/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.19.2.2 by cnh, Sat Jun 20 21:04:59 1998 UTC revision 1.167 by jmc, Tue Nov 5 13:34:31 2013 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6    #ifdef ALLOW_MOM_COMMON
7    # include "MOM_COMMON_OPTIONS.h"
8    #endif
9    #ifdef ALLOW_OBCS
10    # include "OBCS_OPTIONS.h"
11    #endif
12    
13    #undef DYNAMICS_GUGV_EXCH_CHECK
14    
15    CBOP
16    C     !ROUTINE: DYNAMICS
17    C     !INTERFACE:
18        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
19  C     /==========================================================\  C     !DESCRIPTION: \bv
20  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
21  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS
22  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model
23  C     |==========================================================|  C     |   dynamics.
24  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
25  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each
26  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have
27  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.
28  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this
29  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference
30  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region
31  C     | Notes                                                    |  C     | require special consideration.
32  C     | =====                                                    |  C     | The algorithm...
33  C     | C*P* comments indicating place holders for which code is |  C     |
34  C     |      presently being developed.                          |  C     | "Correction Step"
35  C     \==========================================================/  C     | =================
36    C     | Here we update the horizontal velocities with the surface
37    C     | pressure such that the resulting flow is either consistent
38    C     | with the free-surface evolution or the rigid-lid:
39    C     |   U[n] = U* + dt x d/dx P
40    C     |   V[n] = V* + dt x d/dy P
41    C     |   W[n] = W* + dt x d/dz P  (NH mode)
42    C     |
43    C     | "Calculation of Gs"
44    C     | ===================
45    C     | This is where all the accelerations and tendencies (ie.
46    C     | physics, parameterizations etc...) are calculated
47    C     |   rho = rho ( theta[n], salt[n] )
48    C     |   b   = b(rho, theta)
49    C     |   K31 = K31 ( rho )
50    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
51    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
52    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
53    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
54    C     |
55    C     | "Time-stepping" or "Prediction"
56    C     | ================================
57    C     | The models variables are stepped forward with the appropriate
58    C     | time-stepping scheme (currently we use Adams-Bashforth II)
59    C     | - For momentum, the result is always *only* a "prediction"
60    C     | in that the flow may be divergent and will be "corrected"
61    C     | later with a surface pressure gradient.
62    C     | - Normally for tracers the result is the new field at time
63    C     | level [n+1} *BUT* in the case of implicit diffusion the result
64    C     | is also *only* a prediction.
65    C     | - We denote "predictors" with an asterisk (*).
66    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
67    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
68    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     | With implicit diffusion:
71    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
72    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
73    C     |   (1 + dt * K * d_zz) theta[n] = theta*
74    C     |   (1 + dt * K * d_zz) salt[n] = salt*
75    C     |
76    C     *==========================================================*
77    C     \ev
78    C     !USES:
79          IMPLICIT NONE
80  C     == Global variables ===  C     == Global variables ===
81  #include "SIZE.h"  #include "SIZE.h"
82  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
83  #include "PARAMS.h"  #include "PARAMS.h"
84    #include "GRID.h"
85  #include "DYNVARS.h"  #include "DYNVARS.h"
86    #ifdef ALLOW_MOM_COMMON
87    # include "MOM_VISC.h"
88    #endif
89    #ifdef ALLOW_CD_CODE
90    # include "CD_CODE_VARS.h"
91    #endif
92    #ifdef ALLOW_AUTODIFF_TAMC
93    # include "tamc.h"
94    # include "tamc_keys.h"
95    # include "FFIELDS.h"
96    # include "EOS.h"
97    # ifdef ALLOW_KPP
98    #  include "KPP.h"
99    # endif
100    # ifdef ALLOW_PTRACERS
101    #  include "PTRACERS_SIZE.h"
102    #  include "PTRACERS_FIELDS.h"
103    # endif
104    # ifdef ALLOW_OBCS
105    #  include "OBCS_PARAMS.h"
106    #  include "OBCS_FIELDS.h"
107    #  ifdef ALLOW_PTRACERS
108    #   include "OBCS_PTRACERS.h"
109    #  endif
110    # endif
111    # ifdef ALLOW_MOM_FLUXFORM
112    #  include "MOM_FLUXFORM.h"
113    # endif
114    #endif /* ALLOW_AUTODIFF_TAMC */
115    
116    C     !CALLING SEQUENCE:
117    C     DYNAMICS()
118    C      |
119    C      |-- CALC_EP_FORCING
120    C      |
121    C      |-- CALC_GRAD_PHI_SURF
122    C      |
123    C      |-- CALC_VISCOSITY
124    C      |
125    C      |-- MOM_CALC_3D_STRAIN
126    C      |
127    C      |-- CALC_EDDY_STRESS
128    C      |
129    C      |-- CALC_PHI_HYD
130    C      |
131    C      |-- MOM_FLUXFORM
132    C      |
133    C      |-- MOM_VECINV
134    C      |
135    C      |-- MOM_CALC_SMAG_3D
136    C      |-- MOM_UV_SMAG_3D
137    C      |
138    C      |-- TIMESTEP
139    C      |
140    C      |-- MOM_U_IMPLICIT_R
141    C      |-- MOM_V_IMPLICIT_R
142    C      |
143    C      |-- IMPLDIFF
144    C      |
145    C      |-- OBCS_APPLY_UV
146    C      |
147    C      |-- CALC_GW
148    C      |
149    C      |-- DIAGNOSTICS_FILL
150    C      |-- DEBUG_STATS_RL
151    
152    C     !INPUT/OUTPUT PARAMETERS:
153  C     == Routine arguments ==  C     == Routine arguments ==
154  C     myTime - Current time in simulation  C     myTime :: Current time in simulation
155  C     myIter - Current iteration number in simulation  C     myIter :: Current iteration number in simulation
156  C     myThid - Thread number for this instance of the routine.  C     myThid :: Thread number for this instance of the routine.
       INTEGER myThid  
157        _RL myTime        _RL myTime
158        INTEGER myIter        INTEGER myIter
159          INTEGER myThid
160    
161    C     !FUNCTIONS:
162    #ifdef ALLOW_DIAGNOSTICS
163          LOGICAL  DIAGNOSTICS_IS_ON
164          EXTERNAL DIAGNOSTICS_IS_ON
165    #endif
166    
167    C     !LOCAL VARIABLES:
168  C     == Local variables  C     == Local variables
169  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
170  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
171  C     wVel                     o uTrans: Zonal transport  C                                    so we need an fVer for each
172  C                              o vTrans: Meridional transport  C                                    variable.
173  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
174  C                              o wVel:   Vertical velocity at upper and lower  C                   In z coords phiHyd is the hydrostatic potential
175  C                                        cell faces.  C                      (=pressure/rho0) anomaly
176  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In p coords phiHyd is the geopotential height anomaly.
177  C                              o maskUp: land/water mask for W points  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
178  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
179  C     mTerm, pTerm,            tendency equations.  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
180  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     phiSurfY             or geopotential (atmos) in X and Y direction
181  C                              o xTerm: Mixing term  C     guDissip   :: dissipation tendency (all explicit terms), u component
182  C                              o cTerm: Coriolis term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
183  C                              o mTerm: Metric term  C     KappaRU    :: vertical viscosity for velocity U-component
184  C                              o pTerm: Pressure term  C     KappaRV    :: vertical viscosity for velocity V-component
185  C                              o fZon: Zonal flux term  C     iMin, iMax :: Ranges and sub-block indices on which calculations
186  C                              o fMer: Meridional flux term  C     jMin, jMax    are applied.
187  C                              o fVer: Vertical flux term - note fVer  C     bi, bj     :: tile indices
188  C                                      is "pipelined" in the vertical  C     k          :: current level index
189  C                                      so we need an fVer for each  C     km1, kp1   :: index of level above (k-1) and below (k+1)
190  C                                      variable.  C     kUp, kDown :: Index for interface above and below. kUp and kDown are
191  C     iMin, iMax - Ranges and sub-block indices on which calculations  C                   are switched with k to be the appropriate index into fVerU,V
192  C     jMin, jMax   are applied.        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
193  C     bi, bj        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
194  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
195  C                          are switched with layer to be the appropriate index        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
196  C                          into fVerTerm        _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
197        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
198        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
199        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
200        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
201        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
202        _RL wVel  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
203        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
204        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  #ifdef ALLOW_SMAG_3D
205        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str11       :: strain component Vxx @ grid-cell center
206        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str22       :: strain component Vyy @ grid-cell center
207        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str33       :: strain component Vzz @ grid-cell center
208        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str12       :: strain component Vxy @ grid-cell corner
209        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str13       :: strain component Vxz @ above uVel
210        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str23       :: strain component Vyz @ above vVel
211        _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     viscAh3d_00 :: Smagorinsky viscosity @ grid-cell center
212        _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  C     viscAh3d_12 :: Smagorinsky viscosity @ grid-cell corner
213        _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  C     viscAh3d_13 :: Smagorinsky viscosity @ above uVel
214        _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  C     viscAh3d_23 :: Smagorinsky viscosity @ above vVel
215        _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  C     addDissU    :: zonal momentum tendency from 3-D Smag. viscosity
216        _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  C     addDissV    :: merid momentum tendency from 3-D Smag. viscosity
217        _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL str11(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
218        _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL str22(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
219        _RL rhok  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL str33(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
220        _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL str12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
221        _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL str13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
222        _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL str23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
223        _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)        _RL viscAh3d_00(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
224        _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)        _RL viscAh3d_12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
225        _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)        _RL viscAh3d_13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
226        _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL viscAh3d_23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
227        _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)        _RL addDissU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
228        _RL KappaZS(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)        _RL addDissV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
229    #elif ( defined ALLOW_NONHYDROSTATIC )
230          _RL str13(1), str23(1), str33(1)
231          _RL viscAh3d_00(1), viscAh3d_13(1), viscAh3d_23(1)
232    #endif
233    
       INTEGER iMin, iMax  
       INTEGER jMin, jMax  
234        INTEGER bi, bj        INTEGER bi, bj
235        INTEGER i, j        INTEGER i, j
236        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kUp, kDown
237        LOGICAL BOTTOM_LAYER        INTEGER iMin, iMax
238          INTEGER jMin, jMax
239          PARAMETER( iMin = 0 , iMax = sNx+1 )
240          PARAMETER( jMin = 0 , jMax = sNy+1 )
241    
242    #ifdef ALLOW_DIAGNOSTICS
243          LOGICAL dPhiHydDiagIsOn
244          _RL tmpFac
245    #endif /* ALLOW_DIAGNOSTICS */
246    
247  C---    The algorithm...  C---    The algorithm...
248  C  C
# Line 119  C       "Calculation of Gs" Line 258  C       "Calculation of Gs"
258  C       ===================  C       ===================
259  C       This is where all the accelerations and tendencies (ie.  C       This is where all the accelerations and tendencies (ie.
260  C       physics, parameterizations etc...) are calculated  C       physics, parameterizations etc...) are calculated
 C         w = sum_z ( div. u[n] )  
261  C         rho = rho ( theta[n], salt[n] )  C         rho = rho ( theta[n], salt[n] )
262    C         b   = b(rho, theta)
263  C         K31 = K31 ( rho )  C         K31 = K31 ( rho )
264  C         Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )  C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
265  C         Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )  C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
266  C         Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )  C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
267  C         Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )  C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
268  C  C
269  C       "Time-stepping" or "Prediction"  C       "Time-stepping" or "Prediction"
270  C       ================================  C       ================================
# Line 148  C         salt* = salt[n] + dt x ( 3/2 G Line 287  C         salt* = salt[n] + dt x ( 3/2 G
287  C         (1 + dt * K * d_zz) theta[n] = theta*  C         (1 + dt * K * d_zz) theta[n] = theta*
288  C         (1 + dt * K * d_zz) salt[n] = salt*  C         (1 + dt * K * d_zz) salt[n] = salt*
289  C---  C---
290    CEOP
291    
292    #ifdef ALLOW_DEBUG
293          IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
294    #endif
295    
296    #ifdef ALLOW_DIAGNOSTICS
297          dPhiHydDiagIsOn = .FALSE.
298          IF ( useDiagnostics )
299         &  dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
300         &               .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
301    #endif
302    
303    C-- Call to routine for calculation of Eliassen-Palm-flux-forced
304    C    U-tendency, if desired:
305    #ifdef INCLUDE_EP_FORCING_CODE
306          CALL CALC_EP_FORCING(myThid)
307    #endif
308    
309    #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
310          CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
311    #endif
312    
313    #ifdef ALLOW_AUTODIFF_TAMC
314    C--   HPF directive to help TAMC
315    CHPF$ INDEPENDENT
316    #endif /* ALLOW_AUTODIFF_TAMC */
317    
318          DO bj=myByLo(myThid),myByHi(myThid)
319    
320    #ifdef ALLOW_AUTODIFF_TAMC
321    C--    HPF directive to help TAMC
322    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
323    CHPF$&                  ,phiHydF
324    CHPF$&                  ,KappaRU,KappaRV
325    CHPF$&                  )
326    #endif /* ALLOW_AUTODIFF_TAMC */
327    
328           DO bi=myBxLo(myThid),myBxHi(myThid)
329    
330    #ifdef ALLOW_AUTODIFF_TAMC
331              act1 = bi - myBxLo(myThid)
332              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
333              act2 = bj - myByLo(myThid)
334              max2 = myByHi(myThid) - myByLo(myThid) + 1
335              act3 = myThid - 1
336              max3 = nTx*nTy
337              act4 = ikey_dynamics - 1
338              idynkey = (act1 + 1) + act2*max1
339         &                      + act3*max1*max2
340         &                      + act4*max1*max2*max3
341    #endif /* ALLOW_AUTODIFF_TAMC */
342    
343  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
344  C     These inital values do not alter the numerical results. They  C     These initial values do not alter the numerical results. They
345  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
346  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
347  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0. _d 0  
         yA(i,j)      = 0. _d 0  
         uTrans(i,j)  = 0. _d 0  
         vTrans(i,j)  = 0. _d 0  
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
          KappaZT(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhok  (i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
         rhotmp(i,j)  = 0. _d 0  
         maskC (i,j)  = 0. _d 0  
        ENDDO  
       ENDDO  
   
       DO bj=myByLo(myThid),myByHi(myThid)  
        DO bi=myBxLo(myThid),myBxHi(myThid)  
348    
349  C--     Set up work arrays that need valid initial values  #ifdef ALLOW_AUTODIFF_TAMC
350            DO k=1,Nr
351             DO j=1-OLy,sNy+OLy
352              DO i=1-OLx,sNx+OLx
353    cph(
354    c--   need some re-initialisation here to break dependencies
355    cph)
356               gU(i,j,k,bi,bj) = 0. _d 0
357               gV(i,j,k,bi,bj) = 0. _d 0
358              ENDDO
359             ENDDO
360            ENDDO
361    #endif /* ALLOW_AUTODIFF_TAMC */
362          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
363           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
364            wTrans(i,j)  = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
365            wVel  (i,j,1) = 0. _d 0            fVerU  (i,j,2) = 0. _d 0
366            wVel  (i,j,2) = 0. _d 0            fVerV  (i,j,1) = 0. _d 0
367            fVerT(i,j,1) = 0. _d 0            fVerV  (i,j,2) = 0. _d 0
368            fVerT(i,j,2) = 0. _d 0            phiHydF (i,j)  = 0. _d 0
369            fVerS(i,j,1) = 0. _d 0            phiHydC (i,j)  = 0. _d 0
370            fVerS(i,j,2) = 0. _d 0  #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
371            fVerU(i,j,1) = 0. _d 0            dPhiHydX(i,j)  = 0. _d 0
372            fVerU(i,j,2) = 0. _d 0            dPhiHydY(i,j)  = 0. _d 0
373            fVerV(i,j,1) = 0. _d 0  #endif
374            fVerV(i,j,2) = 0. _d 0            phiSurfX(i,j)  = 0. _d 0
375            pH(i,j,1) = 0. _d 0            phiSurfY(i,j)  = 0. _d 0
376            K13(i,j,1) = 0. _d 0            guDissip(i,j)  = 0. _d 0
377            K23(i,j,1) = 0. _d 0            gvDissip(i,j)  = 0. _d 0
378            K33(i,j,1) = 0. _d 0  #ifdef ALLOW_AUTODIFF_TAMC
379            KapGM(i,j) = 0. _d 0            phiHydLow(i,j,bi,bj) = 0. _d 0
380    # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
381    #  ifndef DISABLE_RSTAR_CODE
382    #   ifndef ALLOW_AUTODIFF_OPENAD
383              dWtransC(i,j,bi,bj) = 0. _d 0
384              dWtransU(i,j,bi,bj) = 0. _d 0
385              dWtransV(i,j,bi,bj) = 0. _d 0
386    #   endif
387    #  endif
388    # endif
389    #endif
390           ENDDO           ENDDO
391          ENDDO          ENDDO
392    
393          iMin = 1-OLx+1  C--     Start computation of dynamics
         iMax = sNx+OLx  
         jMin = 1-OLy+1  
         jMax = sNy+OLy  
   
         K = 1  
         BOTTOM_LAYER = K .EQ. Nz  
   
 C--     Calculate gradient of surface pressure  
         CALL GRAD_PSURF(  
      I       bi,bj,iMin,iMax,jMin,jMax,  
      O       pSurfX,pSurfY,  
      I       myThid)  
   
 C--     Update fields in top level according to tendency terms  
         CALL CORRECTION_STEP(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myTime,myThid)  
   
         IF ( .NOT. BOTTOM_LAYER ) THEN  
 C--      Update fields in layer below according to tendency terms  
          CALL CORRECTION_STEP(  
      I        bi,bj,iMin,iMax,jMin,jMax,K+1,pSurfX,pSurfY,myTime,myThid)  
         ENDIF  
394    
395  C--     Density of 1st level (below W(1)) reference to level 1  #ifdef ALLOW_AUTODIFF_TAMC
396          CALL FIND_RHO(  CADJ STORE wVel (:,:,:,bi,bj) =
397       I     bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,  CADJ &     comlev1_bibj, key=idynkey, byte=isbyte
398       O     rhoKm1,  #endif /* ALLOW_AUTODIFF_TAMC */
399       I     myThid )  
400    C--     Explicit part of the Surface Potential Gradient (add in TIMESTEP)
401          IF ( .NOT. BOTTOM_LAYER ) THEN  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
402  C--      Check static stability with layer below          IF (implicSurfPress.NE.1.) THEN
403  C        and mix as needed.            CALL CALC_GRAD_PHI_SURF(
404           CALL FIND_RHO(       I         bi,bj,iMin,iMax,jMin,jMax,
405       I      bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,       I         etaN,
406       O      rhoKp1,       O         phiSurfX,phiSurfY,
407       I      myThid )       I         myThid )
          CALL CONVECT(  
      I       bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,  
      I       myTime,myIter,myThid)  
 C--      Recompute density after mixing  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,  
      O      rhoKm1,  
      I      myThid )  
408          ENDIF          ENDIF
409    
410  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  #ifdef ALLOW_AUTODIFF_TAMC
411          CALL CALC_PH(  CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
412       I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKm1,  CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
413       U      pH,  #ifdef ALLOW_KPP
414       I      myThid )  CADJ STORE KPPviscAz (:,:,:,bi,bj)
415    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
416          DO K=2,Nz  #endif /* ALLOW_KPP */
417    #endif /* ALLOW_AUTODIFF_TAMC */
418           BOTTOM_LAYER = K .EQ. Nz  
419    #if (defined INCLUDE_CALC_DIFFUSIVITY_CALL) && !(defined ALLOW_AUTODIFF)
420           IF ( .NOT. BOTTOM_LAYER ) THEN          IF ( .NOT.momViscosity ) THEN
421  C--       Update fields in layer below according to tendency terms  #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL and not ALLOW_AUTODIFF */
422            CALL CORRECTION_STEP(            DO k=1,Nr
423       I         bi,bj,iMin,iMax,jMin,jMax,K+1,pSurfX,pSurfY,myTime,myThid)             DO j=1-OLy,sNy+OLy
424           ENDIF              DO i=1-OLx,sNx+OLx
425  C--      Update fields in layer below according to tendency terms               KappaRU(i,j,k) = 0. _d 0
426  C        CALL CORRECTION_STEP(               KappaRV(i,j,k) = 0. _d 0
427  C    I        bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)              ENDDO
428               ENDDO
 C--      Density of K level (below W(K)) reference to K level  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax,  K, K, eosType,  
      O      rhoK,  
      I      myThid )  
          IF ( .NOT. BOTTOM_LAYER ) THEN  
 C--       Check static stability with layer below  
 C         and mix as needed.  
 C--       Density of K+1 level (below W(K+1)) reference to K level  
           CALL FIND_RHO(  
      I       bi, bj, iMin, iMax, jMin, jMax,  K+1, K, eosType,  
      O       rhoKp1,  
      I       myThid )  
           CALL CONVECT(  
      I        bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1,  
      I        myTime,myIter,myThid)  
 C--       Recompute density after mixing  
           CALL FIND_RHO(  
      I       bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,  
      O       rhoK,  
      I       myThid )  
          ENDIF  
 C--      Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
          CALL CALC_PH(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoK,  
      U       pH,  
      I       myThid )  
 C--      Calculate iso-neutral slopes for the GM/Redi parameterisation  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,  
      O      rhoTmp,  
      I      myThid )  
          CALL CALC_ISOSLOPES(  
      I             bi, bj, iMin, iMax, jMin, jMax, K,  
      I             rhoKm1, rhoK, rhotmp,  
      O             K13, K23, K33, KapGM,  
      I             myThid )  
          DO J=jMin,jMax  
           DO I=iMin,iMax  
            rhoKm1(I,J)=rhoK(I,J)  
429            ENDDO            ENDDO
430           ENDDO  #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
431    C--     Calculate the total vertical viscosity
432    #ifdef ALLOW_AUTODIFF
433            IF ( momViscosity ) THEN
434    #else
435            ELSE
436    #endif
437              CALL CALC_VISCOSITY(
438         I            bi,bj, iMin,iMax,jMin,jMax,
439         O            KappaRU, KappaRV,
440         I            myThid )
441            ENDIF
442    #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */
443    
444          ENDDO ! K  #ifdef ALLOW_SMAG_3D
445            IF ( useSmag3D ) THEN
446              CALL MOM_CALC_3D_STRAIN(
447         O         str11, str22, str33, str12, str13, str23,
448         I         bi, bj, myThid )
449            ENDIF
450    #endif /* ALLOW_SMAG_3D */
451    
452          DO K = Nz, 1, -1  #ifdef ALLOW_AUTODIFF_TAMC
453           kM1  =max(1,k-1)   ! Points to level above k (=k-1)  CADJ STORE KappaRU(:,:,:)
454           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
455           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  CADJ STORE KappaRV(:,:,:)
456           iMin = 1-OLx+2  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
457           iMax = sNx+OLx-1  #endif /* ALLOW_AUTODIFF_TAMC */
458           jMin = 1-OLy+2  
459           jMax = sNy+OLy-1  #ifdef ALLOW_OBCS
460    C--   For Stevens boundary conditions velocities need to be extrapolated
461  C--      Get temporary terms used by tendency routines  C     (copied) to a narrow strip outside the domain
462           CALL CALC_COMMON_FACTORS (          IF ( useOBCS ) THEN
463       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,            CALL OBCS_COPY_UV_N(
464       O        xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp,       U         uVel(1-OLx,1-OLy,1,bi,bj),
465       I        myThid)       U         vVel(1-OLx,1-OLy,1,bi,bj),
466         I         Nr, bi, bj, myThid )
467  C--      Calculate the total vertical diffusivity          ENDIF
468           CALL CALC_DIFFUSIVITY(  #endif /* ALLOW_OBCS */
      I        bi,bj,iMin,iMax,jMin,jMax,K,  
      I        maskC,maskUp,KapGM,K33,  
      O        KappaZT,KappaZS,  
      I        myThid)  
469    
470  C--      Calculate accelerations in the momentum equations  #ifdef ALLOW_EDDYPSI
471           IF ( momStepping ) THEN          CALL CALC_EDDY_STRESS(bi,bj,myThid)
472            CALL CALC_MOM_RHS(  #endif
473       I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
474       I         xA,yA,uTrans,vTrans,wTrans,wVel,maskC,  C--     Start of dynamics loop
475       I         pH,          DO k=1,Nr
476       U         aTerm,xTerm,cTerm,mTerm,pTerm,  
477       U         fZon, fMer, fVerU, fVerV,  C--       km1    Points to level above k (=k-1)
478       I         myThid)  C--       kup    Cycles through 1,2 to point to layer above
479    C--       kDown  Cycles through 2,1 to point to current layer
480    
481              km1  = MAX(1,k-1)
482              kp1  = MIN(k+1,Nr)
483              kup  = 1+MOD(k+1,2)
484              kDown= 1+MOD(k,2)
485    
486    #ifdef ALLOW_AUTODIFF_TAMC
487             kkey = (idynkey-1)*Nr + k
488    c
489    CADJ STORE totPhiHyd (:,:,k,bi,bj)
490    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
491    CADJ STORE phiHydLow (:,:,bi,bj)
492    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
493    CADJ STORE theta (:,:,k,bi,bj)
494    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
495    CADJ STORE salt  (:,:,k,bi,bj)
496    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
497    CADJ STORE gT(:,:,k,bi,bj)
498    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
499    CADJ STORE gS(:,:,k,bi,bj)
500    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
501    # ifdef NONLIN_FRSURF
502    cph-test
503    CADJ STORE  phiHydC (:,:)
504    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
505    CADJ STORE  phiHydF (:,:)
506    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
507    CADJ STORE  guDissip (:,:)
508    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
509    CADJ STORE  gvDissip (:,:)
510    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
511    CADJ STORE  fVerU (:,:,:)
512    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
513    CADJ STORE  fVerV (:,:,:)
514    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
515    CADJ STORE gU(:,:,k,bi,bj)
516    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
517    CADJ STORE gV(:,:,k,bi,bj)
518    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
519    #  ifndef ALLOW_ADAMSBASHFORTH_3
520    CADJ STORE guNm1(:,:,k,bi,bj)
521    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
522    CADJ STORE gvNm1(:,:,k,bi,bj)
523    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
524    #  else
525    CADJ STORE guNm(:,:,k,bi,bj,1)
526    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
527    CADJ STORE guNm(:,:,k,bi,bj,2)
528    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
529    CADJ STORE gvNm(:,:,k,bi,bj,1)
530    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
531    CADJ STORE gvNm(:,:,k,bi,bj,2)
532    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
533    #  endif
534    #  ifdef ALLOW_CD_CODE
535    CADJ STORE uNM1(:,:,k,bi,bj)
536    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
537    CADJ STORE vNM1(:,:,k,bi,bj)
538    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
539    CADJ STORE uVelD(:,:,k,bi,bj)
540    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
541    CADJ STORE vVelD(:,:,k,bi,bj)
542    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
543    #  endif
544    # endif
545    # ifdef ALLOW_DEPTH_CONTROL
546    CADJ STORE  fVerU (:,:,:)
547    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
548    CADJ STORE  fVerV (:,:,:)
549    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
550    # endif
551    #endif /* ALLOW_AUTODIFF_TAMC */
552    
553    C--      Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0
554             IF ( implicitIntGravWave ) THEN
555               CALL CALC_PHI_HYD(
556         I        bi,bj,iMin,iMax,jMin,jMax,k,
557         I        gT, gS,
558         U        phiHydF,
559         O        phiHydC, dPhiHydX, dPhiHydY,
560         I        myTime, myIter, myThid )
561             ELSE
562               CALL CALC_PHI_HYD(
563         I        bi,bj,iMin,iMax,jMin,jMax,k,
564         I        theta, salt,
565         U        phiHydF,
566         O        phiHydC, dPhiHydX, dPhiHydY,
567         I        myTime, myIter, myThid )
568           ENDIF           ENDIF
569    #ifdef ALLOW_DIAGNOSTICS
570  C--      Calculate active tracer tendencies           IF ( dPhiHydDiagIsOn ) THEN
571           IF ( tempStepping ) THEN             tmpFac = -1. _d 0
572            CALL CALC_GT(             CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
573       I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,       &                           'Um_dPHdx', k, 1, 2, bi, bj, myThid )
574       I         xA,yA,uTrans,vTrans,wTrans,maskUp,             CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
575       I         K13,K23,KappaZT,KapGM,       &                           'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
      U         aTerm,xTerm,fZon,fMer,fVerT,  
      I         myThid)  
576           ENDIF           ENDIF
577           IF ( saltStepping ) THEN  #endif /* ALLOW_DIAGNOSTICS */
578            CALL CALC_GS(  
579       I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  C--      Calculate accelerations in the momentum equations (gU, gV, ...)
580       I         xA,yA,uTrans,vTrans,wTrans,maskUp,  C        and step forward storing the result in gU, gV, etc...
581       I         K13,K23,KappaZS,KapGM,           IF ( momStepping ) THEN
582       U         aTerm,xTerm,fZon,fMer,fVerS,  #ifdef ALLOW_AUTODIFF_TAMC
583       I         myThid)  # ifdef NONLIN_FRSURF
584    #  if (defined ALLOW_MOM_FLUXFORM) && !(defined DISABLE_RSTAR_CODE)
585    CADJ STORE dWtransC(:,:,bi,bj)
586    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
587    CADJ STORE dWtransU(:,:,bi,bj)
588    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
589    CADJ STORE dWtransV(:,:,bi,bj)
590    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
591    #  endif
592    CADJ STORE fVerU(:,:,:)
593    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
594    CADJ STORE fVerV(:,:,:)
595    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
596    # endif /* NONLIN_FRSURF */
597    #endif /* ALLOW_AUTODIFF_TAMC */
598               IF (.NOT. vectorInvariantMomentum) THEN
599    #ifdef ALLOW_MOM_FLUXFORM
600                  CALL MOM_FLUXFORM(
601         I         bi,bj,k,iMin,iMax,jMin,jMax,
602         I         KappaRU, KappaRV,
603         U         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
604         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
605         O         guDissip, gvDissip,
606         I         myTime, myIter, myThid)
607    #endif
608               ELSE
609    #ifdef ALLOW_MOM_VECINV
610                 CALL MOM_VECINV(
611         I         bi,bj,k,iMin,iMax,jMin,jMax,
612         I         KappaRU, KappaRV,
613         I         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
614         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
615         O         guDissip, gvDissip,
616         I         myTime, myIter, myThid)
617    #endif
618               ENDIF
619    
620    #ifdef ALLOW_SMAG_3D
621               IF ( useSmag3D ) THEN
622                 CALL MOM_CALC_SMAG_3D(
623         I         str11, str22, str33, str12, str13, str23,
624         O         viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23,
625         I         smag3D_hLsC, smag3D_hLsW, smag3D_hLsS, smag3D_hLsZ,
626         I         k, bi, bj, myThid )
627                 CALL MOM_UV_SMAG_3D(
628         I         str11, str22, str12, str13, str23,
629         I         viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23,
630         O         addDissU, addDissV,
631         I         iMin,iMax,jMin,jMax, k, bi, bj, myThid )
632                 DO j= jMin,jMax
633                  DO i= iMin,iMax
634                   guDissip(i,j) = guDissip(i,j) + addDissU(i,j)
635                   gvDissip(i,j) = gvDissip(i,j) + addDissV(i,j)
636                  ENDDO
637                 ENDDO
638               ENDIF
639    #endif /* ALLOW_SMAG_3D */
640    
641               CALL TIMESTEP(
642         I         bi,bj,iMin,iMax,jMin,jMax,k,
643         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
644         I         guDissip, gvDissip,
645         I         myTime, myIter, myThid)
646    
647           ENDIF           ENDIF
648    
649  C--      Prediction step (step forward all model variables)  C--     end of dynamics k loop (1:Nr)
650           CALL TIMESTEP(          ENDDO
651       I       bi,bj,iMin,iMax,jMin,jMax,K,  
652       I       myThid)  C--     Implicit Vertical advection & viscosity
653    #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
654  C--      Diagnose barotropic divergence of predicted fields       defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
655           CALL DIV_G(          IF ( momImplVertAdv ) THEN
656       I       bi,bj,iMin,iMax,jMin,jMax,K,            CALL MOM_U_IMPLICIT_R( kappaRU,
657       I       xA,yA,       I                           bi, bj, myTime, myIter, myThid )
658       I       myThid)            CALL MOM_V_IMPLICIT_R( kappaRV,
659         I                           bi, bj, myTime, myIter, myThid )
660          ENDDO ! K          ELSEIF ( implicitViscosity ) THEN
661    #else /* INCLUDE_IMPLVERTADV_CODE */
662  C--     Implicit diffusion          IF     ( implicitViscosity ) THEN
663          IF (implicitDiffusion) THEN  #endif /* INCLUDE_IMPLVERTADV_CODE */
664           CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,  #ifdef    ALLOW_AUTODIFF_TAMC
665       I                  KappaZT,KappaZS,  CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
666       I                  myThid )  CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
667    #endif    /* ALLOW_AUTODIFF_TAMC */
668              CALL IMPLDIFF(
669         I         bi, bj, iMin, iMax, jMin, jMax,
670         I         -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
671         U         gU,
672         I         myThid )
673    #ifdef    ALLOW_AUTODIFF_TAMC
674    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
675    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
676    #endif    /* ALLOW_AUTODIFF_TAMC */
677              CALL IMPLDIFF(
678         I         bi, bj, iMin, iMax, jMin, jMax,
679         I         -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
680         U         gV,
681         I         myThid )
682            ENDIF
683    
684    #ifdef ALLOW_OBCS
685    C--      Apply open boundary conditions
686            IF ( useOBCS ) THEN
687    C--      but first save intermediate velocities to be used in the
688    C        next time step for the Stevens boundary conditions
689              CALL OBCS_SAVE_UV_N(
690         I        bi, bj, iMin, iMax, jMin, jMax, 0,
691         I        gU, gV, myThid )
692              CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
693            ENDIF
694    #endif /* ALLOW_OBCS */
695    
696    #ifdef    ALLOW_CD_CODE
697            IF (implicitViscosity.AND.useCDscheme) THEN
698    #ifdef    ALLOW_AUTODIFF_TAMC
699    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
700    #endif    /* ALLOW_AUTODIFF_TAMC */
701              CALL IMPLDIFF(
702         I         bi, bj, iMin, iMax, jMin, jMax,
703         I         0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
704         U         vVelD,
705         I         myThid )
706    #ifdef    ALLOW_AUTODIFF_TAMC
707    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
708    #endif    /* ALLOW_AUTODIFF_TAMC */
709              CALL IMPLDIFF(
710         I         bi, bj, iMin, iMax, jMin, jMax,
711         I         0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
712         U         uVelD,
713         I         myThid )
714            ENDIF
715    #endif    /* ALLOW_CD_CODE */
716    C--     End implicit Vertical advection & viscosity
717    
718    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
719    
720    #ifdef ALLOW_NONHYDROSTATIC
721    C--   Step forward W field in N-H algorithm
722            IF ( nonHydrostatic ) THEN
723    #ifdef ALLOW_DEBUG
724             IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
725    #endif
726             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
727             CALL CALC_GW(
728         I                 bi,bj, KappaRU, KappaRV,
729         I                 str13, str23, str33,
730         I                 viscAh3d_00, viscAh3d_13, viscAh3d_23,
731         I                 myTime, myIter, myThid )
732          ENDIF          ENDIF
733            IF ( nonHydrostatic.OR.implicitIntGravWave )
734         &   CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
735            IF ( nonHydrostatic )
736         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
737    #endif
738    
739    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
740    
741    C-    end of bi,bj loops
742         ENDDO         ENDDO
743        ENDDO        ENDDO
744    
745  C     write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),  #ifdef ALLOW_OBCS
746  C    &                           maxval(cg2d_x(1:sNx,1:sNy,:,:))        IF (useOBCS) THEN
747  C     write(0,*) 'dynamics: U  ',minval(uVel(1:sNx,1:sNy,1,:,:)),          CALL OBCS_EXCHANGES( myThid )
748  C    &                           maxval(uVel(1:sNx,1:sNy,1,:,:))        ENDIF
749  C     write(0,*) 'dynamics: V  ',minval(vVel(1:sNx,1:sNy,1,:,:)),  #endif
750  C    &                           maxval(vVel(1:sNx,1:sNy,1,:,:))  
751  C     write(0,*) 'dynamics: wVel(1) ',  Cml(
752  C    &            minval(wVel(1:sNx,1:sNy,1)),  C     In order to compare the variance of phiHydLow of a p/z-coordinate
753  C    &            maxval(wVel(1:sNx,1:sNy,1))  C     run with etaH of a z/p-coordinate run the drift of phiHydLow
754  C     write(0,*) 'dynamics: wVel(2) ',  C     has to be removed by something like the following subroutine:
755  C    &            minval(wVel(1:sNx,1:sNy,2)),  C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
756  C    &            maxval(wVel(1:sNx,1:sNy,2))  C     &                     'phiHydLow', myTime, myThid )
757  cblk  write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),  Cml)
758  cblk &                           maxval(K13(1:sNx,1:sNy,:))  
759  cblk  write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),  #ifdef ALLOW_DIAGNOSTICS
760  cblk &                           maxval(K23(1:sNx,1:sNy,:))        IF ( useDiagnostics ) THEN
761  cblk  write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),  
762  cblk &                           maxval(K33(1:sNx,1:sNy,:))         CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
763  C     write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),         CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
764  C    &                           maxval(gT(1:sNx,1:sNy,:,:,:))  
765  C     write(0,*) 'dynamics: T  ',minval(Theta(1:sNx,1:sNy,:,:,:)),         tmpFac = 1. _d 0
766  C    &                           maxval(Theta(1:sNx,1:sNy,:,:,:))         CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
767  C     write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),       &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
768  C    &                           maxval(gS(1:sNx,1:sNy,:,:,:))  
769  C     write(0,*) 'dynamics: S  ',minval(salt(1:sNx,1:sNy,:,:,:)),         CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
770  C    &                           maxval(salt(1:sNx,1:sNy,:,:,:))       &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
771  C     write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil),mask=ph.NE.0.),  
772  C    &                           maxval(pH/(Gravity*Rhonil))        ENDIF
773    #endif /* ALLOW_DIAGNOSTICS */
774    
775    #ifdef ALLOW_DEBUG
776          IF ( debugLevel .GE. debLevD ) THEN
777           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
778           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
779           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
780           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
781           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
782           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
783           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
784           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
785           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
786           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
787    #ifndef ALLOW_ADAMSBASHFORTH_3
788           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
789           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
790           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
791           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
792    #endif
793          ENDIF
794    #endif
795    
796    #ifdef DYNAMICS_GUGV_EXCH_CHECK
797    C- jmc: For safety checking only: This Exchange here should not change
798    C       the solution. If solution changes, it means something is wrong,
799    C       but it does not mean that it is less wrong with this exchange.
800          IF ( debugLevel .GE. debLevE ) THEN
801           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
802          ENDIF
803    #endif
804    
805    #ifdef ALLOW_DEBUG
806          IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
807    #endif
808    
809        RETURN        RETURN
810        END        END

Legend:
Removed from v.1.19.2.2  
changed lines
  Added in v.1.167

  ViewVC Help
Powered by ViewVC 1.1.22