--- MITgcm/model/src/dynamics.F 2001/01/09 15:44:59 1.54.2.4 +++ MITgcm/model/src/dynamics.F 2005/05/23 20:49:37 1.117 @@ -1,44 +1,116 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.54.2.4 2001/01/09 15:44:59 adcroft Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.117 2005/05/23 20:49:37 molod Exp $ +C $Name: $ +#include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" +CBOP +C !ROUTINE: DYNAMICS +C !INTERFACE: SUBROUTINE DYNAMICS(myTime, myIter, myThid) -C /==========================================================\ -C | SUBROUTINE DYNAMICS | -C | o Controlling routine for the explicit part of the model | -C | dynamics. | -C |==========================================================| -C | This routine evaluates the "dynamics" terms for each | -C | block of ocean in turn. Because the blocks of ocean have | -C | overlap regions they are independent of one another. | -C | If terms involving lateral integrals are needed in this | -C | routine care will be needed. Similarly finite-difference | -C | operations with stencils wider than the overlap region | -C | require special consideration. | -C | Notes | -C | ===== | -C | C*P* comments indicating place holders for which code is | -C | presently being developed. | -C \==========================================================/ +C !DESCRIPTION: \bv +C *==========================================================* +C | SUBROUTINE DYNAMICS +C | o Controlling routine for the explicit part of the model +C | dynamics. +C *==========================================================* +C | This routine evaluates the "dynamics" terms for each +C | block of ocean in turn. Because the blocks of ocean have +C | overlap regions they are independent of one another. +C | If terms involving lateral integrals are needed in this +C | routine care will be needed. Similarly finite-difference +C | operations with stencils wider than the overlap region +C | require special consideration. +C | The algorithm... +C | +C | "Correction Step" +C | ================= +C | Here we update the horizontal velocities with the surface +C | pressure such that the resulting flow is either consistent +C | with the free-surface evolution or the rigid-lid: +C | U[n] = U* + dt x d/dx P +C | V[n] = V* + dt x d/dy P +C | +C | "Calculation of Gs" +C | =================== +C | This is where all the accelerations and tendencies (ie. +C | physics, parameterizations etc...) are calculated +C | rho = rho ( theta[n], salt[n] ) +C | b = b(rho, theta) +C | K31 = K31 ( rho ) +C | Gu[n] = Gu( u[n], v[n], wVel, b, ... ) +C | Gv[n] = Gv( u[n], v[n], wVel, b, ... ) +C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) +C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) +C | +C | "Time-stepping" or "Prediction" +C | ================================ +C | The models variables are stepped forward with the appropriate +C | time-stepping scheme (currently we use Adams-Bashforth II) +C | - For momentum, the result is always *only* a "prediction" +C | in that the flow may be divergent and will be "corrected" +C | later with a surface pressure gradient. +C | - Normally for tracers the result is the new field at time +C | level [n+1} *BUT* in the case of implicit diffusion the result +C | is also *only* a prediction. +C | - We denote "predictors" with an asterisk (*). +C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) +C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) +C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | With implicit diffusion: +C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C | (1 + dt * K * d_zz) theta[n] = theta* +C | (1 + dt * K * d_zz) salt[n] = salt* +C | +C *==========================================================* +C \ev +C !USES: IMPLICIT NONE - C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" -#include "CG2D.h" #include "PARAMS.h" #include "DYNVARS.h" +#ifdef ALLOW_CD_CODE +#include "CD_CODE_VARS.h" +#endif #include "GRID.h" - #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" # include "tamc_keys.h" -#endif /* ALLOW_AUTODIFF_TAMC */ - -#ifdef ALLOW_KPP -# include "KPP.h" -#endif +# include "FFIELDS.h" +# include "EOS.h" +# ifdef ALLOW_KPP +# include "KPP.h" +# endif +#endif /* ALLOW_AUTODIFF_TAMC */ + +C !CALLING SEQUENCE: +C DYNAMICS() +C | +C |-- CALC_GRAD_PHI_SURF +C | +C |-- CALC_VISCOSITY +C | +C |-- CALC_PHI_HYD +C | +C |-- MOM_FLUXFORM +C | +C |-- MOM_VECINV +C | +C |-- TIMESTEP +C | +C |-- OBCS_APPLY_UV +C | +C |-- IMPLDIFF +C | +C |-- OBCS_APPLY_UV +C | +C |-- CALL DEBUG_STATS_RL +C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation @@ -47,105 +119,54 @@ INTEGER myIter INTEGER myThid +C !LOCAL VARIABLES: C == Local variables -C xA, yA - Per block temporaries holding face areas -C uTrans, vTrans, rTrans - Per block temporaries holding flow -C transport -C rVel o uTrans: Zonal transport -C o vTrans: Meridional transport -C o rTrans: Vertical transport -C o rVel: Vertical velocity at upper and -C lower cell faces. -C maskC,maskUp o maskC: land/water mask for tracer cells -C o maskUp: land/water mask for W points -C aTerm, xTerm, cTerm - Work arrays for holding separate terms in -C mTerm, pTerm, tendency equations. -C fZon, fMer, fVer[STUV] o aTerm: Advection term -C o xTerm: Mixing term -C o cTerm: Coriolis term -C o mTerm: Metric term -C o pTerm: Pressure term -C o fZon: Zonal flux term -C o fMer: Meridional flux term -C o fVer: Vertical flux term - note fVer -C is "pipelined" in the vertical -C so we need an fVer for each -C variable. -C rhoK, rhoKM1 - Density at current level, level above and level -C below. -C rhoKP1 -C buoyK, buoyKM1 - Buoyancy at current level and level above. -C phiHyd - Hydrostatic part of the potential phiHydi. -C In z coords phiHydiHyd is the hydrostatic -C pressure anomaly -C In p coords phiHydiHyd is the geopotential -C surface height -C anomaly. -C etaSurfX, - Holds surface elevation gradient in X and Y. -C etaSurfY -C KappaRT, - Total diffusion in vertical for T and S. -C KappaRS (background + spatially varying, isopycnal term). +C fVer[UV] o fVer: Vertical flux term - note fVer +C is "pipelined" in the vertical +C so we need an fVer for each +C variable. +C phiHydC :: hydrostatic potential anomaly at cell center +C In z coords phiHyd is the hydrostatic potential +C (=pressure/rho0) anomaly +C In p coords phiHyd is the geopotential height anomaly. +C phiHydF :: hydrostatic potential anomaly at middle between 2 centers +C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom. +C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean) +C phiSurfY or geopotential (atmos) in X and Y direction +C guDissip :: dissipation tendency (all explicit terms), u component +C gvDissip :: dissipation tendency (all explicit terms), v component C iMin, iMax - Ranges and sub-block indices on which calculations C jMin, jMax are applied. C bi, bj C k, kup, - Index for layer above and below. kup and kDown C kDown, km1 are switched with layer to be the appropriate C index into fVerTerm. - _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhotmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) - _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly) + _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly) + _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) - _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - -C This is currently also used by IVDC and Diagnostics -C #ifdef INCLUDE_CONVECT_CALL - _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) -C #endif INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j - INTEGER k, km1, kup, kDown + INTEGER k, km1, kp1, kup, kDown -#ifdef ALLOW_AUTODIFF_TAMC - INTEGER isbyte - PARAMETER( isbyte = 4 ) - - INTEGER act1, act2, act3, act4 - INTEGER max1, max2, max3 - INTEGER iikey, kkey - INTEGER maximpl -#endif /* ALLOW_AUTODIFF_TAMC */ +#ifdef ALLOW_DIAGNOSTICS + _RL tmpFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + LOGICAL DIAGNOSTICS_IS_ON + EXTERNAL DIAGNOSTICS_IS_ON +#endif /* ALLOW_DIAGNOSTICS */ + C--- The algorithm... C C "Correction Step" @@ -160,14 +181,13 @@ C =================== C This is where all the accelerations and tendencies (ie. C physics, parameterizations etc...) are calculated -C rVel = sum_r ( div. u[n] ) C rho = rho ( theta[n], salt[n] ) C b = b(rho, theta) C K31 = K31 ( rho ) -C Gu[n] = Gu( u[n], v[n], rVel, b, ... ) -C Gv[n] = Gv( u[n], v[n], rVel, b, ... ) -C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... ) -C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... ) +C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) +C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) +C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) +C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) C C "Time-stepping" or "Prediction" C ================================ @@ -190,48 +210,14 @@ C (1 + dt * K * d_zz) theta[n] = theta* C (1 + dt * K * d_zz) salt[n] = salt* C--- +CEOP -#ifdef ALLOW_AUTODIFF_TAMC -C-- dummy statement to end declaration part - ikey = 1 -#endif /* ALLOW_AUTODIFF_TAMC */ - -C-- Set up work arrays with valid (i.e. not NaN) values -C These inital values do not alter the numerical results. They -C just ensure that all memory references are to valid floating -C point numbers. This prevents spurious hardware signals due to -C uninitialised but inert locations. - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - xA(i,j) = 0. _d 0 - yA(i,j) = 0. _d 0 - uTrans(i,j) = 0. _d 0 - vTrans(i,j) = 0. _d 0 - aTerm(i,j) = 0. _d 0 - xTerm(i,j) = 0. _d 0 - cTerm(i,j) = 0. _d 0 - mTerm(i,j) = 0. _d 0 - pTerm(i,j) = 0. _d 0 - fZon(i,j) = 0. _d 0 - fMer(i,j) = 0. _d 0 - DO k=1,Nr - phiHyd (i,j,k) = 0. _d 0 - KappaRU(i,j,k) = 0. _d 0 - KappaRV(i,j,k) = 0. _d 0 - sigmaX(i,j,k) = 0. _d 0 - sigmaY(i,j,k) = 0. _d 0 - sigmaR(i,j,k) = 0. _d 0 - ENDDO - rhoKM1 (i,j) = 0. _d 0 - rhok (i,j) = 0. _d 0 - rhoKP1 (i,j) = 0. _d 0 - rhoTMP (i,j) = 0. _d 0 - buoyKM1(i,j) = 0. _d 0 - buoyK (i,j) = 0. _d 0 - maskC (i,j) = 0. _d 0 - ENDDO - ENDDO - +C-- Call to routine for calculation of +C Eliassen-Palm-flux-forced U-tendency, +C if desired: +#ifdef INCLUDE_EP_FORCING_CODE + CALL CALC_EP_FORCING(myThid) +#endif #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC @@ -242,9 +228,9 @@ #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC -CHPF$ INDEPENDENT, NEW (rTrans,rVel,fVerT,fVerS,fVerU,fVerV -CHPF$& ,phiHyd,utrans,vtrans,maskc,xA,yA -CHPF$& ,KappaRT,KappaRS,KappaRU,KappaRV +CHPF$ INDEPENDENT, NEW (fVerU,fVerV +CHPF$& ,phiHydF +CHPF$& ,KappaRU,KappaRV CHPF$& ) #endif /* ALLOW_AUTODIFF_TAMC */ @@ -253,279 +239,100 @@ #ifdef ALLOW_AUTODIFF_TAMC act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 - act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 - act3 = myThid - 1 max3 = nTx*nTy - act4 = ikey_dynamics - 1 - - ikey = (act1 + 1) + act2*max1 + idynkey = (act1 + 1) + act2*max1 & + act3*max1*max2 & + act4*max1*max2*max3 #endif /* ALLOW_AUTODIFF_TAMC */ -C-- Set up work arrays that need valid initial values - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - rTrans(i,j) = 0. _d 0 - rVel (i,j,1) = 0. _d 0 - rVel (i,j,2) = 0. _d 0 - fVerT (i,j,1) = 0. _d 0 - fVerT (i,j,2) = 0. _d 0 - fVerS (i,j,1) = 0. _d 0 - fVerS (i,j,2) = 0. _d 0 - fVerU (i,j,1) = 0. _d 0 - fVerU (i,j,2) = 0. _d 0 - fVerV (i,j,1) = 0. _d 0 - fVerV (i,j,2) = 0. _d 0 - phiHyd(i,j,1) = 0. _d 0 - ENDDO - ENDDO +C-- Set up work arrays with valid (i.e. not NaN) values +C These inital values do not alter the numerical results. They +C just ensure that all memory references are to valid floating +C point numbers. This prevents spurious hardware signals due to +C uninitialised but inert locations. DO k=1,Nr DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx -#ifdef INCLUDE_CONVECT_CALL - ConvectCount(i,j,k) = 0. + KappaRU(i,j,k) = 0. _d 0 + KappaRV(i,j,k) = 0. _d 0 +#ifdef ALLOW_AUTODIFF_TAMC +cph( +c-- need some re-initialisation here to break dependencies +cph) + gu(i,j,k,bi,bj) = 0. _d 0 + gv(i,j,k,bi,bj) = 0. _d 0 #endif - KappaRT(i,j,k) = 0. _d 0 - KappaRS(i,j,k) = 0. _d 0 ENDDO ENDDO ENDDO - - iMin = 1-OLx+1 - iMax = sNx+OLx - jMin = 1-OLy+1 - jMax = sNy+OLy - - -C-- Start of diagnostic loop - DO k=Nr,1,-1 - -#ifdef ALLOW_AUTODIFF_TAMC -C? Patrick, is this formula correct now that we change the loop range? -C? Do we still need this? - kkey = (ikey-1)*(Nr-2+1) + (k-2) + 1 -#endif /* ALLOW_AUTODIFF_TAMC */ - -#ifdef ALLOW_OBCS -C-- Calculate future values on open boundaries - IF (openBoundaries) THEN -Caja CALL CYCLE_OBCS( k, bi, bj, myThid ) -c new args! CALL SET_OBCS( k, bi, bj, myTime, myThid ) -c +deltaT? - ENDIF -#endif - -C-- Integrate continuity vertically for vertical velocity - CALL INTEGRATE_FOR_W( - I bi, bj, k, uVel, vVel, - O wVel, - I myThid ) -#ifdef ALLOW_OBCS - IF (openBoundaries) THEN -c new subr CALL OBCS_APPLY_W( bi, bj, k, wVel, myThid ) - ENDIF -#endif - -C-- Calculate gradients of potential density for isoneutral -C slope terms (e.g. GM/Redi tensor or IVDC diffusivity) - IF ( k.GT.1 .AND. (useGMRedi.OR.ivdc_kappa.NE.0.) ) THEN - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, - O rhoK, - I myThid ) - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType, - O rhoKm1, - I myThid ) - CALL GRAD_SIGMA( - I bi, bj, iMin, iMax, jMin, jMax, k, - I rhoK, rhoKm1, rhoK, - O sigmaX, sigmaY, sigmaR, - I myThid ) - ENDIF - -C-- Implicit Vertical Diffusion for Convection - IF (k.GT.1 .AND. ivdc_kappa.NE.0.) THEN - CALL CALC_IVDC( - I bi, bj, iMin, iMax, jMin, jMax, k, - I rhoKm1, rhoK, -c should use sigmaR !!! - U ConvectCount, KappaRT, KappaRS, - I myTime, myIter, myThid) - END IF - -C-- end of diagnostic k loop (Nr:1) + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + fVerU (i,j,1) = 0. _d 0 + fVerU (i,j,2) = 0. _d 0 + fVerV (i,j,1) = 0. _d 0 + fVerV (i,j,2) = 0. _d 0 + phiHydF (i,j) = 0. _d 0 + phiHydC (i,j) = 0. _d 0 + dPhiHydX(i,j) = 0. _d 0 + dPhiHydY(i,j) = 0. _d 0 + phiSurfX(i,j) = 0. _d 0 + phiSurfY(i,j) = 0. _d 0 + guDissip(i,j) = 0. _d 0 + gvDissip(i,j) = 0. _d 0 + ENDDO ENDDO -#ifdef ALLOW_GMREDI -C-- Calculate iso-neutral slopes for the GM/Redi parameterisation - IF (useGMRedi) THEN - DO k=1,Nr - CALL GMREDI_CALC_TENSOR( - I bi, bj, iMin, iMax, jMin, jMax, k, - I sigmaX, sigmaY, sigmaR, - I myThid ) - ENDDO +C-- Start computation of dynamics + iMin = 0 + iMax = sNx+1 + jMin = 0 + jMax = sNy+1 + +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE wvel (:,:,:,bi,bj) = +CADJ & comlev1_bibj, key = idynkey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP) +C (note: this loop will be replaced by CALL CALC_GRAD_ETA) + IF (implicSurfPress.NE.1.) THEN + CALL CALC_GRAD_PHI_SURF( + I bi,bj,iMin,iMax,jMin,jMax, + I etaN, + O phiSurfX,phiSurfY, + I myThid ) ENDIF -#endif /* ALLOW_GMREDI */ - -#ifdef ALLOW_KPP -C-- Compute KPP mixing coefficients - IF (useKPP) THEN - CALL KPP_CALC( - I bi, bj, myTime, myThid ) - ENDIF -#endif /* ALLOW_KPP */ - -C-- Determines forcing terms based on external fields -C relaxation terms, etc. - CALL EXTERNAL_FORCING_SURF( - I bi, bj, iMin, iMax, jMin, jMax, - I myThid ) #ifdef ALLOW_AUTODIFF_TAMC -CADJ STORE KappaRT(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte -CADJ STORE KappaRS(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte -CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte -CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte -CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte -CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte -#endif /* ALLOW_AUTODIFF_TAMC */ - - - -C-- Start of thermodynamics loop - DO k=Nr,1,-1 - -C-- km1 Points to level above k (=k-1) -C-- kup Cycles through 1,2 to point to layer above -C-- kDown Cycles through 2,1 to point to current layer - - km1 = MAX(1,k-1) - kup = 1+MOD(k+1,2) - kDown= 1+MOD(k,2) - - iMin = 1-OLx+2 - iMax = sNx+OLx-1 - jMin = 1-OLy+2 - jMax = sNy+OLy-1 - -#ifdef ALLOW_AUTODIFF_TAMC -CPatrick Is this formula correct? - kkey = (ikey-1)*(Nr-1+1) + (k-1) + 1 -CADJ STORE rvel (:,:,kDown) = comlev1_bibj_k, key = kkey, byte = isbyte -CADJ STORE rTrans(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte -CADJ STORE KappaRT(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte -CADJ STORE KappaRS(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte +CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte +CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte +#ifdef ALLOW_KPP +CADJ STORE KPPviscAz (:,:,:,bi,bj) +CADJ & = comlev1_bibj, key=idynkey, byte=isbyte +#endif /* ALLOW_KPP */ #endif /* ALLOW_AUTODIFF_TAMC */ -C-- Get temporary terms used by tendency routines - CALL CALC_COMMON_FACTORS ( - I bi,bj,iMin,iMax,jMin,jMax,k,km1,kup,kDown, - O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp, - I myThid) - #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL C-- Calculate the total vertical diffusivity - CALL CALC_DIFFUSIVITY( + DO k=1,Nr + CALL CALC_VISCOSITY( I bi,bj,iMin,iMax,jMin,jMax,k, - I maskC,maskup, - O KappaRT,KappaRS,KappaRU,KappaRV, + O KappaRU,KappaRV, I myThid) + ENDDO #endif -C-- Calculate active tracer tendencies (gT,gS,...) -C and step forward storing result in gTnm1, gSnm1, etc. - IF ( tempStepping ) THEN - CALL CALC_GT( - I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, - I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, - I KappaRT, - U aTerm,xTerm,fZon,fMer,fVerT, - I myTime, myThid) - CALL TIMESTEP_TRACER( - I bi,bj,iMin,iMax,jMin,jMax,k, - I theta, gT, - U gTnm1, - I myIter, myThid) - ENDIF - IF ( saltStepping ) THEN - CALL CALC_GS( - I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, - I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, - I KappaRS, - U aTerm,xTerm,fZon,fMer,fVerS, - I myTime, myThid) - CALL TIMESTEP_TRACER( - I bi,bj,iMin,iMax,jMin,jMax,k, - I salt, gS, - U gSnm1, - I myIter, myThid) - ENDIF -#ifdef ALLOW_OBCS -C-- Apply open boundary conditions - IF (openBoundaries) THEN -#ifdef ALLOW_AUTODIFF_TAMC -CADJ STORE gwnm1(:,:,k,bi,bj) = comlev1_bibj_k -CADJ & , key = kkey, byte = isbyte -#endif /* ALLOW_AUTODIFF_TAMC */ -c new subr CALL OBCS_APPLY_TS( bi, bj, k, myThid ) - END IF -#endif -C-- Freeze water - IF (allowFreezing) THEN -#ifdef ALLOW_AUTODIFF_TAMC -CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k -CADJ & , key = kkey, byte = isbyte -#endif /* ALLOW_AUTODIFF_TAMC */ - CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid ) - END IF - -C-- end of thermodynamic k loop (Nr:1) - ENDDO - - -#ifdef ALLOW_AUTODIFF_TAMC -CPatrick? What about this one? - maximpl = 6 - iikey = (ikey-1)*maximpl -#endif /* ALLOW_AUTODIFF_TAMC */ - -C-- Implicit diffusion - IF (implicitDiffusion) THEN - - IF (tempStepping) THEN -#ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 1 -#endif /* ALLOW_AUTODIFF_TAMC */ - CALL IMPLDIFF( - I bi, bj, iMin, iMax, jMin, jMax, - I deltaTtracer, KappaRT, recip_HFacC, - U gTNm1, - I myThid ) - ENDIF - - IF (saltStepping) THEN #ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 2 +CADJ STORE KappaRU(:,:,:) +CADJ & = comlev1_bibj, key=idynkey, byte=isbyte +CADJ STORE KappaRV(:,:,:) +CADJ & = comlev1_bibj, key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ - CALL IMPLDIFF( - I bi, bj, iMin, iMax, jMin, jMax, - I deltaTtracer, KappaRS, recip_HFacC, - U gSNm1, - I myThid ) - ENDIF - -C-- End If implicitDiffusion - ENDIF - - C-- Start of dynamics loop DO k=1,Nr @@ -535,123 +342,206 @@ C-- kDown Cycles through 2,1 to point to current layer km1 = MAX(1,k-1) + kp1 = MIN(k+1,Nr) kup = 1+MOD(k+1,2) kDown= 1+MOD(k,2) - iMin = 1-OLx+2 - iMax = sNx+OLx-1 - jMin = 1-OLy+2 - jMax = sNy+OLy-1 - -C-- Calculate buoyancy - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, km1, km1, eosType, - O rhoKm1, - I myThid ) - CALL CALC_BUOYANCY( - I bi,bj,iMin,iMax,jMin,jMax,k,rhoKm1, - O buoyKm1, - I myThid ) - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, - O rhoK, - I myThid ) - CALL CALC_BUOYANCY( - I bi,bj,iMin,iMax,jMin,jMax,k,rhoK, - O buoyK, - I myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + kkey = (idynkey-1)*Nr + k +c +CADJ STORE totphihyd (:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE theta (:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +CADJ STORE salt (:,:,k,bi,bj) +CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ C-- Integrate hydrostatic balance for phiHyd with BC of -C-- phiHyd(z=0)=0 +C phiHyd(z=0)=0 CALL CALC_PHI_HYD( - I bi,bj,iMin,iMax,jMin,jMax,k,buoyKm1,buoyK, - U phiHyd, - I myThid ) + I bi,bj,iMin,iMax,jMin,jMax,k, + I theta, salt, + U phiHydF, + O phiHydC, dPhiHydX, dPhiHydY, + I myTime, myIter, myThid ) C-- Calculate accelerations in the momentum equations (gU, gV, ...) -C and step forward storing the result in gUnm1, gVnm1, etc... +C and step forward storing the result in gU, gV, etc... IF ( momStepping ) THEN - CALL CALC_MOM_RHS( +#ifdef ALLOW_MOM_FLUXFORM + IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM( + I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, + I dPhiHydX,dPhiHydY,KappaRU,KappaRV, + U fVerU, fVerV, + I myTime, myIter, myThid) +#endif +#ifdef ALLOW_MOM_VECINV + IF (vectorInvariantMomentum) CALL MOM_VECINV( I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, - I phiHyd,KappaRU,KappaRV, + I dPhiHydX,dPhiHydY,KappaRU,KappaRV, U fVerU, fVerV, - I myTime, myThid) + O guDissip, gvDissip, + I myTime, myIter, myThid) +#endif CALL TIMESTEP( I bi,bj,iMin,iMax,jMin,jMax,k, - I myIter, myThid) -#ifdef ALLOW_AUTODIFF_TAMC -#ifdef INCLUDE_CD_CODE - ELSE - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - guCD(i,j,k,bi,bj) = 0.0 - gvCD(i,j,k,bi,bj) = 0.0 - END DO - END DO -#endif /* INCLUDE_CD_CODE */ -#endif /* ALLOW_AUTODIFF_TAMC */ + I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY, + I guDissip, gvDissip, + I myTime, myIter, myThid) + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid ) + ENDIF +#endif /* ALLOW_OBCS */ + ENDIF C-- end of dynamics k loop (1:Nr) ENDDO - - -C-- Implicit viscosity - IF (implicitViscosity.AND.momStepping) THEN +C-- Implicit Vertical advection & viscosity +#ifdef INCLUDE_IMPLVERTADV_CODE + IF ( momImplVertAdv ) THEN + CALL MOM_U_IMPLICIT_R( kappaRU, + I bi, bj, myTime, myIter, myThid ) + CALL MOM_V_IMPLICIT_R( kappaRV, + I bi, bj, myTime, myIter, myThid ) + ELSEIF ( implicitViscosity ) THEN +#else /* INCLUDE_IMPLVERTADV_CODE */ + IF ( implicitViscosity ) THEN +#endif /* INCLUDE_IMPLVERTADV_CODE */ #ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 3 +CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte +CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, - I deltaTmom, KappaRU,recip_HFacW, - U gUNm1, + I 0, KappaRU,recip_HFacW, + U gU, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 4 +CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte +CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, - I deltaTmom, KappaRV,recip_HFacS, - U gVNm1, + I 0, KappaRV,recip_HFacS, + U gV, I myThid ) + ENDIF + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN + DO K=1,Nr + CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid ) + ENDDO + ENDIF +#endif /* ALLOW_OBCS */ -#ifdef INCLUDE_CD_CODE +#ifdef ALLOW_CD_CODE + IF (implicitViscosity.AND.useCDscheme) THEN #ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 5 +CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, - I deltaTmom, KappaRU,recip_HFacW, + I 0, KappaRU,recip_HFacW, U vVelD, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC - idkey = iikey + 6 +CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, - I deltaTmom, KappaRV,recip_HFacS, + I 0, KappaRV,recip_HFacS, U uVelD, I myThid ) -#endif /* INCLUDE_CD_CODE */ -C-- End If implicitViscosity.AND.momStepping ENDIF +#endif /* ALLOW_CD_CODE */ +C-- End implicit Vertical advection & viscosity ENDDO ENDDO - RETURN - END +#ifdef ALLOW_OBCS + IF (useOBCS) THEN + CALL OBCS_PRESCRIBE_EXCHANGES(myThid) + ENDIF +#endif + +C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| + +Cml( +C In order to compare the variance of phiHydLow of a p/z-coordinate +C run with etaH of a z/p-coordinate run the drift of phiHydLow +C has to be removed by something like the following subroutine: +C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF, +C & 'phiHydLow', myThid ) +Cml) + +#ifdef ALLOW_DIAGNOSTICS + IF ( usediagnostics ) THEN + + CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid) + + IF ( DIAGNOSTICS_IS_ON('PHIHYDSQ',myThid) ) THEN + DO bj = myByLo(myThid), myByHi(myThid) + DO bi = myBxLo(myThid), myBxHi(myThid) + DO k = 1,Nr + DO j = 1,sNy + DO i = 1,sNx + tmpFld(i,j) = totPhihyd(i,j,k,bi,bj)*totPhihyd(i,j,k,bi,bj) + ENDDO + ENDDO + CALL DIAGNOSTICS_FILL(tmpFld,'PHIHYDSQ',k,1,2,bi,bj,myThid) + ENDDO + ENDDO + ENDDO + ENDIF + CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0,1,0,1,1,myThid) -C-- Cumulative diagnostic calculations (ie. time-averaging) -#ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE -c IF (taveFreq.GT.0.) THEN -c CALL DO_TIME_AVERAGES( -c I myTime, myIter, bi, bj, k, kup, kDown, -c I ConvectCount, -c I myThid ) -c ENDIF + IF ( DIAGNOSTICS_IS_ON('PHIBOTSQ',myThid) ) THEN + DO bj = myByLo(myThid), myByHi(myThid) + DO bi = myBxLo(myThid), myBxHi(myThid) + DO j = 1,sNy + DO i = 1,sNx + tmpFld(i,j) = phiHydLow(i,j,bi,bj)*phiHydLow(i,j,bi,bj) + ENDDO + ENDDO + CALL DIAGNOSTICS_FILL(tmpFld,'PHIBOTSQ',0,1,2,bi,bj,myThid) + ENDDO + ENDDO + ENDIF + + ENDIF +#endif /* ALLOW_DIAGNOSTICS */ + +#ifdef ALLOW_DEBUG + If ( debugLevel .GE. debLevB ) THEN + CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid) +#ifndef ALLOW_ADAMSBASHFORTH_3 + CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid) + CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid) +#endif + ENDIF #endif + RETURN + END