/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by adcroft, Wed Apr 29 21:31:09 1998 UTC revision 1.164 by jahn, Thu Mar 21 18:15:44 2013 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6        SUBROUTINE DYNAMICS(myThid)  #ifdef ALLOW_OBCS
7  C     /==========================================================\  # include "OBCS_OPTIONS.h"
8  C     | SUBROUTINE DYNAMICS                                      |  #endif
9  C     | o Controlling routine for the explicit part of the model |  
10  C     |   dynamics.                                              |  #undef DYNAMICS_GUGV_EXCH_CHECK
11  C     |==========================================================|  
12  C     | This routine evaluates the "dynamics" terms for each     |  CBOP
13  C     | block of ocean in turn. Because the blocks of ocean have |  C     !ROUTINE: DYNAMICS
14  C     | overlap regions they are independent of one another.     |  C     !INTERFACE:
15  C     | If terms involving lateral integrals are needed in this  |        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16  C     | routine care will be needed. Similarly finite-difference |  C     !DESCRIPTION: \bv
17  C     | operations with stencils wider than the overlap region   |  C     *==========================================================*
18  C     | require special consideration.                           |  C     | SUBROUTINE DYNAMICS
19  C     | Notes                                                    |  C     | o Controlling routine for the explicit part of the model
20  C     | =====                                                    |  C     |   dynamics.
21  C     | C*P* comments indicating place holders for which code is |  C     *==========================================================*
22  C     |      presently being developed.                          |  C     | This routine evaluates the "dynamics" terms for each
23  C     \==========================================================/  C     | block of ocean in turn. Because the blocks of ocean have
24    C     | overlap regions they are independent of one another.
25    C     | If terms involving lateral integrals are needed in this
26    C     | routine care will be needed. Similarly finite-difference
27    C     | operations with stencils wider than the overlap region
28    C     | require special consideration.
29    C     | The algorithm...
30    C     |
31    C     | "Correction Step"
32    C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76          IMPLICIT NONE
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
80  #include "CG2D.h"  #include "PARAMS.h"
81  #include "DYNVARS.h"  #include "DYNVARS.h"
82    #ifdef ALLOW_CD_CODE
83    #include "CD_CODE_VARS.h"
84    #endif
85    #include "GRID.h"
86    #ifdef ALLOW_AUTODIFF_TAMC
87    # include "tamc.h"
88    # include "tamc_keys.h"
89    # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS_FIELDS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #include "OBCS_PARAMS.h"
100    #  include "OBCS_FIELDS.h"
101    #  ifdef ALLOW_PTRACERS
102    #   include "OBCS_PTRACERS.h"
103    #  endif
104    # endif
105    # ifdef ALLOW_MOM_FLUXFORM
106    #  include "MOM_FLUXFORM.h"
107    # endif
108    #endif /* ALLOW_AUTODIFF_TAMC */
109    
110    C     !CALLING SEQUENCE:
111    C     DYNAMICS()
112    C      |
113    C      |-- CALC_EP_FORCING
114    C      |
115    C      |-- CALC_GRAD_PHI_SURF
116    C      |
117    C      |-- CALC_VISCOSITY
118    C      |
119    C      |-- CALC_PHI_HYD
120    C      |
121    C      |-- MOM_FLUXFORM
122    C      |
123    C      |-- MOM_VECINV
124    C      |
125    C      |-- TIMESTEP
126    C      |
127    C      |-- MOM_U_IMPLICIT_R
128    C      |-- MOM_V_IMPLICIT_R
129    C      |
130    C      |-- IMPLDIFF
131    C      |
132    C      |-- OBCS_APPLY_UV
133    C      |
134    C      |-- CALC_GW
135    C      |
136    C      |-- DIAGNOSTICS_FILL
137    C      |-- DEBUG_STATS_RL
138    
139    C     !INPUT/OUTPUT PARAMETERS:
140  C     == Routine arguments ==  C     == Routine arguments ==
141  C     myThid - Thread number for this instance of the routine.  C     myTime :: Current time in simulation
142    C     myIter :: Current iteration number in simulation
143    C     myThid :: Thread number for this instance of the routine.
144          _RL myTime
145          INTEGER myIter
146        INTEGER myThid        INTEGER myThid
147    
148    C     !FUNCTIONS:
149    #ifdef ALLOW_DIAGNOSTICS
150          LOGICAL  DIAGNOSTICS_IS_ON
151          EXTERNAL DIAGNOSTICS_IS_ON
152    #endif
153    
154    C     !LOCAL VARIABLES:
155  C     == Local variables  C     == Local variables
156  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
157  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
158  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
159  C                              o vTrans: Meridional transport  C                                    variable.
160  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
161  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
162  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
163  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
164  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
165  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
166  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
167  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
168  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
169  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
170  C                              o fZon: Zonal flux term  C     KappaRU    :: vertical viscosity
171  C                              o fMer: Meridional flux term  C     KappaRV    :: vertical viscosity
172  C                              o fVer: Vertical flux term - note fVer  C     iMin, iMax :: Ranges and sub-block indices on which calculations
173  C                                      is "pipelined" in the vertical  C     jMin, jMax    are applied.
174  C                                      so we need an fVer for each  C     bi, bj     :: tile indices
175  C                                      variable.  C     k          :: current level index
176  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     km1, kp1   :: index of level above (k-1) and below (k+1)
177  C     jMin, jMax   are applied.  C     kUp, kDown :: Index for interface above and below. kUp and kDown are
178  C     bi, bj  C                   are switched with k to be the appropriate index into fVerU,V
179  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
180  C                          are switched with layer to be the appropriate index        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
181  C                          into fVerTerm        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
185        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
188        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
189        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
190        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
191        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
192        INTEGER iMin, iMax        INTEGER iMin, iMax
193        INTEGER jMin, jMax        INTEGER jMin, jMax
194        INTEGER bi, bj        INTEGER bi, bj
195        INTEGER i, j        INTEGER i, j
196        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kUp, kDown
197    
198    #ifdef ALLOW_DIAGNOSTICS
199          LOGICAL dPhiHydDiagIsOn
200          _RL tmpFac
201    #endif /* ALLOW_DIAGNOSTICS */
202    
203    
204    C---    The algorithm...
205    C
206    C       "Correction Step"
207    C       =================
208    C       Here we update the horizontal velocities with the surface
209    C       pressure such that the resulting flow is either consistent
210    C       with the free-surface evolution or the rigid-lid:
211    C         U[n] = U* + dt x d/dx P
212    C         V[n] = V* + dt x d/dy P
213    C
214    C       "Calculation of Gs"
215    C       ===================
216    C       This is where all the accelerations and tendencies (ie.
217    C       physics, parameterizations etc...) are calculated
218    C         rho = rho ( theta[n], salt[n] )
219    C         b   = b(rho, theta)
220    C         K31 = K31 ( rho )
221    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
222    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
223    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
224    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
225    C
226    C       "Time-stepping" or "Prediction"
227    C       ================================
228    C       The models variables are stepped forward with the appropriate
229    C       time-stepping scheme (currently we use Adams-Bashforth II)
230    C       - For momentum, the result is always *only* a "prediction"
231    C       in that the flow may be divergent and will be "corrected"
232    C       later with a surface pressure gradient.
233    C       - Normally for tracers the result is the new field at time
234    C       level [n+1} *BUT* in the case of implicit diffusion the result
235    C       is also *only* a prediction.
236    C       - We denote "predictors" with an asterisk (*).
237    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
238    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
239    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
240    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
241    C       With implicit diffusion:
242    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
243    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
244    C         (1 + dt * K * d_zz) theta[n] = theta*
245    C         (1 + dt * K * d_zz) salt[n] = salt*
246    C---
247    CEOP
248    
249    #ifdef ALLOW_DEBUG
250          IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
251    #endif
252    
253    #ifdef ALLOW_DIAGNOSTICS
254          dPhiHydDiagIsOn = .FALSE.
255          IF ( useDiagnostics )
256         &  dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
257         &               .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
258    #endif
259    
260    C-- Call to routine for calculation of
261    C   Eliassen-Palm-flux-forced U-tendency,
262    C   if desired:
263    #ifdef INCLUDE_EP_FORCING_CODE
264          CALL CALC_EP_FORCING(myThid)
265    #endif
266    
267    #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
268          CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
269    #endif
270    
271    #ifdef ALLOW_AUTODIFF_TAMC
272    C--   HPF directive to help TAMC
273    CHPF$ INDEPENDENT
274    #endif /* ALLOW_AUTODIFF_TAMC */
275    
276          DO bj=myByLo(myThid),myByHi(myThid)
277    
278    #ifdef ALLOW_AUTODIFF_TAMC
279    C--    HPF directive to help TAMC
280    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
281    CHPF$&                  ,phiHydF
282    CHPF$&                  ,KappaRU,KappaRV
283    CHPF$&                  )
284    #endif /* ALLOW_AUTODIFF_TAMC */
285    
286           DO bi=myBxLo(myThid),myBxHi(myThid)
287    
288    #ifdef ALLOW_AUTODIFF_TAMC
289              act1 = bi - myBxLo(myThid)
290              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
291              act2 = bj - myByLo(myThid)
292              max2 = myByHi(myThid) - myByLo(myThid) + 1
293              act3 = myThid - 1
294              max3 = nTx*nTy
295              act4 = ikey_dynamics - 1
296              idynkey = (act1 + 1) + act2*max1
297         &                      + act3*max1*max2
298         &                      + act4*max1*max2*max3
299    #endif /* ALLOW_AUTODIFF_TAMC */
300    
301  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
302  C     These inital values do not alter the numerical results. They  C     These initial values do not alter the numerical results. They
303  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
304  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
305  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0.*1. _d 37  
         yA(i,j)      = 0.*1. _d 37  
         uTrans(i,j)  = 0.*1. _d 37  
         vTrans(i,j)  = 0.*1. _d 37  
         aTerm(i,j)   = 0.*1. _d 37  
         xTerm(i,j)   = 0.*1. _d 37  
         cTerm(i,j)   = 0.*1. _d 37  
         mTerm(i,j)   = 0.*1. _d 37  
         pTerm(i,j)   = 0.*1. _d 37  
         fZon(i,j)    = 0.*1. _d 37  
         fMer(i,j)    = 0.*1. _d 37  
         DO K=1,nZ  
          pH (i,j,k)  = 0.*1. _d 37  
         ENDDO  
         rhokm1(i,j)    = 0. _d 0  
         rhokp1(i,j)    = 0. _d 0  
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
        ENDDO  
       ENDDO  
   
       DO bj=myByLo(myThid),myByHi(myThid)  
        DO bi=myBxLo(myThid),myBxHi(myThid)  
306    
307  C--   Boundary condition on hydrostatic pressure is pH(z=0)=0  #ifdef ALLOW_AUTODIFF_TAMC
308            DO k=1,Nr
309             DO j=1-OLy,sNy+OLy
310              DO i=1-OLx,sNx+OLx
311               KappaRU(i,j,k) = 0. _d 0
312               KappaRV(i,j,k) = 0. _d 0
313    cph(
314    c--   need some re-initialisation here to break dependencies
315    cph)
316               gU(i,j,k,bi,bj) = 0. _d 0
317               gV(i,j,k,bi,bj) = 0. _d 0
318              ENDDO
319             ENDDO
320            ENDDO
321    #endif /* ALLOW_AUTODIFF_TAMC */
322          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
323           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
324            pH(i,j,1) = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
325              fVerU  (i,j,2) = 0. _d 0
326              fVerV  (i,j,1) = 0. _d 0
327              fVerV  (i,j,2) = 0. _d 0
328              phiHydF (i,j)  = 0. _d 0
329              phiHydC (i,j)  = 0. _d 0
330    #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
331              dPhiHydX(i,j)  = 0. _d 0
332              dPhiHydY(i,j)  = 0. _d 0
333    #endif
334              phiSurfX(i,j)  = 0. _d 0
335              phiSurfY(i,j)  = 0. _d 0
336              guDissip(i,j)  = 0. _d 0
337              gvDissip(i,j)  = 0. _d 0
338    #ifdef ALLOW_AUTODIFF_TAMC
339              phiHydLow(i,j,bi,bj) = 0. _d 0
340    # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
341    #  ifndef DISABLE_RSTAR_CODE
342    #   ifndef ALLOW_AUTODIFF_OPENAD
343              dWtransC(i,j,bi,bj) = 0. _d 0
344              dWtransU(i,j,bi,bj) = 0. _d 0
345              dWtransV(i,j,bi,bj) = 0. _d 0
346    #   endif
347    #  endif
348    # endif
349    #endif
350             ENDDO
351            ENDDO
352    
353    C--     Start computation of dynamics
354            iMin = 0
355            iMax = sNx+1
356            jMin = 0
357            jMax = sNy+1
358    
359    #ifdef ALLOW_AUTODIFF_TAMC
360    CADJ STORE wVel (:,:,:,bi,bj) =
361    CADJ &     comlev1_bibj, key=idynkey, byte=isbyte
362    #endif /* ALLOW_AUTODIFF_TAMC */
363    
364    C--     Explicit part of the Surface Potential Gradient (add in TIMESTEP)
365    C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
366            IF (implicSurfPress.NE.1.) THEN
367              CALL CALC_GRAD_PHI_SURF(
368         I         bi,bj,iMin,iMax,jMin,jMax,
369         I         etaN,
370         O         phiSurfX,phiSurfY,
371         I         myThid )
372            ENDIF
373    
374    #ifdef ALLOW_AUTODIFF_TAMC
375    CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
376    CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
377    #ifdef ALLOW_KPP
378    CADJ STORE KPPviscAz (:,:,:,bi,bj)
379    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
380    #endif /* ALLOW_KPP */
381    #endif /* ALLOW_AUTODIFF_TAMC */
382    
383    #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
384    C--     Calculate the total vertical viscosity
385            CALL CALC_VISCOSITY(
386         I            bi,bj, iMin,iMax,jMin,jMax,
387         O            KappaRU, KappaRV,
388         I            myThid )
389    #else
390            DO k=1,Nr
391             DO j=1-OLy,sNy+OLy
392              DO i=1-OLx,sNx+OLx
393               KappaRU(i,j,k) = 0. _d 0
394               KappaRV(i,j,k) = 0. _d 0
395              ENDDO
396           ENDDO           ENDDO
397          ENDDO          ENDDO
398    #endif
399    
400          iMin = 1-OLx+1  #ifdef ALLOW_AUTODIFF_TAMC
401          iMax = sNx+OLx  CADJ STORE KappaRU(:,:,:)
402          jMin = 1-OLy+1  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
403          jMax = sNy+OLy  CADJ STORE KappaRV(:,:,:)
404    CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
405  C--     Update fields according to tendency terms  #endif /* ALLOW_AUTODIFF_TAMC */
406          CALL TIMESTEP(  
407       I       bi,bj,iMin,iMax,jMin,jMax,myThid)  #ifdef ALLOW_OBCS
408    C--   For Stevens boundary conditions velocities need to be extrapolated
409          DO K=2,Nz  C     (copied) to a narrow strip outside the domain
410  C Density of K-1 level (above W(K)) reference to K level           IF ( useOBCS ) THEN
411           CALL FIND_RHO(            CALL OBCS_COPY_UV_N(
412       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',       U         uVel(1-OLx,1-OLy,1,bi,bj),
413       O      rhoKm1,       U         vVel(1-OLx,1-OLy,1,bi,bj),
414       I      myThid )       I         Nr, bi, bj, myThid )
415  C Density of K level (below W(K)) reference to K level           ENDIF
416           CALL FIND_RHO(  #endif /* ALLOW_OBCS */
417       I      bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
418       O      rhoKp1,  C--     Start of dynamics loop
419       I      myThid )          DO k=1,Nr
420  C--     Calculate static stability and mix where convectively unstable  
421           CALL CONVECT(  C--       km1    Points to level above k (=k-1)
422       I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,myThid)  C--       kup    Cycles through 1,2 to point to layer above
423  C Density of K-1 level (above W(K)) reference to K-1 level  C--       kDown  Cycles through 2,1 to point to current layer
424           CALL FIND_RHO(  
425       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',            km1  = MAX(1,k-1)
426       O      rhoKm1,            kp1  = MIN(k+1,Nr)
427       I      myThid )            kup  = 1+MOD(k+1,2)
428  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0            kDown= 1+MOD(k,2)
429           CALL CALC_PH(  
430       I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,  #ifdef ALLOW_AUTODIFF_TAMC
431       U       pH,           kkey = (idynkey-1)*Nr + k
432       I       myThid )  c
433          ENDDO ! K  CADJ STORE totPhiHyd (:,:,k,bi,bj)
434    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
435  C Density of Nz level (bottom level) reference to Nz level  CADJ STORE phiHydLow (:,:,bi,bj)
436           CALL FIND_RHO(  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
437       I      bi, bj, iMin, iMax, jMin, jMax,  Nz, Nz, 'LINEAR',  CADJ STORE theta (:,:,k,bi,bj)
438       O      rhoKm1,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
439       I      myThid )  CADJ STORE salt  (:,:,k,bi,bj)
440  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
441           CALL CALC_PH(  CADJ STORE gT(:,:,k,bi,bj)
442       I       bi,bj,iMin,iMax,jMin,jMax,Nz+1,rhoKm1,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
443       U       pH,  CADJ STORE gS(:,:,k,bi,bj)
444       I       myThid )  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
445    # ifdef NONLIN_FRSURF
446          DO K = Nz, 1, -1  cph-test
447           kM1  =max(1,k-1)   ! Points to level above k (=k-1)  CADJ STORE  phiHydC (:,:)
448           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
449           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  CADJ STORE  phiHydF (:,:)
450           iMin = 1-OLx+2  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
451           iMax = sNx+OLx-1  CADJ STORE  guDissip (:,:)
452           jMin = 1-OLy+2  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
453           jMax = sNy+OLy-1  CADJ STORE  gvDissip (:,:)
454    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
455  C--      Get temporary terms used by tendency routines  CADJ STORE  fVerU (:,:,:)
456           CALL CALC_COMMON_FACTORS (  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
457       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ STORE  fVerV (:,:,:)
458       O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
459       I        myThid)  CADJ STORE gU(:,:,k,bi,bj)
460    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
461  C--      Calculate accelerations in the momentum equations  CADJ STORE gV(:,:,k,bi,bj)
462           CALL CALC_MOM_RHS(  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
463       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  #  ifndef ALLOW_ADAMSBASHFORTH_3
464       I        xA,yA,uTrans,vTrans,wTrans,maskC,  CADJ STORE guNm1(:,:,k,bi,bj)
465       I        pH,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
466       U        aTerm,xTerm,cTerm,mTerm,pTerm,  CADJ STORE gvNm1(:,:,k,bi,bj)
467       U        fZon, fMer, fVerU, fVerV,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
468       I        myThid)  #  else
469    CADJ STORE guNm(:,:,k,bi,bj,1)
470  C--      Calculate active tracer tendencies  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
471           CALL CALC_GT(  CADJ STORE guNm(:,:,k,bi,bj,2)
472       I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
473       I        xA,yA,uTrans,vTrans,wTrans,maskUp,  CADJ STORE gvNm(:,:,k,bi,bj,1)
474       U        aTerm,xTerm,fZon,fMer,fVerT,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
475       I        myThid)  CADJ STORE gvNm(:,:,k,bi,bj,2)
476  Cdbg     CALL CALC_GS(  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
477  Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  #  endif
478  Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  #  ifdef ALLOW_CD_CODE
479  Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  CADJ STORE uNM1(:,:,k,bi,bj)
480  Cdbg I        myThid)  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
481    CADJ STORE vNM1(:,:,k,bi,bj)
482    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
483    CADJ STORE uVelD(:,:,k,bi,bj)
484    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
485    CADJ STORE vVelD(:,:,k,bi,bj)
486    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
487    #  endif
488    # endif
489    # ifdef ALLOW_DEPTH_CONTROL
490    CADJ STORE  fVerU (:,:,:)
491    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
492    CADJ STORE  fVerV (:,:,:)
493    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
494    # endif
495    #endif /* ALLOW_AUTODIFF_TAMC */
496    
497    C--      Integrate hydrostatic balance for phiHyd with BC of
498    C        phiHyd(z=0)=0
499             IF ( implicitIntGravWave ) THEN
500               CALL CALC_PHI_HYD(
501         I        bi,bj,iMin,iMax,jMin,jMax,k,
502         I        gT, gS,
503         U        phiHydF,
504         O        phiHydC, dPhiHydX, dPhiHydY,
505         I        myTime, myIter, myThid )
506             ELSE
507               CALL CALC_PHI_HYD(
508         I        bi,bj,iMin,iMax,jMin,jMax,k,
509         I        theta, salt,
510         U        phiHydF,
511         O        phiHydC, dPhiHydX, dPhiHydY,
512         I        myTime, myIter, myThid )
513             ENDIF
514    #ifdef ALLOW_DIAGNOSTICS
515             IF ( dPhiHydDiagIsOn ) THEN
516               tmpFac = -1. _d 0
517               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
518         &                           'Um_dPHdx', k, 1, 2, bi, bj, myThid )
519               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
520         &                           'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
521             ENDIF
522    #endif /* ALLOW_DIAGNOSTICS */
523    
524    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
525    C        and step forward storing the result in gU, gV, etc...
526             IF ( momStepping ) THEN
527    #ifdef ALLOW_AUTODIFF_TAMC
528    # ifdef NONLIN_FRSURF
529    #  if (defined ALLOW_MOM_FLUXFORM) && !(defined DISABLE_RSTAR_CODE)
530    CADJ STORE dWtransC(:,:,bi,bj)
531    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
532    CADJ STORE dWtransU(:,:,bi,bj)
533    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
534    CADJ STORE dWtransV(:,:,bi,bj)
535    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
536    #  endif
537    CADJ STORE fVerU(:,:,:)
538    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
539    CADJ STORE fVerV(:,:,:)
540    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
541    # endif /* NONLIN_FRSURF */
542    #endif /* ALLOW_AUTODIFF_TAMC */
543               IF (.NOT. vectorInvariantMomentum) THEN
544    #ifdef ALLOW_MOM_FLUXFORM
545                  CALL MOM_FLUXFORM(
546         I         bi,bj,k,iMin,iMax,jMin,jMax,
547         I         KappaRU, KappaRV,
548         U         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
549         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
550         O         guDissip, gvDissip,
551         I         myTime, myIter, myThid)
552    #endif
553               ELSE
554    #ifdef ALLOW_MOM_VECINV
555                 CALL MOM_VECINV(
556         I         bi,bj,k,iMin,iMax,jMin,jMax,
557         I         KappaRU, KappaRV,
558         I         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
559         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
560         O         guDissip, gvDissip,
561         I         myTime, myIter, myThid)
562    #endif
563               ENDIF
564    C
565               CALL TIMESTEP(
566         I         bi,bj,iMin,iMax,jMin,jMax,k,
567         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
568         I         guDissip, gvDissip,
569         I         myTime, myIter, myThid)
570    
571             ENDIF
572    
573    C--     end of dynamics k loop (1:Nr)
574          ENDDO          ENDDO
575    
576    C--     Implicit Vertical advection & viscosity
577    #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
578         defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
579            IF ( momImplVertAdv ) THEN
580              CALL MOM_U_IMPLICIT_R( kappaRU,
581         I                           bi, bj, myTime, myIter, myThid )
582              CALL MOM_V_IMPLICIT_R( kappaRV,
583         I                           bi, bj, myTime, myIter, myThid )
584            ELSEIF ( implicitViscosity ) THEN
585    #else /* INCLUDE_IMPLVERTADV_CODE */
586            IF     ( implicitViscosity ) THEN
587    #endif /* INCLUDE_IMPLVERTADV_CODE */
588    #ifdef    ALLOW_AUTODIFF_TAMC
589    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
590    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
591    #endif    /* ALLOW_AUTODIFF_TAMC */
592              CALL IMPLDIFF(
593         I         bi, bj, iMin, iMax, jMin, jMax,
594         I         -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
595         U         gU,
596         I         myThid )
597    #ifdef    ALLOW_AUTODIFF_TAMC
598    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
599    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
600    #endif    /* ALLOW_AUTODIFF_TAMC */
601              CALL IMPLDIFF(
602         I         bi, bj, iMin, iMax, jMin, jMax,
603         I         -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
604         U         gV,
605         I         myThid )
606            ENDIF
607    
608    #ifdef ALLOW_OBCS
609    C--      Apply open boundary conditions
610            IF ( useOBCS ) THEN
611    C--      but first save intermediate velocities to be used in the
612    C        next time step for the Stevens boundary conditions
613              CALL OBCS_SAVE_UV_N(
614         I        bi, bj, iMin, iMax, jMin, jMax, 0,
615         I        gU, gV, myThid )
616              CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
617            ENDIF
618    #endif /* ALLOW_OBCS */
619    
620    #ifdef    ALLOW_CD_CODE
621            IF (implicitViscosity.AND.useCDscheme) THEN
622    #ifdef    ALLOW_AUTODIFF_TAMC
623    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
624    #endif    /* ALLOW_AUTODIFF_TAMC */
625              CALL IMPLDIFF(
626         I         bi, bj, iMin, iMax, jMin, jMax,
627         I         0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
628         U         vVelD,
629         I         myThid )
630    #ifdef    ALLOW_AUTODIFF_TAMC
631    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
632    #endif    /* ALLOW_AUTODIFF_TAMC */
633              CALL IMPLDIFF(
634         I         bi, bj, iMin, iMax, jMin, jMax,
635         I         0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
636         U         uVelD,
637         I         myThid )
638            ENDIF
639    #endif    /* ALLOW_CD_CODE */
640    C--     End implicit Vertical advection & viscosity
641    
642    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
643    
644    #ifdef ALLOW_NONHYDROSTATIC
645    C--   Step forward W field in N-H algorithm
646            IF ( nonHydrostatic ) THEN
647    #ifdef ALLOW_DEBUG
648             IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
649    #endif
650             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
651             CALL CALC_GW(
652         I                 bi,bj, KappaRU, KappaRV,
653         I                 myTime, myIter, myThid )
654            ENDIF
655            IF ( nonHydrostatic.OR.implicitIntGravWave )
656         &   CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
657            IF ( nonHydrostatic )
658         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
659    #endif
660    
661    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
662    
663    C-    end of bi,bj loops
664         ENDDO         ENDDO
665        ENDDO        ENDDO
666    
667    #ifdef ALLOW_OBCS
668          IF (useOBCS) THEN
669            CALL OBCS_EXCHANGES( myThid )
670          ENDIF
671    #endif
672    
673    Cml(
674    C     In order to compare the variance of phiHydLow of a p/z-coordinate
675    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
676    C     has to be removed by something like the following subroutine:
677    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
678    C     &                     'phiHydLow', myTime, myThid )
679    Cml)
680    
681    #ifdef ALLOW_DIAGNOSTICS
682          IF ( useDiagnostics ) THEN
683    
684           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
685           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
686    
687           tmpFac = 1. _d 0
688           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
689         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
690    
691           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
692         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
693    
694          ENDIF
695    #endif /* ALLOW_DIAGNOSTICS */
696    
697    #ifdef ALLOW_DEBUG
698          IF ( debugLevel .GE. debLevD ) THEN
699           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
700           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
701           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
702           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
703           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
704           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
705           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
706           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
707           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
708           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
709    #ifndef ALLOW_ADAMSBASHFORTH_3
710           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
711           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
712           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
713           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
714    #endif
715          ENDIF
716    #endif
717    
718    #ifdef DYNAMICS_GUGV_EXCH_CHECK
719    C- jmc: For safety checking only: This Exchange here should not change
720    C       the solution. If solution changes, it means something is wrong,
721    C       but it does not mean that it is less wrong with this exchange.
722          IF ( debugLevel .GE. debLevE ) THEN
723           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
724          ENDIF
725    #endif
726    
727    #ifdef ALLOW_DEBUG
728          IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
729    #endif
730    
731        RETURN        RETURN
732        END        END

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.164

  ViewVC Help
Powered by ViewVC 1.1.22