/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by adcroft, Wed Apr 29 21:31:09 1998 UTC revision 1.166 by m_bates, Sun Sep 15 14:28:31 2013 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6        SUBROUTINE DYNAMICS(myThid)  #ifdef ALLOW_OBCS
7  C     /==========================================================\  # include "OBCS_OPTIONS.h"
8  C     | SUBROUTINE DYNAMICS                                      |  #endif
9  C     | o Controlling routine for the explicit part of the model |  
10  C     |   dynamics.                                              |  #undef DYNAMICS_GUGV_EXCH_CHECK
11  C     |==========================================================|  
12  C     | This routine evaluates the "dynamics" terms for each     |  CBOP
13  C     | block of ocean in turn. Because the blocks of ocean have |  C     !ROUTINE: DYNAMICS
14  C     | overlap regions they are independent of one another.     |  C     !INTERFACE:
15  C     | If terms involving lateral integrals are needed in this  |        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16  C     | routine care will be needed. Similarly finite-difference |  C     !DESCRIPTION: \bv
17  C     | operations with stencils wider than the overlap region   |  C     *==========================================================*
18  C     | require special consideration.                           |  C     | SUBROUTINE DYNAMICS
19  C     | Notes                                                    |  C     | o Controlling routine for the explicit part of the model
20  C     | =====                                                    |  C     |   dynamics.
21  C     | C*P* comments indicating place holders for which code is |  C     *==========================================================*
22  C     |      presently being developed.                          |  C     | This routine evaluates the "dynamics" terms for each
23  C     \==========================================================/  C     | block of ocean in turn. Because the blocks of ocean have
24    C     | overlap regions they are independent of one another.
25    C     | If terms involving lateral integrals are needed in this
26    C     | routine care will be needed. Similarly finite-difference
27    C     | operations with stencils wider than the overlap region
28    C     | require special consideration.
29    C     | The algorithm...
30    C     |
31    C     | "Correction Step"
32    C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76          IMPLICIT NONE
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
80  #include "CG2D.h"  #include "PARAMS.h"
81    #include "GRID.h"
82  #include "DYNVARS.h"  #include "DYNVARS.h"
83    #ifdef ALLOW_CD_CODE
84    # include "CD_CODE_VARS.h"
85    #endif
86    #ifdef ALLOW_AUTODIFF_TAMC
87    # include "tamc.h"
88    # include "tamc_keys.h"
89    # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS_FIELDS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #  include "OBCS_PARAMS.h"
100    #  include "OBCS_FIELDS.h"
101    #  ifdef ALLOW_PTRACERS
102    #   include "OBCS_PTRACERS.h"
103    #  endif
104    # endif
105    # ifdef ALLOW_MOM_FLUXFORM
106    #  include "MOM_FLUXFORM.h"
107    # endif
108    #endif /* ALLOW_AUTODIFF_TAMC */
109    
110    C     !CALLING SEQUENCE:
111    C     DYNAMICS()
112    C      |
113    C      |-- CALC_EP_FORCING
114    C      |
115    C      |-- CALC_GRAD_PHI_SURF
116    C      |
117    C      |-- CALC_VISCOSITY
118    C      |
119    C      |-- CALC_EDDY_STRESS
120    C      |
121    C      |-- CALC_PHI_HYD
122    C      |
123    C      |-- MOM_FLUXFORM
124    C      |
125    C      |-- MOM_VECINV
126    C      |
127    C      |-- TIMESTEP
128    C      |
129    C      |-- MOM_U_IMPLICIT_R
130    C      |-- MOM_V_IMPLICIT_R
131    C      |
132    C      |-- IMPLDIFF
133    C      |
134    C      |-- OBCS_APPLY_UV
135    C      |
136    C      |-- CALC_GW
137    C      |
138    C      |-- DIAGNOSTICS_FILL
139    C      |-- DEBUG_STATS_RL
140    
141    C     !INPUT/OUTPUT PARAMETERS:
142  C     == Routine arguments ==  C     == Routine arguments ==
143  C     myThid - Thread number for this instance of the routine.  C     myTime :: Current time in simulation
144    C     myIter :: Current iteration number in simulation
145    C     myThid :: Thread number for this instance of the routine.
146          _RL myTime
147          INTEGER myIter
148        INTEGER myThid        INTEGER myThid
149    
150    C     !FUNCTIONS:
151    #ifdef ALLOW_DIAGNOSTICS
152          LOGICAL  DIAGNOSTICS_IS_ON
153          EXTERNAL DIAGNOSTICS_IS_ON
154    #endif
155    
156    C     !LOCAL VARIABLES:
157  C     == Local variables  C     == Local variables
158  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
159  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
160  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
161  C                              o vTrans: Meridional transport  C                                    variable.
162  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
163  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
164  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
165  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
166  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
167  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
168  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
169  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
170  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
171  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
172  C                              o fZon: Zonal flux term  C     KappaRU    :: vertical viscosity for velocity U-component
173  C                              o fMer: Meridional flux term  C     KappaRV    :: vertical viscosity for velocity V-component
174  C                              o fVer: Vertical flux term - note fVer  C     iMin, iMax :: Ranges and sub-block indices on which calculations
175  C                                      is "pipelined" in the vertical  C     jMin, jMax    are applied.
176  C                                      so we need an fVer for each  C     bi, bj     :: tile indices
177  C                                      variable.  C     k          :: current level index
178  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     km1, kp1   :: index of level above (k-1) and below (k+1)
179  C     jMin, jMax   are applied.  C     kUp, kDown :: Index for interface above and below. kUp and kDown are
180  C     bi, bj  C                   are switched with k to be the appropriate index into fVerU,V
181  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
182  C                          are switched with layer to be the appropriate index        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
183  C                          into fVerTerm        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
185        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
188        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
189        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
190        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
191        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
192        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
193        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
194        INTEGER iMin, iMax        INTEGER iMin, iMax
195        INTEGER jMin, jMax        INTEGER jMin, jMax
196        INTEGER bi, bj        INTEGER bi, bj
197        INTEGER i, j        INTEGER i, j
198        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kUp, kDown
199    
200    #ifdef ALLOW_DIAGNOSTICS
201          LOGICAL dPhiHydDiagIsOn
202          _RL tmpFac
203    #endif /* ALLOW_DIAGNOSTICS */
204    
205    C---    The algorithm...
206    C
207    C       "Correction Step"
208    C       =================
209    C       Here we update the horizontal velocities with the surface
210    C       pressure such that the resulting flow is either consistent
211    C       with the free-surface evolution or the rigid-lid:
212    C         U[n] = U* + dt x d/dx P
213    C         V[n] = V* + dt x d/dy P
214    C
215    C       "Calculation of Gs"
216    C       ===================
217    C       This is where all the accelerations and tendencies (ie.
218    C       physics, parameterizations etc...) are calculated
219    C         rho = rho ( theta[n], salt[n] )
220    C         b   = b(rho, theta)
221    C         K31 = K31 ( rho )
222    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
223    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
224    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
225    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
226    C
227    C       "Time-stepping" or "Prediction"
228    C       ================================
229    C       The models variables are stepped forward with the appropriate
230    C       time-stepping scheme (currently we use Adams-Bashforth II)
231    C       - For momentum, the result is always *only* a "prediction"
232    C       in that the flow may be divergent and will be "corrected"
233    C       later with a surface pressure gradient.
234    C       - Normally for tracers the result is the new field at time
235    C       level [n+1} *BUT* in the case of implicit diffusion the result
236    C       is also *only* a prediction.
237    C       - We denote "predictors" with an asterisk (*).
238    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
239    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
240    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
241    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
242    C       With implicit diffusion:
243    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
244    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
245    C         (1 + dt * K * d_zz) theta[n] = theta*
246    C         (1 + dt * K * d_zz) salt[n] = salt*
247    C---
248    CEOP
249    
250    #ifdef ALLOW_DEBUG
251          IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
252    #endif
253    
254    #ifdef ALLOW_DIAGNOSTICS
255          dPhiHydDiagIsOn = .FALSE.
256          IF ( useDiagnostics )
257         &  dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
258         &               .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
259    #endif
260    
261    C-- Call to routine for calculation of Eliassen-Palm-flux-forced
262    C    U-tendency, if desired:
263    #ifdef INCLUDE_EP_FORCING_CODE
264          CALL CALC_EP_FORCING(myThid)
265    #endif
266    
267    #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
268          CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
269    #endif
270    
271    #ifdef ALLOW_AUTODIFF_TAMC
272    C--   HPF directive to help TAMC
273    CHPF$ INDEPENDENT
274    #endif /* ALLOW_AUTODIFF_TAMC */
275    
276          DO bj=myByLo(myThid),myByHi(myThid)
277    
278    #ifdef ALLOW_AUTODIFF_TAMC
279    C--    HPF directive to help TAMC
280    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
281    CHPF$&                  ,phiHydF
282    CHPF$&                  ,KappaRU,KappaRV
283    CHPF$&                  )
284    #endif /* ALLOW_AUTODIFF_TAMC */
285    
286           DO bi=myBxLo(myThid),myBxHi(myThid)
287    
288    #ifdef ALLOW_AUTODIFF_TAMC
289              act1 = bi - myBxLo(myThid)
290              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
291              act2 = bj - myByLo(myThid)
292              max2 = myByHi(myThid) - myByLo(myThid) + 1
293              act3 = myThid - 1
294              max3 = nTx*nTy
295              act4 = ikey_dynamics - 1
296              idynkey = (act1 + 1) + act2*max1
297         &                      + act3*max1*max2
298         &                      + act4*max1*max2*max3
299    #endif /* ALLOW_AUTODIFF_TAMC */
300    
301  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
302  C     These inital values do not alter the numerical results. They  C     These initial values do not alter the numerical results. They
303  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
304  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
305  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0.*1. _d 37  
         yA(i,j)      = 0.*1. _d 37  
         uTrans(i,j)  = 0.*1. _d 37  
         vTrans(i,j)  = 0.*1. _d 37  
         aTerm(i,j)   = 0.*1. _d 37  
         xTerm(i,j)   = 0.*1. _d 37  
         cTerm(i,j)   = 0.*1. _d 37  
         mTerm(i,j)   = 0.*1. _d 37  
         pTerm(i,j)   = 0.*1. _d 37  
         fZon(i,j)    = 0.*1. _d 37  
         fMer(i,j)    = 0.*1. _d 37  
         DO K=1,nZ  
          pH (i,j,k)  = 0.*1. _d 37  
         ENDDO  
         rhokm1(i,j)    = 0. _d 0  
         rhokp1(i,j)    = 0. _d 0  
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
        ENDDO  
       ENDDO  
306    
307        DO bj=myByLo(myThid),myByHi(myThid)  #ifdef ALLOW_AUTODIFF_TAMC
308         DO bi=myBxLo(myThid),myBxHi(myThid)          DO k=1,Nr
309             DO j=1-OLy,sNy+OLy
310  C--   Boundary condition on hydrostatic pressure is pH(z=0)=0            DO i=1-OLx,sNx+OLx
311    cph(
312    c--   need some re-initialisation here to break dependencies
313    cph)
314               gU(i,j,k,bi,bj) = 0. _d 0
315               gV(i,j,k,bi,bj) = 0. _d 0
316              ENDDO
317             ENDDO
318            ENDDO
319    #endif /* ALLOW_AUTODIFF_TAMC */
320          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
321           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
322            pH(i,j,1) = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
323              fVerU  (i,j,2) = 0. _d 0
324              fVerV  (i,j,1) = 0. _d 0
325              fVerV  (i,j,2) = 0. _d 0
326              phiHydF (i,j)  = 0. _d 0
327              phiHydC (i,j)  = 0. _d 0
328    #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
329              dPhiHydX(i,j)  = 0. _d 0
330              dPhiHydY(i,j)  = 0. _d 0
331    #endif
332              phiSurfX(i,j)  = 0. _d 0
333              phiSurfY(i,j)  = 0. _d 0
334              guDissip(i,j)  = 0. _d 0
335              gvDissip(i,j)  = 0. _d 0
336    #ifdef ALLOW_AUTODIFF_TAMC
337              phiHydLow(i,j,bi,bj) = 0. _d 0
338    # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
339    #  ifndef DISABLE_RSTAR_CODE
340    #   ifndef ALLOW_AUTODIFF_OPENAD
341              dWtransC(i,j,bi,bj) = 0. _d 0
342              dWtransU(i,j,bi,bj) = 0. _d 0
343              dWtransV(i,j,bi,bj) = 0. _d 0
344    #   endif
345    #  endif
346    # endif
347    #endif
348           ENDDO           ENDDO
349          ENDDO          ENDDO
350    
351          iMin = 1-OLx+1  C--     Start computation of dynamics
352          iMax = sNx+OLx          iMin = 0
353          jMin = 1-OLy+1          iMax = sNx+1
354          jMax = sNy+OLy          jMin = 0
355            jMax = sNy+1
356  C--     Update fields according to tendency terms  
357          CALL TIMESTEP(  #ifdef ALLOW_AUTODIFF_TAMC
358       I       bi,bj,iMin,iMax,jMin,jMax,myThid)  CADJ STORE wVel (:,:,:,bi,bj) =
359    CADJ &     comlev1_bibj, key=idynkey, byte=isbyte
360          DO K=2,Nz  #endif /* ALLOW_AUTODIFF_TAMC */
361  C Density of K-1 level (above W(K)) reference to K level  
362           CALL FIND_RHO(  C--     Explicit part of the Surface Potential Gradient (add in TIMESTEP)
363       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
364       O      rhoKm1,          IF (implicSurfPress.NE.1.) THEN
365       I      myThid )            CALL CALC_GRAD_PHI_SURF(
366  C Density of K level (below W(K)) reference to K level       I         bi,bj,iMin,iMax,jMin,jMax,
367           CALL FIND_RHO(       I         etaN,
368       I      bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',       O         phiSurfX,phiSurfY,
369       O      rhoKp1,       I         myThid )
370       I      myThid )          ENDIF
371  C--     Calculate static stability and mix where convectively unstable  
372           CALL CONVECT(  #ifdef ALLOW_AUTODIFF_TAMC
373       I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,myThid)  CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
374  C Density of K-1 level (above W(K)) reference to K-1 level  CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
375           CALL FIND_RHO(  #ifdef ALLOW_KPP
376       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',  CADJ STORE KPPviscAz (:,:,:,bi,bj)
377       O      rhoKm1,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
378       I      myThid )  #endif /* ALLOW_KPP */
379  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  #endif /* ALLOW_AUTODIFF_TAMC */
380           CALL CALC_PH(  
381       I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,  #if (defined INCLUDE_CALC_DIFFUSIVITY_CALL) && !(defined ALLOW_AUTODIFF)
382       U       pH,          IF ( .NOT.momViscosity ) THEN
383       I       myThid )  #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL and not ALLOW_AUTODIFF */
384          ENDDO ! K            DO k=1,Nr
385               DO j=1-OLy,sNy+OLy
386  C Density of Nz level (bottom level) reference to Nz level              DO i=1-OLx,sNx+OLx
387           CALL FIND_RHO(               KappaRU(i,j,k) = 0. _d 0
388       I      bi, bj, iMin, iMax, jMin, jMax,  Nz, Nz, 'LINEAR',               KappaRV(i,j,k) = 0. _d 0
389       O      rhoKm1,              ENDDO
390       I      myThid )             ENDDO
391  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0            ENDDO
392           CALL CALC_PH(  #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
393       I       bi,bj,iMin,iMax,jMin,jMax,Nz+1,rhoKm1,  C--     Calculate the total vertical viscosity
394       U       pH,  #ifdef ALLOW_AUTODIFF
395       I       myThid )          IF ( momViscosity ) THEN
396    #else
397          DO K = Nz, 1, -1          ELSE
398           kM1  =max(1,k-1)   ! Points to level above k (=k-1)  #endif
399           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above            CALL CALC_VISCOSITY(
400           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer       I            bi,bj, iMin,iMax,jMin,jMax,
401           iMin = 1-OLx+2       O            KappaRU, KappaRV,
402           iMax = sNx+OLx-1       I            myThid )
403           jMin = 1-OLy+2          ENDIF
404           jMax = sNy+OLy-1  #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */
405    
406  C--      Get temporary terms used by tendency routines  #ifdef ALLOW_AUTODIFF_TAMC
407           CALL CALC_COMMON_FACTORS (  CADJ STORE KappaRU(:,:,:)
408       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
409       O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  CADJ STORE KappaRV(:,:,:)
410       I        myThid)  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
411    #endif /* ALLOW_AUTODIFF_TAMC */
412  C--      Calculate accelerations in the momentum equations  
413           CALL CALC_MOM_RHS(  #ifdef ALLOW_OBCS
414       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  C--   For Stevens boundary conditions velocities need to be extrapolated
415       I        xA,yA,uTrans,vTrans,wTrans,maskC,  C     (copied) to a narrow strip outside the domain
416       I        pH,          IF ( useOBCS ) THEN
417       U        aTerm,xTerm,cTerm,mTerm,pTerm,            CALL OBCS_COPY_UV_N(
418       U        fZon, fMer, fVerU, fVerV,       U         uVel(1-OLx,1-OLy,1,bi,bj),
419       I        myThid)       U         vVel(1-OLx,1-OLy,1,bi,bj),
420         I         Nr, bi, bj, myThid )
421  C--      Calculate active tracer tendencies          ENDIF
422           CALL CALC_GT(  #endif /* ALLOW_OBCS */
423       I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
424       I        xA,yA,uTrans,vTrans,wTrans,maskUp,  #ifdef ALLOW_EDDYPSI
425       U        aTerm,xTerm,fZon,fMer,fVerT,          CALL CALC_EDDY_STRESS(bi,bj,myThid)
426       I        myThid)  #endif
427  Cdbg     CALL CALC_GS(  
428  Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  C--     Start of dynamics loop
429  Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,          DO k=1,Nr
430  Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
431  Cdbg I        myThid)  C--       km1    Points to level above k (=k-1)
432    C--       kup    Cycles through 1,2 to point to layer above
433    C--       kDown  Cycles through 2,1 to point to current layer
434    
435              km1  = MAX(1,k-1)
436              kp1  = MIN(k+1,Nr)
437              kup  = 1+MOD(k+1,2)
438              kDown= 1+MOD(k,2)
439    
440    #ifdef ALLOW_AUTODIFF_TAMC
441             kkey = (idynkey-1)*Nr + k
442    c
443    CADJ STORE totPhiHyd (:,:,k,bi,bj)
444    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
445    CADJ STORE phiHydLow (:,:,bi,bj)
446    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
447    CADJ STORE theta (:,:,k,bi,bj)
448    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
449    CADJ STORE salt  (:,:,k,bi,bj)
450    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
451    CADJ STORE gT(:,:,k,bi,bj)
452    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
453    CADJ STORE gS(:,:,k,bi,bj)
454    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
455    # ifdef NONLIN_FRSURF
456    cph-test
457    CADJ STORE  phiHydC (:,:)
458    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
459    CADJ STORE  phiHydF (:,:)
460    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
461    CADJ STORE  guDissip (:,:)
462    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
463    CADJ STORE  gvDissip (:,:)
464    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
465    CADJ STORE  fVerU (:,:,:)
466    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
467    CADJ STORE  fVerV (:,:,:)
468    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
469    CADJ STORE gU(:,:,k,bi,bj)
470    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
471    CADJ STORE gV(:,:,k,bi,bj)
472    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
473    #  ifndef ALLOW_ADAMSBASHFORTH_3
474    CADJ STORE guNm1(:,:,k,bi,bj)
475    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
476    CADJ STORE gvNm1(:,:,k,bi,bj)
477    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
478    #  else
479    CADJ STORE guNm(:,:,k,bi,bj,1)
480    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
481    CADJ STORE guNm(:,:,k,bi,bj,2)
482    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
483    CADJ STORE gvNm(:,:,k,bi,bj,1)
484    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
485    CADJ STORE gvNm(:,:,k,bi,bj,2)
486    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
487    #  endif
488    #  ifdef ALLOW_CD_CODE
489    CADJ STORE uNM1(:,:,k,bi,bj)
490    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
491    CADJ STORE vNM1(:,:,k,bi,bj)
492    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
493    CADJ STORE uVelD(:,:,k,bi,bj)
494    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
495    CADJ STORE vVelD(:,:,k,bi,bj)
496    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
497    #  endif
498    # endif
499    # ifdef ALLOW_DEPTH_CONTROL
500    CADJ STORE  fVerU (:,:,:)
501    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
502    CADJ STORE  fVerV (:,:,:)
503    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
504    # endif
505    #endif /* ALLOW_AUTODIFF_TAMC */
506    
507    C--      Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0
508             IF ( implicitIntGravWave ) THEN
509               CALL CALC_PHI_HYD(
510         I        bi,bj,iMin,iMax,jMin,jMax,k,
511         I        gT, gS,
512         U        phiHydF,
513         O        phiHydC, dPhiHydX, dPhiHydY,
514         I        myTime, myIter, myThid )
515             ELSE
516               CALL CALC_PHI_HYD(
517         I        bi,bj,iMin,iMax,jMin,jMax,k,
518         I        theta, salt,
519         U        phiHydF,
520         O        phiHydC, dPhiHydX, dPhiHydY,
521         I        myTime, myIter, myThid )
522             ENDIF
523    #ifdef ALLOW_DIAGNOSTICS
524             IF ( dPhiHydDiagIsOn ) THEN
525               tmpFac = -1. _d 0
526               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
527         &                           'Um_dPHdx', k, 1, 2, bi, bj, myThid )
528               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
529         &                           'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
530             ENDIF
531    #endif /* ALLOW_DIAGNOSTICS */
532    
533    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
534    C        and step forward storing the result in gU, gV, etc...
535             IF ( momStepping ) THEN
536    #ifdef ALLOW_AUTODIFF_TAMC
537    # ifdef NONLIN_FRSURF
538    #  if (defined ALLOW_MOM_FLUXFORM) && !(defined DISABLE_RSTAR_CODE)
539    CADJ STORE dWtransC(:,:,bi,bj)
540    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
541    CADJ STORE dWtransU(:,:,bi,bj)
542    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
543    CADJ STORE dWtransV(:,:,bi,bj)
544    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
545    #  endif
546    CADJ STORE fVerU(:,:,:)
547    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
548    CADJ STORE fVerV(:,:,:)
549    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
550    # endif /* NONLIN_FRSURF */
551    #endif /* ALLOW_AUTODIFF_TAMC */
552               IF (.NOT. vectorInvariantMomentum) THEN
553    #ifdef ALLOW_MOM_FLUXFORM
554                  CALL MOM_FLUXFORM(
555         I         bi,bj,k,iMin,iMax,jMin,jMax,
556         I         KappaRU, KappaRV,
557         U         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
558         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
559         O         guDissip, gvDissip,
560         I         myTime, myIter, myThid)
561    #endif
562               ELSE
563    #ifdef ALLOW_MOM_VECINV
564                 CALL MOM_VECINV(
565         I         bi,bj,k,iMin,iMax,jMin,jMax,
566         I         KappaRU, KappaRV,
567         I         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
568         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
569         O         guDissip, gvDissip,
570         I         myTime, myIter, myThid)
571    #endif
572               ENDIF
573    
574               CALL TIMESTEP(
575         I         bi,bj,iMin,iMax,jMin,jMax,k,
576         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
577         I         guDissip, gvDissip,
578         I         myTime, myIter, myThid)
579    
580             ENDIF
581    
582    C--     end of dynamics k loop (1:Nr)
583          ENDDO          ENDDO
584    
585    C--     Implicit Vertical advection & viscosity
586    #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
587         defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
588            IF ( momImplVertAdv ) THEN
589              CALL MOM_U_IMPLICIT_R( kappaRU,
590         I                           bi, bj, myTime, myIter, myThid )
591              CALL MOM_V_IMPLICIT_R( kappaRV,
592         I                           bi, bj, myTime, myIter, myThid )
593            ELSEIF ( implicitViscosity ) THEN
594    #else /* INCLUDE_IMPLVERTADV_CODE */
595            IF     ( implicitViscosity ) THEN
596    #endif /* INCLUDE_IMPLVERTADV_CODE */
597    #ifdef    ALLOW_AUTODIFF_TAMC
598    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
599    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
600    #endif    /* ALLOW_AUTODIFF_TAMC */
601              CALL IMPLDIFF(
602         I         bi, bj, iMin, iMax, jMin, jMax,
603         I         -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
604         U         gU,
605         I         myThid )
606    #ifdef    ALLOW_AUTODIFF_TAMC
607    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
608    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
609    #endif    /* ALLOW_AUTODIFF_TAMC */
610              CALL IMPLDIFF(
611         I         bi, bj, iMin, iMax, jMin, jMax,
612         I         -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
613         U         gV,
614         I         myThid )
615            ENDIF
616    
617    #ifdef ALLOW_OBCS
618    C--      Apply open boundary conditions
619            IF ( useOBCS ) THEN
620    C--      but first save intermediate velocities to be used in the
621    C        next time step for the Stevens boundary conditions
622              CALL OBCS_SAVE_UV_N(
623         I        bi, bj, iMin, iMax, jMin, jMax, 0,
624         I        gU, gV, myThid )
625              CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
626            ENDIF
627    #endif /* ALLOW_OBCS */
628    
629    #ifdef    ALLOW_CD_CODE
630            IF (implicitViscosity.AND.useCDscheme) THEN
631    #ifdef    ALLOW_AUTODIFF_TAMC
632    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
633    #endif    /* ALLOW_AUTODIFF_TAMC */
634              CALL IMPLDIFF(
635         I         bi, bj, iMin, iMax, jMin, jMax,
636         I         0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
637         U         vVelD,
638         I         myThid )
639    #ifdef    ALLOW_AUTODIFF_TAMC
640    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
641    #endif    /* ALLOW_AUTODIFF_TAMC */
642              CALL IMPLDIFF(
643         I         bi, bj, iMin, iMax, jMin, jMax,
644         I         0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
645         U         uVelD,
646         I         myThid )
647            ENDIF
648    #endif    /* ALLOW_CD_CODE */
649    C--     End implicit Vertical advection & viscosity
650    
651    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
652    
653    #ifdef ALLOW_NONHYDROSTATIC
654    C--   Step forward W field in N-H algorithm
655            IF ( nonHydrostatic ) THEN
656    #ifdef ALLOW_DEBUG
657             IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
658    #endif
659             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
660             CALL CALC_GW(
661         I                 bi,bj, KappaRU, KappaRV,
662         I                 myTime, myIter, myThid )
663            ENDIF
664            IF ( nonHydrostatic.OR.implicitIntGravWave )
665         &   CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
666            IF ( nonHydrostatic )
667         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
668    #endif
669    
670    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
671    
672    C-    end of bi,bj loops
673         ENDDO         ENDDO
674        ENDDO        ENDDO
675    
676    #ifdef ALLOW_OBCS
677          IF (useOBCS) THEN
678            CALL OBCS_EXCHANGES( myThid )
679          ENDIF
680    #endif
681    
682    Cml(
683    C     In order to compare the variance of phiHydLow of a p/z-coordinate
684    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
685    C     has to be removed by something like the following subroutine:
686    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
687    C     &                     'phiHydLow', myTime, myThid )
688    Cml)
689    
690    #ifdef ALLOW_DIAGNOSTICS
691          IF ( useDiagnostics ) THEN
692    
693           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
694           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
695    
696           tmpFac = 1. _d 0
697           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
698         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
699    
700           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
701         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
702    
703          ENDIF
704    #endif /* ALLOW_DIAGNOSTICS */
705    
706    #ifdef ALLOW_DEBUG
707          IF ( debugLevel .GE. debLevD ) THEN
708           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
709           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
710           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
711           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
712           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
713           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
714           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
715           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
716           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
717           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
718    #ifndef ALLOW_ADAMSBASHFORTH_3
719           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
720           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
721           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
722           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
723    #endif
724          ENDIF
725    #endif
726    
727    #ifdef DYNAMICS_GUGV_EXCH_CHECK
728    C- jmc: For safety checking only: This Exchange here should not change
729    C       the solution. If solution changes, it means something is wrong,
730    C       but it does not mean that it is less wrong with this exchange.
731          IF ( debugLevel .GE. debLevE ) THEN
732           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
733          ENDIF
734    #endif
735    
736    #ifdef ALLOW_DEBUG
737          IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
738    #endif
739    
740        RETURN        RETURN
741        END        END

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.166

  ViewVC Help
Powered by ViewVC 1.1.22