/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.45 by adcroft, Thu Aug 26 17:47:37 1999 UTC revision 1.166 by m_bates, Sun Sep 15 14:28:31 2013 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4    #include "PACKAGES_CONFIG.h"
5  #include "CPP_OPTIONS.h"  #include "CPP_OPTIONS.h"
6    #ifdef ALLOW_OBCS
7    # include "OBCS_OPTIONS.h"
8    #endif
9    
10    #undef DYNAMICS_GUGV_EXCH_CHECK
11    
12    CBOP
13    C     !ROUTINE: DYNAMICS
14    C     !INTERFACE:
15        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16  C     /==========================================================\  C     !DESCRIPTION: \bv
17  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
18  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS
19  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model
20  C     |==========================================================|  C     |   dynamics.
21  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
22  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each
23  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have
24  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.
25  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this
26  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference
27  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region
28  C     | Notes                                                    |  C     | require special consideration.
29  C     | =====                                                    |  C     | The algorithm...
30  C     | C*P* comments indicating place holders for which code is |  C     |
31  C     |      presently being developed.                          |  C     | "Correction Step"
32  C     \==========================================================/  C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76        IMPLICIT NONE        IMPLICIT NONE
   
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
80  #include "PARAMS.h"  #include "PARAMS.h"
 #include "DYNVARS.h"  
81  #include "GRID.h"  #include "GRID.h"
82  #ifdef ALLOW_KPP  #include "DYNVARS.h"
83  #include "KPPMIX.h"  #ifdef ALLOW_CD_CODE
84    # include "CD_CODE_VARS.h"
85  #endif  #endif
86    #ifdef ALLOW_AUTODIFF_TAMC
87    # include "tamc.h"
88    # include "tamc_keys.h"
89    # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS_FIELDS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #  include "OBCS_PARAMS.h"
100    #  include "OBCS_FIELDS.h"
101    #  ifdef ALLOW_PTRACERS
102    #   include "OBCS_PTRACERS.h"
103    #  endif
104    # endif
105    # ifdef ALLOW_MOM_FLUXFORM
106    #  include "MOM_FLUXFORM.h"
107    # endif
108    #endif /* ALLOW_AUTODIFF_TAMC */
109    
110    C     !CALLING SEQUENCE:
111    C     DYNAMICS()
112    C      |
113    C      |-- CALC_EP_FORCING
114    C      |
115    C      |-- CALC_GRAD_PHI_SURF
116    C      |
117    C      |-- CALC_VISCOSITY
118    C      |
119    C      |-- CALC_EDDY_STRESS
120    C      |
121    C      |-- CALC_PHI_HYD
122    C      |
123    C      |-- MOM_FLUXFORM
124    C      |
125    C      |-- MOM_VECINV
126    C      |
127    C      |-- TIMESTEP
128    C      |
129    C      |-- MOM_U_IMPLICIT_R
130    C      |-- MOM_V_IMPLICIT_R
131    C      |
132    C      |-- IMPLDIFF
133    C      |
134    C      |-- OBCS_APPLY_UV
135    C      |
136    C      |-- CALC_GW
137    C      |
138    C      |-- DIAGNOSTICS_FILL
139    C      |-- DEBUG_STATS_RL
140    
141    C     !INPUT/OUTPUT PARAMETERS:
142  C     == Routine arguments ==  C     == Routine arguments ==
143  C     myTime - Current time in simulation  C     myTime :: Current time in simulation
144  C     myIter - Current iteration number in simulation  C     myIter :: Current iteration number in simulation
145  C     myThid - Thread number for this instance of the routine.  C     myThid :: Thread number for this instance of the routine.
       INTEGER myThid  
146        _RL myTime        _RL myTime
147        INTEGER myIter        INTEGER myIter
148          INTEGER myThid
149    
150    C     !FUNCTIONS:
151    #ifdef ALLOW_DIAGNOSTICS
152          LOGICAL  DIAGNOSTICS_IS_ON
153          EXTERNAL DIAGNOSTICS_IS_ON
154    #endif
155    
156    C     !LOCAL VARIABLES:
157  C     == Local variables  C     == Local variables
158  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
159  C     uTrans, vTrans, rTrans - Per block temporaries holding flow  C                                    is "pipelined" in the vertical
160  C                              transport  C                                    so we need an fVer for each
161  C     rVel                     o uTrans: Zonal transport  C                                    variable.
162  C                              o vTrans: Meridional transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
163  C                              o rTrans: Vertical transport  C                   In z coords phiHyd is the hydrostatic potential
164  C                              o rVel:   Vertical velocity at upper and  C                      (=pressure/rho0) anomaly
165  C                                        lower cell faces.  C                   In p coords phiHyd is the geopotential height anomaly.
166  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
167  C                              o maskUp: land/water mask for W points  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
168  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
169  C     mTerm, pTerm,            tendency equations.  C     phiSurfY             or geopotential (atmos) in X and Y direction
170  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     guDissip   :: dissipation tendency (all explicit terms), u component
171  C                              o xTerm: Mixing term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
172  C                              o cTerm: Coriolis term  C     KappaRU    :: vertical viscosity for velocity U-component
173  C                              o mTerm: Metric term  C     KappaRV    :: vertical viscosity for velocity V-component
174  C                              o pTerm: Pressure term  C     iMin, iMax :: Ranges and sub-block indices on which calculations
175  C                              o fZon: Zonal flux term  C     jMin, jMax    are applied.
176  C                              o fMer: Meridional flux term  C     bi, bj     :: tile indices
177  C                              o fVer: Vertical flux term - note fVer  C     k          :: current level index
178  C                                      is "pipelined" in the vertical  C     km1, kp1   :: index of level above (k-1) and below (k+1)
179  C                                      so we need an fVer for each  C     kUp, kDown :: Index for interface above and below. kUp and kDown are
180  C                                      variable.  C                   are switched with k to be the appropriate index into fVerU,V
 C     rhoK, rhoKM1   - Density at current level, level above and level  
 C                      below.  
 C     rhoKP1                                                                    
 C     buoyK, buoyKM1 - Buoyancy at current level and level above.  
 C     phiHyd         - Hydrostatic part of the potential phiHydi.  
 C                      In z coords phiHydiHyd is the hydrostatic  
 C                      pressure anomaly  
 C                      In p coords phiHydiHyd is the geopotential  
 C                      surface height  
 C                      anomaly.  
 C     etaSurfX,      - Holds surface elevation gradient in X and Y.  
 C     etaSurfY  
 C     K13, K23, K33  - Non-zero elements of small-angle approximation  
 C                      diffusion tensor.  
 C     KapGM          - Spatially varying Visbeck et. al mixing coeff.  
 C     KappaRT,       - Total diffusion in vertical for T and S.  
 C     KappaRS          (background + spatially varying, isopycnal term).  
 C     iMin, iMax     - Ranges and sub-block indices on which calculations  
 C     jMin, jMax       are applied.  
 C     bi, bj  
 C     k, kUp,        - Index for layer above and below. kUp and kDown  
 C     kDown, kM1       are switched with layer to be the appropriate  
 C                      index into fVerTerm.  
       _RS xA      (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RS yA      (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL uTrans  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL vTrans  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rTrans  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rVel    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RS maskC   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RS maskUp  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL aTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL xTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL cTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL mTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pTerm   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
181        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
182        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
183        _RL phiHyd  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184        _RL rhokm1  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
185        _RL rhokp1  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186        _RL rhok    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187        _RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
188        _RL buoyK   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
189        _RL rhotmp  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
190        _RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
191        _RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
192        _RL K13     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
       _RL K23     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL K33     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL KapGM   (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)  
       _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)  
       _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)  
       _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)  
   
 #ifdef INCLUDE_CONVECT_CALL  
       _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
 #endif  
193    
194        INTEGER iMin, iMax        INTEGER iMin, iMax
195        INTEGER jMin, jMax        INTEGER jMin, jMax
196        INTEGER bi, bj        INTEGER bi, bj
197        INTEGER i, j        INTEGER i, j
198        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kUp, kDown
199        LOGICAL BOTTOM_LAYER  
200    #ifdef ALLOW_DIAGNOSTICS
201          LOGICAL dPhiHydDiagIsOn
202          _RL tmpFac
203    #endif /* ALLOW_DIAGNOSTICS */
204    
205  C---    The algorithm...  C---    The algorithm...
206  C  C
# Line 149  C Line 215  C
215  C       "Calculation of Gs"  C       "Calculation of Gs"
216  C       ===================  C       ===================
217  C       This is where all the accelerations and tendencies (ie.  C       This is where all the accelerations and tendencies (ie.
218  C       phiHydysics, parameterizations etc...) are calculated  C       physics, parameterizations etc...) are calculated
 C         rVel = sum_r ( div. u[n] )  
219  C         rho = rho ( theta[n], salt[n] )  C         rho = rho ( theta[n], salt[n] )
220  C         b   = b(rho, theta)  C         b   = b(rho, theta)
221  C         K31 = K31 ( rho )  C         K31 = K31 ( rho )
222  C         Gu[n] = Gu( u[n], v[n], rVel, b, ... )  C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
223  C         Gv[n] = Gv( u[n], v[n], rVel, b, ... )  C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
224  C         Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... )  C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
225  C         Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... )  C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
226  C  C
227  C       "Time-stepping" or "Prediction"  C       "Time-stepping" or "Prediction"
228  C       ================================  C       ================================
# Line 180  C         salt* = salt[n] + dt x ( 3/2 G Line 245  C         salt* = salt[n] + dt x ( 3/2 G
245  C         (1 + dt * K * d_zz) theta[n] = theta*  C         (1 + dt * K * d_zz) theta[n] = theta*
246  C         (1 + dt * K * d_zz) salt[n] = salt*  C         (1 + dt * K * d_zz) salt[n] = salt*
247  C---  C---
248    CEOP
249    
250  C--   Set up work arrays with valid (i.e. not NaN) values  #ifdef ALLOW_DEBUG
251  C     These inital values do not alter the numerical results. They        IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
252  C     just ensure that all memory references are to valid floating  #endif
253  C     point numbers. This prevents spurious hardware signals due to  
254  C     uninitialised but inert locations.  #ifdef ALLOW_DIAGNOSTICS
255        DO j=1-OLy,sNy+OLy        dPhiHydDiagIsOn = .FALSE.
256         DO i=1-OLx,sNx+OLx        IF ( useDiagnostics )
257          xA(i,j)      = 0. _d 0       &  dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
258          yA(i,j)      = 0. _d 0       &               .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
259          uTrans(i,j)  = 0. _d 0  #endif
260          vTrans(i,j)  = 0. _d 0  
261          aTerm(i,j)   = 0. _d 0  C-- Call to routine for calculation of Eliassen-Palm-flux-forced
262          xTerm(i,j)   = 0. _d 0  C    U-tendency, if desired:
263          cTerm(i,j)   = 0. _d 0  #ifdef INCLUDE_EP_FORCING_CODE
264          mTerm(i,j)   = 0. _d 0        CALL CALC_EP_FORCING(myThid)
265          pTerm(i,j)   = 0. _d 0  #endif
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,Nr  
          phiHyd (i,j,k)  = 0. _d 0  
          K13(i,j,k)  = 0. _d 0  
          K23(i,j,k)  = 0. _d 0  
          K33(i,j,k)  = 0. _d 0  
          KappaRU(i,j,k) = 0. _d 0  
          KappaRV(i,j,k) = 0. _d 0  
         ENDDO  
         rhoKM1 (i,j) = 0. _d 0  
         rhok   (i,j) = 0. _d 0  
         rhoKP1 (i,j) = 0. _d 0  
         rhoTMP (i,j) = 0. _d 0  
         buoyKM1(i,j) = 0. _d 0  
         buoyK  (i,j) = 0. _d 0  
         maskC  (i,j) = 0. _d 0  
        ENDDO  
       ENDDO  
266    
267    #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
268          CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
269    #endif
270    
271    #ifdef ALLOW_AUTODIFF_TAMC
272    C--   HPF directive to help TAMC
273    CHPF$ INDEPENDENT
274    #endif /* ALLOW_AUTODIFF_TAMC */
275    
276        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
277    
278    #ifdef ALLOW_AUTODIFF_TAMC
279    C--    HPF directive to help TAMC
280    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
281    CHPF$&                  ,phiHydF
282    CHPF$&                  ,KappaRU,KappaRV
283    CHPF$&                  )
284    #endif /* ALLOW_AUTODIFF_TAMC */
285    
286         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
287    
288  C--     Set up work arrays that need valid initial values  #ifdef ALLOW_AUTODIFF_TAMC
289          DO j=1-OLy,sNy+OLy            act1 = bi - myBxLo(myThid)
290           DO i=1-OLx,sNx+OLx            max1 = myBxHi(myThid) - myBxLo(myThid) + 1
291            rTrans(i,j)   = 0. _d 0            act2 = bj - myByLo(myThid)
292            rVel  (i,j,1) = 0. _d 0            max2 = myByHi(myThid) - myByLo(myThid) + 1
293            rVel  (i,j,2) = 0. _d 0            act3 = myThid - 1
294            fVerT (i,j,1) = 0. _d 0            max3 = nTx*nTy
295            fVerT (i,j,2) = 0. _d 0            act4 = ikey_dynamics - 1
296            fVerS (i,j,1) = 0. _d 0            idynkey = (act1 + 1) + act2*max1
297            fVerS (i,j,2) = 0. _d 0       &                      + act3*max1*max2
298            fVerU (i,j,1) = 0. _d 0       &                      + act4*max1*max2*max3
299            fVerU (i,j,2) = 0. _d 0  #endif /* ALLOW_AUTODIFF_TAMC */
300            fVerV (i,j,1) = 0. _d 0  
301            fVerV (i,j,2) = 0. _d 0  C--   Set up work arrays with valid (i.e. not NaN) values
302            phiHyd(i,j,1) = 0. _d 0  C     These initial values do not alter the numerical results. They
303            K13   (i,j,1) = 0. _d 0  C     just ensure that all memory references are to valid floating
304            K23   (i,j,1) = 0. _d 0  C     point numbers. This prevents spurious hardware signals due to
305            K33   (i,j,1) = 0. _d 0  C     uninitialised but inert locations.
           KapGM (i,j)   = GMkbackground  
          ENDDO  
         ENDDO  
306    
307    #ifdef ALLOW_AUTODIFF_TAMC
308          DO k=1,Nr          DO k=1,Nr
309           DO j=1-OLy,sNy+OLy           DO j=1-OLy,sNy+OLy
310            DO i=1-OLx,sNx+OLx            DO i=1-OLx,sNx+OLx
311  #ifdef INCLUDE_CONVECT_CALL  cph(
312             ConvectCount(i,j,k) = 0.  c--   need some re-initialisation here to break dependencies
313  #endif  cph)
314             KappaRT(i,j,k) = 0. _d 0             gU(i,j,k,bi,bj) = 0. _d 0
315             KappaRS(i,j,k) = 0. _d 0             gV(i,j,k,bi,bj) = 0. _d 0
316            ENDDO            ENDDO
317           ENDDO           ENDDO
318          ENDDO          ENDDO
319    #endif /* ALLOW_AUTODIFF_TAMC */
320          iMin = 1-OLx+1          DO j=1-OLy,sNy+OLy
321          iMax = sNx+OLx           DO i=1-OLx,sNx+OLx
322          jMin = 1-OLy+1            fVerU  (i,j,1) = 0. _d 0
323          jMax = sNy+OLy            fVerU  (i,j,2) = 0. _d 0
324              fVerV  (i,j,1) = 0. _d 0
325              fVerV  (i,j,2) = 0. _d 0
326          K = 1            phiHydF (i,j)  = 0. _d 0
327          BOTTOM_LAYER = K .EQ. Nr            phiHydC (i,j)  = 0. _d 0
328    #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
329  #ifdef DO_PIPELINED_CORRECTION_STEP            dPhiHydX(i,j)  = 0. _d 0
330  C--     Calculate gradient of surface pressure            dPhiHydY(i,j)  = 0. _d 0
331          CALL CALC_GRAD_ETA_SURF(  #endif
332       I       bi,bj,iMin,iMax,jMin,jMax,            phiSurfX(i,j)  = 0. _d 0
333       O       etaSurfX,etaSurfY,            phiSurfY(i,j)  = 0. _d 0
334       I       myThid)            guDissip(i,j)  = 0. _d 0
335  C--     Update fields in top level according to tendency terms            gvDissip(i,j)  = 0. _d 0
336          CALL CORRECTION_STEP(  #ifdef ALLOW_AUTODIFF_TAMC
337       I       bi,bj,iMin,iMax,jMin,jMax,K,            phiHydLow(i,j,bi,bj) = 0. _d 0
338       I       etaSurfX,etaSurfY,myTime,myThid)  # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
339  #ifdef ALLOW_OBCS  #  ifndef DISABLE_RSTAR_CODE
340          IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K, myThid )  #   ifndef ALLOW_AUTODIFF_OPENAD
341  #endif            dWtransC(i,j,bi,bj) = 0. _d 0
342          IF ( .NOT. BOTTOM_LAYER ) THEN            dWtransU(i,j,bi,bj) = 0. _d 0
343  C--      Update fields in layer below according to tendency terms            dWtransV(i,j,bi,bj) = 0. _d 0
344           CALL CORRECTION_STEP(  #   endif
345       I        bi,bj,iMin,iMax,jMin,jMax,K+1,  #  endif
346       I        etaSurfX,etaSurfY,myTime,myThid)  # endif
 #ifdef ALLOW_OBCS  
          IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid )  
 #endif  
         ENDIF  
 #endif  
 C--     Density of 1st level (below W(1)) reference to level 1  
 #ifdef  INCLUDE_FIND_RHO_CALL  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,  
      O     rhoKm1,  
      I     myThid )  
347  #endif  #endif
348             ENDDO
349            ENDDO
350    
351          IF (       (.NOT. BOTTOM_LAYER)  C--     Start computation of dynamics
352  #ifdef ALLOW_KPP          iMin = 0
353       &       .AND. (.NOT.usingKPPmixing) ! CONVECT not needed with KPP mixing          iMax = sNx+1
354  #endif          jMin = 0
355       &     ) THEN          jMax = sNy+1
356  C--      Check static stability with layer below  
357  C--      and mix as needed.  #ifdef ALLOW_AUTODIFF_TAMC
358  #ifdef  INCLUDE_FIND_RHO_CALL  CADJ STORE wVel (:,:,:,bi,bj) =
359           CALL FIND_RHO(  CADJ &     comlev1_bibj, key=idynkey, byte=isbyte
360       I      bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,  #endif /* ALLOW_AUTODIFF_TAMC */
361       O      rhoKp1,  
362       I      myThid )  C--     Explicit part of the Surface Potential Gradient (add in TIMESTEP)
363  #endif  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
364  #ifdef  INCLUDE_CONVECT_CALL          IF (implicSurfPress.NE.1.) THEN
365           CALL CONVECT(            CALL CALC_GRAD_PHI_SURF(
366       I       bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,       I         bi,bj,iMin,iMax,jMin,jMax,
367       U       ConvectCount,       I         etaN,
368       I       myTime,myIter,myThid)       O         phiSurfX,phiSurfY,
369  #endif       I         myThid )
 C--      Implicit Vertical Diffusion for Convection  
          IF (ivdc_kappa.NE.0.) CALL CALC_IVDC(  
      I       bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,  
      U       ConvectCount, KappaRT, KappaRS,  
      I       myTime,myIter,myThid)  
 C--      Recompute density after mixing  
 #ifdef  INCLUDE_FIND_RHO_CALL  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,  
      O      rhoKm1,  
      I      myThid )  
 #endif  
370          ENDIF          ENDIF
371  C--     Calculate buoyancy  
372          CALL CALC_BUOYANCY(  #ifdef ALLOW_AUTODIFF_TAMC
373       I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,  CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
374       O      buoyKm1,  CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
      I      myThid )  
 C--     Integrate hydrostatic balance for phiHyd with BC of  
 C--     phiHyd(z=0)=0  
         CALL CALC_PHI_HYD(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1,  
      U      phiHyd,  
      I      myThid )  
   
         DO K=2,Nr  
          BOTTOM_LAYER = K .EQ. Nr  
 #ifdef DO_PIPELINED_CORRECTION_STEP  
          IF ( .NOT. BOTTOM_LAYER ) THEN  
 C--       Update fields in layer below according to tendency terms  
           CALL CORRECTION_STEP(  
      I         bi,bj,iMin,iMax,jMin,jMax,K+1,  
      I         etaSurfX,etaSurfY,myTime,myThid)  
 #ifdef ALLOW_OBCS  
           IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid )  
 #endif  
          ENDIF  
 #endif  
 C--      Density of K level (below W(K)) reference to K level  
 #ifdef  INCLUDE_FIND_RHO_CALL  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax,  K, K, eosType,  
      O      rhoK,  
      I      myThid )  
 #endif  
          IF (       (.NOT. BOTTOM_LAYER)  
375  #ifdef ALLOW_KPP  #ifdef ALLOW_KPP
376       &       .AND. (.NOT.usingKPPmixing) ! CONVECT not needed with KPP mixing  CADJ STORE KPPviscAz (:,:,:,bi,bj)
377  #endif  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
378       &      ) THEN  #endif /* ALLOW_KPP */
379  C--       Check static stability with layer below and mix as needed.  #endif /* ALLOW_AUTODIFF_TAMC */
380  C--       Density of K+1 level (below W(K+1)) reference to K level.  
381  #ifdef  INCLUDE_FIND_RHO_CALL  #if (defined INCLUDE_CALC_DIFFUSIVITY_CALL) && !(defined ALLOW_AUTODIFF)
382            CALL FIND_RHO(          IF ( .NOT.momViscosity ) THEN
383       I       bi, bj, iMin, iMax, jMin, jMax,  K+1, K, eosType,  #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL and not ALLOW_AUTODIFF */
384       O       rhoKp1,            DO k=1,Nr
385       I       myThid )             DO j=1-OLy,sNy+OLy
386  #endif              DO i=1-OLx,sNx+OLx
387  #ifdef  INCLUDE_CONVECT_CALL               KappaRU(i,j,k) = 0. _d 0
388            CALL CONVECT(               KappaRV(i,j,k) = 0. _d 0
389       I        bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1,              ENDDO
390       U        ConvectCount,             ENDDO
      I        myTime,myIter,myThid)  
 #endif  
 C--      Implicit Vertical Diffusion for Convection  
          IF (ivdc_kappa.NE.0.) CALL CALC_IVDC(  
      I       bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,  
      U       ConvectCount, KappaRT, KappaRS,  
      I       myTime,myIter,myThid)  
 C--       Recompute density after mixing  
 #ifdef  INCLUDE_FIND_RHO_CALL  
           CALL FIND_RHO(  
      I       bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,  
      O       rhoK,  
      I       myThid )  
 #endif  
          ENDIF  
 C--      Calculate buoyancy  
          CALL CALC_BUOYANCY(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,rhoK,  
      O       buoyK,  
      I       myThid )  
 C--      Integrate hydrostatic balance for phiHyd with BC of  
 C--      phiHyd(z=0)=0  
          CALL CALC_PHI_HYD(  
      I        bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK,  
      U        phiHyd,  
      I        myThid )  
 C--      Calculate iso-neutral slopes for the GM/Redi parameterisation  
 #ifdef  INCLUDE_FIND_RHO_CALL  
          CALL FIND_RHO(  
      I        bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,  
      O        rhoTmp,  
      I        myThid )  
 #endif  
 #ifdef  INCLUDE_CALC_ISOSLOPES_CALL  
          CALL CALC_ISOSLOPES(  
      I        bi, bj, iMin, iMax, jMin, jMax, K,  
      I        rhoKm1, rhoK, rhotmp,  
      O        K13, K23, K33, KapGM,  
      I        myThid )  
 #endif  
          DO J=jMin,jMax  
           DO I=iMin,iMax  
 #ifdef  INCLUDE_FIND_RHO_CALL  
            rhoKm1 (I,J) = rhoK(I,J)  
 #endif  
            buoyKm1(I,J) = buoyK(I,J)  
391            ENDDO            ENDDO
392           ENDDO  #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
393          ENDDO ! K  C--     Calculate the total vertical viscosity
394    #ifdef ALLOW_AUTODIFF
395            IF ( momViscosity ) THEN
396    #else
397            ELSE
398    #endif
399              CALL CALC_VISCOSITY(
400         I            bi,bj, iMin,iMax,jMin,jMax,
401         O            KappaRU, KappaRV,
402         I            myThid )
403            ENDIF
404    #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */
405    
406  #ifdef ALLOW_KPP  #ifdef ALLOW_AUTODIFF_TAMC
407  C--     Compute KPP mixing coefficients  CADJ STORE KappaRU(:,:,:)
408          IF (usingKPPmixing) THEN  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
409           CALL TIMER_START('KVMIX (FIND KPP COEFFICIENTS) [DYNAMICS]'  CADJ STORE KappaRV(:,:,:)
410       I          , myThid)  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
411           CALL KVMIX(  #endif /* ALLOW_AUTODIFF_TAMC */
412       I               bi, bj, myTime, myThid )  
413           CALL TIMER_STOP ('KVMIX (FIND KPP COEFFICIENTS) [DYNAMICS]'  #ifdef ALLOW_OBCS
414       I        , myThid)  C--   For Stevens boundary conditions velocities need to be extrapolated
415    C     (copied) to a narrow strip outside the domain
416            IF ( useOBCS ) THEN
417              CALL OBCS_COPY_UV_N(
418         U         uVel(1-OLx,1-OLy,1,bi,bj),
419         U         vVel(1-OLx,1-OLy,1,bi,bj),
420         I         Nr, bi, bj, myThid )
421          ENDIF          ENDIF
422    #endif /* ALLOW_OBCS */
423    
424    #ifdef ALLOW_EDDYPSI
425            CALL CALC_EDDY_STRESS(bi,bj,myThid)
426  #endif  #endif
427    
428          DO K = Nr, 1, -1  C--     Start of dynamics loop
429            DO k=1,Nr
430    
431           kM1  =max(1,k-1)   ! Points to level above k (=k-1)  C--       km1    Points to level above k (=k-1)
432           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  C--       kup    Cycles through 1,2 to point to layer above
433           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  C--       kDown  Cycles through 2,1 to point to current layer
434           iMin = 1-OLx+2  
435           iMax = sNx+OLx-1            km1  = MAX(1,k-1)
436           jMin = 1-OLy+2            kp1  = MIN(k+1,Nr)
437           jMax = sNy+OLy-1            kup  = 1+MOD(k+1,2)
438              kDown= 1+MOD(k,2)
439  C--      Get temporary terms used by tendency routines  
440           CALL CALC_COMMON_FACTORS (  #ifdef ALLOW_AUTODIFF_TAMC
441       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,           kkey = (idynkey-1)*Nr + k
442       O        xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp,  c
443       I        myThid)  CADJ STORE totPhiHyd (:,:,k,bi,bj)
444  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
445  C--      Calculate the total vertical diffusivity  CADJ STORE phiHydLow (:,:,bi,bj)
446           CALL CALC_DIFFUSIVITY(  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
447       I        bi,bj,iMin,iMax,jMin,jMax,K,  CADJ STORE theta (:,:,k,bi,bj)
448       I        maskC,maskUp,KapGM,K33,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
449       O        KappaRT,KappaRS,KappaRU,KappaRV,  CADJ STORE salt  (:,:,k,bi,bj)
450       I        myThid)  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
451  #endif  CADJ STORE gT(:,:,k,bi,bj)
452  C--      Calculate accelerations in the momentum equations  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
453           IF ( momStepping ) THEN  CADJ STORE gS(:,:,k,bi,bj)
454            CALL CALC_MOM_RHS(  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
455       I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  # ifdef NONLIN_FRSURF
456       I         xA,yA,uTrans,vTrans,rTrans,rVel,maskC,  cph-test
457       I         phiHyd,KappaRU,KappaRV,  CADJ STORE  phiHydC (:,:)
458       U         aTerm,xTerm,cTerm,mTerm,pTerm,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
459       U         fZon, fMer, fVerU, fVerV,  CADJ STORE  phiHydF (:,:)
460       I         myTime, myThid)  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
461           ENDIF  CADJ STORE  guDissip (:,:)
462  C--      Calculate active tracer tendencies  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
463           IF ( tempStepping ) THEN  CADJ STORE  gvDissip (:,:)
464            CALL CALC_GT(  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
465       I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  CADJ STORE  fVerU (:,:,:)
466       I         xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
467       I         K13,K23,KappaRT,KapGM,  CADJ STORE  fVerV (:,:,:)
468       U         aTerm,xTerm,fZon,fMer,fVerT,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
469       I         myTime, myThid)  CADJ STORE gU(:,:,k,bi,bj)
470    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
471    CADJ STORE gV(:,:,k,bi,bj)
472    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
473    #  ifndef ALLOW_ADAMSBASHFORTH_3
474    CADJ STORE guNm1(:,:,k,bi,bj)
475    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
476    CADJ STORE gvNm1(:,:,k,bi,bj)
477    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
478    #  else
479    CADJ STORE guNm(:,:,k,bi,bj,1)
480    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
481    CADJ STORE guNm(:,:,k,bi,bj,2)
482    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
483    CADJ STORE gvNm(:,:,k,bi,bj,1)
484    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
485    CADJ STORE gvNm(:,:,k,bi,bj,2)
486    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
487    #  endif
488    #  ifdef ALLOW_CD_CODE
489    CADJ STORE uNM1(:,:,k,bi,bj)
490    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
491    CADJ STORE vNM1(:,:,k,bi,bj)
492    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
493    CADJ STORE uVelD(:,:,k,bi,bj)
494    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
495    CADJ STORE vVelD(:,:,k,bi,bj)
496    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
497    #  endif
498    # endif
499    # ifdef ALLOW_DEPTH_CONTROL
500    CADJ STORE  fVerU (:,:,:)
501    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
502    CADJ STORE  fVerV (:,:,:)
503    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
504    # endif
505    #endif /* ALLOW_AUTODIFF_TAMC */
506    
507    C--      Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0
508             IF ( implicitIntGravWave ) THEN
509               CALL CALC_PHI_HYD(
510         I        bi,bj,iMin,iMax,jMin,jMax,k,
511         I        gT, gS,
512         U        phiHydF,
513         O        phiHydC, dPhiHydX, dPhiHydY,
514         I        myTime, myIter, myThid )
515             ELSE
516               CALL CALC_PHI_HYD(
517         I        bi,bj,iMin,iMax,jMin,jMax,k,
518         I        theta, salt,
519         U        phiHydF,
520         O        phiHydC, dPhiHydX, dPhiHydY,
521         I        myTime, myIter, myThid )
522           ENDIF           ENDIF
523           IF ( saltStepping ) THEN  #ifdef ALLOW_DIAGNOSTICS
524            CALL CALC_GS(           IF ( dPhiHydDiagIsOn ) THEN
525       I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,             tmpFac = -1. _d 0
526       I         xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,             CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
527       I         K13,K23,KappaRS,KapGM,       &                           'Um_dPHdx', k, 1, 2, bi, bj, myThid )
528       U         aTerm,xTerm,fZon,fMer,fVerS,             CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
529       I         myTime, myThid)       &                           'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
530           ENDIF           ENDIF
531  C--      Prediction step (step forward all model variables)  #endif /* ALLOW_DIAGNOSTICS */
          CALL TIMESTEP(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,  
      I       myThid)  
 #ifdef ALLOW_OBCS  
 C--      Apply open boundary conditions  
          IF (openBoundaries) CALL APPLY_OBCS2( bi, bj, K, myThid )  
 #endif  
 C--      Freeze water  
          IF (allowFreezing)  
      &   CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, K, myThid )  
 C--      Diagnose barotropic divergence of predicted fields  
          CALL CALC_DIV_GHAT(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,  
      I       xA,yA,  
      I       myThid)  
   
 C--      Cumulative diagnostic calculations (ie. time-averaging)  
 #ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE  
          IF (taveFreq.GT.0.) THEN  
           CALL DO_TIME_AVERAGES(  
      I                           myTime, myIter, bi, bj, K, kUp, kDown,  
      I                           K13, K23, rVel, KapGM, ConvectCount,  
      I                           myThid )  
          ENDIF  
 #endif  
532    
533    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
534    C        and step forward storing the result in gU, gV, etc...
535             IF ( momStepping ) THEN
536    #ifdef ALLOW_AUTODIFF_TAMC
537    # ifdef NONLIN_FRSURF
538    #  if (defined ALLOW_MOM_FLUXFORM) && !(defined DISABLE_RSTAR_CODE)
539    CADJ STORE dWtransC(:,:,bi,bj)
540    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
541    CADJ STORE dWtransU(:,:,bi,bj)
542    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
543    CADJ STORE dWtransV(:,:,bi,bj)
544    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
545    #  endif
546    CADJ STORE fVerU(:,:,:)
547    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
548    CADJ STORE fVerV(:,:,:)
549    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
550    # endif /* NONLIN_FRSURF */
551    #endif /* ALLOW_AUTODIFF_TAMC */
552               IF (.NOT. vectorInvariantMomentum) THEN
553    #ifdef ALLOW_MOM_FLUXFORM
554                  CALL MOM_FLUXFORM(
555         I         bi,bj,k,iMin,iMax,jMin,jMax,
556         I         KappaRU, KappaRV,
557         U         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
558         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
559         O         guDissip, gvDissip,
560         I         myTime, myIter, myThid)
561    #endif
562               ELSE
563    #ifdef ALLOW_MOM_VECINV
564                 CALL MOM_VECINV(
565         I         bi,bj,k,iMin,iMax,jMin,jMax,
566         I         KappaRU, KappaRV,
567         I         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
568         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
569         O         guDissip, gvDissip,
570         I         myTime, myIter, myThid)
571    #endif
572               ENDIF
573    
574               CALL TIMESTEP(
575         I         bi,bj,iMin,iMax,jMin,jMax,k,
576         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
577         I         guDissip, gvDissip,
578         I         myTime, myIter, myThid)
579    
580          ENDDO ! K           ENDIF
581    
582  C--     Implicit diffusion  C--     end of dynamics k loop (1:Nr)
583          IF (implicitDiffusion) THEN          ENDDO
584           IF (tempStepping) CALL IMPLDIFF(  
585       I         bi, bj, iMin, iMax, jMin, jMax,  C--     Implicit Vertical advection & viscosity
586       I         deltaTtracer, KappaRT,recip_HFacC,  #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
587       U         gTNm1,       defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
588       I         myThid )          IF ( momImplVertAdv ) THEN
589           IF (saltStepping) CALL IMPLDIFF(            CALL MOM_U_IMPLICIT_R( kappaRU,
590       I         bi, bj, iMin, iMax, jMin, jMax,       I                           bi, bj, myTime, myIter, myThid )
591       I         deltaTtracer, KappaRS,recip_HFacC,            CALL MOM_V_IMPLICIT_R( kappaRV,
592       U         gSNm1,       I                           bi, bj, myTime, myIter, myThid )
593       I         myThid )          ELSEIF ( implicitViscosity ) THEN
594          ENDIF ! implicitDiffusion  #else /* INCLUDE_IMPLVERTADV_CODE */
595  C--     Implicit viscosity          IF     ( implicitViscosity ) THEN
596          IF (implicitViscosity) THEN  #endif /* INCLUDE_IMPLVERTADV_CODE */
597           IF (momStepping) THEN  #ifdef    ALLOW_AUTODIFF_TAMC
598    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
599    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
600    #endif    /* ALLOW_AUTODIFF_TAMC */
601            CALL IMPLDIFF(            CALL IMPLDIFF(
602       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
603       I         deltaTmom, KappaRU,recip_HFacW,       I         -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
604       U         gUNm1,       U         gU,
605       I         myThid )       I         myThid )
606    #ifdef    ALLOW_AUTODIFF_TAMC
607    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
608    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
609    #endif    /* ALLOW_AUTODIFF_TAMC */
610            CALL IMPLDIFF(            CALL IMPLDIFF(
611       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
612       I         deltaTmom, KappaRV,recip_HFacS,       I         -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
613       U         gVNm1,       U         gV,
614       I         myThid )       I         myThid )
615  #ifdef INCLUDE_CD_CODE          ENDIF
616    
617    #ifdef ALLOW_OBCS
618    C--      Apply open boundary conditions
619            IF ( useOBCS ) THEN
620    C--      but first save intermediate velocities to be used in the
621    C        next time step for the Stevens boundary conditions
622              CALL OBCS_SAVE_UV_N(
623         I        bi, bj, iMin, iMax, jMin, jMax, 0,
624         I        gU, gV, myThid )
625              CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
626            ENDIF
627    #endif /* ALLOW_OBCS */
628    
629    #ifdef    ALLOW_CD_CODE
630            IF (implicitViscosity.AND.useCDscheme) THEN
631    #ifdef    ALLOW_AUTODIFF_TAMC
632    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
633    #endif    /* ALLOW_AUTODIFF_TAMC */
634            CALL IMPLDIFF(            CALL IMPLDIFF(
635       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
636       I         deltaTmom, KappaRU,recip_HFacW,       I         0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
637       U         vVelD,       U         vVelD,
638       I         myThid )       I         myThid )
639    #ifdef    ALLOW_AUTODIFF_TAMC
640    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
641    #endif    /* ALLOW_AUTODIFF_TAMC */
642            CALL IMPLDIFF(            CALL IMPLDIFF(
643       I         bi, bj, iMin, iMax, jMin, jMax,       I         bi, bj, iMin, iMax, jMin, jMax,
644       I         deltaTmom, KappaRV,recip_HFacS,       I         0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
645       U         uVelD,       U         uVelD,
646       I         myThid )       I         myThid )
647            ENDIF
648    #endif    /* ALLOW_CD_CODE */
649    C--     End implicit Vertical advection & viscosity
650    
651    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
652    
653    #ifdef ALLOW_NONHYDROSTATIC
654    C--   Step forward W field in N-H algorithm
655            IF ( nonHydrostatic ) THEN
656    #ifdef ALLOW_DEBUG
657             IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
658    #endif
659             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
660             CALL CALC_GW(
661         I                 bi,bj, KappaRU, KappaRV,
662         I                 myTime, myIter, myThid )
663            ENDIF
664            IF ( nonHydrostatic.OR.implicitIntGravWave )
665         &   CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
666            IF ( nonHydrostatic )
667         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
668  #endif  #endif
669           ENDIF ! momStepping  
670          ENDIF ! implicitViscosity  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
671    
672    C-    end of bi,bj loops
673         ENDDO         ENDDO
674        ENDDO        ENDDO
675    
676  C     write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),  #ifdef ALLOW_OBCS
677  C    &                           maxval(cg2d_x(1:sNx,1:sNy,:,:))        IF (useOBCS) THEN
678  C     write(0,*) 'dynamics: U  ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.),          CALL OBCS_EXCHANGES( myThid )
679  C    &                           maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.)        ENDIF
680  C     write(0,*) 'dynamics: V  ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.),  #endif
681  C    &                           maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.)  
682  C     write(0,*) 'dynamics: rVel(1) ',  Cml(
683  C    &            minval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.),  C     In order to compare the variance of phiHydLow of a p/z-coordinate
684  C    &            maxval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.)  C     run with etaH of a z/p-coordinate run the drift of phiHydLow
685  C     write(0,*) 'dynamics: rVel(2) ',  C     has to be removed by something like the following subroutine:
686  C    &            minval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.),  C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
687  C    &            maxval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.)  C     &                     'phiHydLow', myTime, myThid )
688  cblk  write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),  Cml)
689  cblk &                           maxval(K13(1:sNx,1:sNy,:))  
690  cblk  write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),  #ifdef ALLOW_DIAGNOSTICS
691  cblk &                           maxval(K23(1:sNx,1:sNy,:))        IF ( useDiagnostics ) THEN
692  cblk  write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),  
693  cblk &                           maxval(K33(1:sNx,1:sNy,:))         CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
694  C     write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),         CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
695  C    &                           maxval(gT(1:sNx,1:sNy,:,:,:))  
696  C     write(0,*) 'dynamics: T  ',minval(Theta(1:sNx,1:sNy,:,:,:)),         tmpFac = 1. _d 0
697  C    &                           maxval(Theta(1:sNx,1:sNy,:,:,:))         CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
698  C     write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),       &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
699  C    &                           maxval(gS(1:sNx,1:sNy,:,:,:))  
700  C     write(0,*) 'dynamics: S  ',minval(salt(1:sNx,1:sNy,:,:,:)),         CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
701  C    &                           maxval(salt(1:sNx,1:sNy,:,:,:))       &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
702  C     write(0,*) 'dynamics: phiHyd ',minval(phiHyd/(Gravity*Rhonil),mask=phiHyd.NE.0.),  
703  C    &                           maxval(phiHyd/(Gravity*Rhonil))        ENDIF
704  C     CALL PLOT_FIELD_XYZRL( gU, ' GU exiting dyanmics ' ,  #endif /* ALLOW_DIAGNOSTICS */
705  C    &Nr, 1, myThid )  
706  C     CALL PLOT_FIELD_XYZRL( gV, ' GV exiting dyanmics ' ,  #ifdef ALLOW_DEBUG
707  C    &Nr, 1, myThid )        IF ( debugLevel .GE. debLevD ) THEN
708  C     CALL PLOT_FIELD_XYZRL( gS, ' GS exiting dyanmics ' ,         CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
709  C    &Nr, 1, myThid )         CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
710  C     CALL PLOT_FIELD_XYZRL( gT, ' GT exiting dyanmics ' ,         CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
711  C    &Nr, 1, myThid )         CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
712  C     CALL PLOT_FIELD_XYZRL( phiHyd, ' phiHyd exiting dyanmics ' ,         CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
713  C    &Nr, 1, myThid )         CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
714           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
715           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
716           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
717           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
718    #ifndef ALLOW_ADAMSBASHFORTH_3
719           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
720           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
721           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
722           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
723    #endif
724          ENDIF
725    #endif
726    
727    #ifdef DYNAMICS_GUGV_EXCH_CHECK
728    C- jmc: For safety checking only: This Exchange here should not change
729    C       the solution. If solution changes, it means something is wrong,
730    C       but it does not mean that it is less wrong with this exchange.
731          IF ( debugLevel .GE. debLevE ) THEN
732           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
733          ENDIF
734    #endif
735    
736    #ifdef ALLOW_DEBUG
737          IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
738    #endif
739    
740        RETURN        RETURN
741        END        END

Legend:
Removed from v.1.45  
changed lines
  Added in v.1.166

  ViewVC Help
Powered by ViewVC 1.1.22