) ENDIF -#endif /* ALLOW_TIMEAVE */ + IF ( nonHydrostatic.OR.implicitIntGravWave ) + & CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid ) + IF ( nonHydrostatic ) + & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid) +#endif + +C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| +C- end of bi,bj loops ENDDO ENDDO -#ifndef DISABLE_DEBUGMODE - If (debugMode) THEN +#ifdef ALLOW_OBCS + IF (useOBCS) THEN + CALL OBCS_EXCHANGES( myThid ) + ENDIF +#endif + +Cml( +C In order to compare the variance of phiHydLow of a p/z-coordinate +C run with etaH of a z/p-coordinate run the drift of phiHydLow +C has to be removed by something like the following subroutine: +C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF, +C & 'phiHydLow', myTime, myThid ) +Cml) + +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + + CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid) + CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid) + + tmpFac = 1. _d 0 + CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2, + & 'PHIHYDSQ',0,Nr,0,1,1,myThid) + + CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2, + & 'PHIBOTSQ',0, 1,0,1,1,myThid) + + ENDIF +#endif /* ALLOW_DIAGNOSTICS */ + +#ifdef ALLOW_DEBUG + IF ( debugLevel .GE. debLevD ) THEN CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid) CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid) - CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid) - CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid) - CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid) - CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid) - CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid) - CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid) - CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid) - CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid) +#ifndef ALLOW_ADAMSBASHFORTH_3 + CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid) +#endif + ENDIF +#endif + +#ifdef DYNAMICS_GUGV_EXCH_CHECK +C- jmc: For safety checking only: This Exchange here should not change +C the solution. If solution changes, it means something is wrong, +C but it does not mean that it is less wrong with this exchange. + IF ( debugLevel .GE. debLevE ) THEN + CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid) ENDIF #endif +#ifdef ALLOW_DEBUG + IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid ) +#endif + RETURN END