/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.62 - (show annotations) (download)
Wed Feb 14 22:51:27 2001 UTC (23 years, 3 months ago) by jmc
Branch: MAIN
Changes since 1.61: +37 -9 lines
recover (after checkpoint35) time average output

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.61 2001/02/07 21:48:02 jmc Exp $
2 C $Name: checkpoint35 $
3
4 #include "CPP_OPTIONS.h"
5
6 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
7 C /==========================================================\
8 C | SUBROUTINE DYNAMICS |
9 C | o Controlling routine for the explicit part of the model |
10 C | dynamics. |
11 C |==========================================================|
12 C | This routine evaluates the "dynamics" terms for each |
13 C | block of ocean in turn. Because the blocks of ocean have |
14 C | overlap regions they are independent of one another. |
15 C | If terms involving lateral integrals are needed in this |
16 C | routine care will be needed. Similarly finite-difference |
17 C | operations with stencils wider than the overlap region |
18 C | require special consideration. |
19 C | Notes |
20 C | ===== |
21 C | C*P* comments indicating place holders for which code is |
22 C | presently being developed. |
23 C \==========================================================/
24 IMPLICIT NONE
25
26 C == Global variables ===
27 #include "SIZE.h"
28 #include "EEPARAMS.h"
29 #include "CG2D.h"
30 #include "PARAMS.h"
31 #include "DYNVARS.h"
32 #include "GRID.h"
33
34 #ifdef ALLOW_AUTODIFF_TAMC
35 # include "tamc.h"
36 # include "tamc_keys.h"
37 #endif /* ALLOW_AUTODIFF_TAMC */
38
39 #ifdef ALLOW_KPP
40 # include "KPP.h"
41 #endif
42
43 #ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE
44 #include "AVER.h"
45 #endif
46
47 C == Routine arguments ==
48 C myTime - Current time in simulation
49 C myIter - Current iteration number in simulation
50 C myThid - Thread number for this instance of the routine.
51 _RL myTime
52 INTEGER myIter
53 INTEGER myThid
54
55 C == Local variables
56 C xA, yA - Per block temporaries holding face areas
57 C uTrans, vTrans, rTrans - Per block temporaries holding flow
58 C transport
59 C o uTrans: Zonal transport
60 C o vTrans: Meridional transport
61 C o rTrans: Vertical transport
62 C maskC,maskUp o maskC: land/water mask for tracer cells
63 C o maskUp: land/water mask for W points
64 C fVer[STUV] o fVer: Vertical flux term - note fVer
65 C is "pipelined" in the vertical
66 C so we need an fVer for each
67 C variable.
68 C rhoK, rhoKM1 - Density at current level, and level above
69 C phiHyd - Hydrostatic part of the potential phiHydi.
70 C In z coords phiHydiHyd is the hydrostatic
71 C pressure anomaly
72 C In p coords phiHydiHyd is the geopotential
73 C surface height
74 C anomaly.
75 C etaSurfX, - Holds surface elevation gradient in X and Y.
76 C etaSurfY
77 C KappaRT, - Total diffusion in vertical for T and S.
78 C KappaRS (background + spatially varying, isopycnal term).
79 C iMin, iMax - Ranges and sub-block indices on which calculations
80 C jMin, jMax are applied.
81 C bi, bj
82 C k, kup, - Index for layer above and below. kup and kDown
83 C kDown, km1 are switched with layer to be the appropriate
84 C index into fVerTerm.
85 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
93 _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
94 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
95 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
96 _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
97 _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
100 _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
101 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
102 _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
103 _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
104 _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
105 _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
106
107 C This is currently used by IVDC and Diagnostics
108 _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
109
110 INTEGER iMin, iMax
111 INTEGER jMin, jMax
112 INTEGER bi, bj
113 INTEGER i, j
114 INTEGER k, km1, kup, kDown
115
116 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
117 c CHARACTER*(MAX_LEN_MBUF) suff
118 c LOGICAL DIFFERENT_MULTIPLE
119 c EXTERNAL DIFFERENT_MULTIPLE
120 Cjmc(end)
121
122 #ifdef ALLOW_AUTODIFF_TAMC
123 INTEGER isbyte
124 PARAMETER( isbyte = 4 )
125
126 INTEGER act1, act2, act3, act4
127 INTEGER max1, max2, max3
128 INTEGER iikey, kkey
129 INTEGER maximpl
130 #endif /* ALLOW_AUTODIFF_TAMC */
131
132 C--- The algorithm...
133 C
134 C "Correction Step"
135 C =================
136 C Here we update the horizontal velocities with the surface
137 C pressure such that the resulting flow is either consistent
138 C with the free-surface evolution or the rigid-lid:
139 C U[n] = U* + dt x d/dx P
140 C V[n] = V* + dt x d/dy P
141 C
142 C "Calculation of Gs"
143 C ===================
144 C This is where all the accelerations and tendencies (ie.
145 C physics, parameterizations etc...) are calculated
146 C rho = rho ( theta[n], salt[n] )
147 C b = b(rho, theta)
148 C K31 = K31 ( rho )
149 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
150 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
151 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
152 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
153 C
154 C "Time-stepping" or "Prediction"
155 C ================================
156 C The models variables are stepped forward with the appropriate
157 C time-stepping scheme (currently we use Adams-Bashforth II)
158 C - For momentum, the result is always *only* a "prediction"
159 C in that the flow may be divergent and will be "corrected"
160 C later with a surface pressure gradient.
161 C - Normally for tracers the result is the new field at time
162 C level [n+1} *BUT* in the case of implicit diffusion the result
163 C is also *only* a prediction.
164 C - We denote "predictors" with an asterisk (*).
165 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
166 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
167 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
168 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
169 C With implicit diffusion:
170 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
171 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
172 C (1 + dt * K * d_zz) theta[n] = theta*
173 C (1 + dt * K * d_zz) salt[n] = salt*
174 C---
175
176 #ifdef ALLOW_AUTODIFF_TAMC
177 C-- dummy statement to end declaration part
178 ikey = 1
179 #endif /* ALLOW_AUTODIFF_TAMC */
180
181 C-- Set up work arrays with valid (i.e. not NaN) values
182 C These inital values do not alter the numerical results. They
183 C just ensure that all memory references are to valid floating
184 C point numbers. This prevents spurious hardware signals due to
185 C uninitialised but inert locations.
186 DO j=1-OLy,sNy+OLy
187 DO i=1-OLx,sNx+OLx
188 xA(i,j) = 0. _d 0
189 yA(i,j) = 0. _d 0
190 uTrans(i,j) = 0. _d 0
191 vTrans(i,j) = 0. _d 0
192 DO k=1,Nr
193 phiHyd(i,j,k) = 0. _d 0
194 KappaRU(i,j,k) = 0. _d 0
195 KappaRV(i,j,k) = 0. _d 0
196 sigmaX(i,j,k) = 0. _d 0
197 sigmaY(i,j,k) = 0. _d 0
198 sigmaR(i,j,k) = 0. _d 0
199 ENDDO
200 rhoKM1 (i,j) = 0. _d 0
201 rhok (i,j) = 0. _d 0
202 maskC (i,j) = 0. _d 0
203 ENDDO
204 ENDDO
205
206
207 #ifdef ALLOW_AUTODIFF_TAMC
208 C-- HPF directive to help TAMC
209 CHPF$ INDEPENDENT
210 #endif /* ALLOW_AUTODIFF_TAMC */
211
212 DO bj=myByLo(myThid),myByHi(myThid)
213
214 #ifdef ALLOW_AUTODIFF_TAMC
215 C-- HPF directive to help TAMC
216 CHPF$ INDEPENDENT, NEW (rTrans,fVerT,fVerS,fVerU,fVerV
217 CHPF$& ,phiHyd,utrans,vtrans,maskc,xA,yA
218 CHPF$& ,KappaRT,KappaRS,KappaRU,KappaRV
219 CHPF$& )
220 #endif /* ALLOW_AUTODIFF_TAMC */
221
222 DO bi=myBxLo(myThid),myBxHi(myThid)
223
224 #ifdef ALLOW_AUTODIFF_TAMC
225 act1 = bi - myBxLo(myThid)
226 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
227
228 act2 = bj - myByLo(myThid)
229 max2 = myByHi(myThid) - myByLo(myThid) + 1
230
231 act3 = myThid - 1
232 max3 = nTx*nTy
233
234 act4 = ikey_dynamics - 1
235
236 ikey = (act1 + 1) + act2*max1
237 & + act3*max1*max2
238 & + act4*max1*max2*max3
239 #endif /* ALLOW_AUTODIFF_TAMC */
240
241 C-- Set up work arrays that need valid initial values
242 DO j=1-OLy,sNy+OLy
243 DO i=1-OLx,sNx+OLx
244 rTrans(i,j) = 0. _d 0
245 fVerT (i,j,1) = 0. _d 0
246 fVerT (i,j,2) = 0. _d 0
247 fVerS (i,j,1) = 0. _d 0
248 fVerS (i,j,2) = 0. _d 0
249 fVerU (i,j,1) = 0. _d 0
250 fVerU (i,j,2) = 0. _d 0
251 fVerV (i,j,1) = 0. _d 0
252 fVerV (i,j,2) = 0. _d 0
253 ENDDO
254 ENDDO
255
256 DO k=1,Nr
257 DO j=1-OLy,sNy+OLy
258 DO i=1-OLx,sNx+OLx
259 C This is currently also used by IVDC and Diagnostics
260 ConvectCount(i,j,k) = 0.
261 KappaRT(i,j,k) = 0. _d 0
262 KappaRS(i,j,k) = 0. _d 0
263 ENDDO
264 ENDDO
265 ENDDO
266
267 iMin = 1-OLx+1
268 iMax = sNx+OLx
269 jMin = 1-OLy+1
270 jMax = sNy+OLy
271
272
273 C-- Start of diagnostic loop
274 DO k=Nr,1,-1
275
276 #ifdef ALLOW_AUTODIFF_TAMC
277 C? Patrick, is this formula correct now that we change the loop range?
278 C? Do we still need this?
279 kkey = (ikey-1)*(Nr-2+1) + (k-2) + 1
280 #endif /* ALLOW_AUTODIFF_TAMC */
281
282 C-- Integrate continuity vertically for vertical velocity
283 CALL INTEGRATE_FOR_W(
284 I bi, bj, k, uVel, vVel,
285 O wVel,
286 I myThid )
287
288 #ifdef ALLOW_OBCS
289 #ifdef ALLOW_NONHYDROSTATIC
290 C-- Apply OBC to W if in N-H mode
291 IF (useOBCS.AND.nonHydrostatic) THEN
292 CALL OBCS_APPLY_W( bi, bj, k, wVel, myThid )
293 ENDIF
294 #endif /* ALLOW_NONHYDROSTATIC */
295 #endif /* ALLOW_OBCS */
296
297 C-- Calculate gradients of potential density for isoneutral
298 C slope terms (e.g. GM/Redi tensor or IVDC diffusivity)
299 c IF ( k.GT.1 .AND. (useGMRedi.OR.ivdc_kappa.NE.0.) ) THEN
300 IF ( useGMRedi .OR. (k.GT.1 .AND. ivdc_kappa.NE.0.) ) THEN
301 CALL FIND_RHO(
302 I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType,
303 I theta, salt,
304 O rhoK,
305 I myThid )
306 IF (k.GT.1) CALL FIND_RHO(
307 I bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType,
308 I theta, salt,
309 O rhoKm1,
310 I myThid )
311 CALL GRAD_SIGMA(
312 I bi, bj, iMin, iMax, jMin, jMax, k,
313 I rhoK, rhoKm1, rhoK,
314 O sigmaX, sigmaY, sigmaR,
315 I myThid )
316 ENDIF
317
318 C-- Implicit Vertical Diffusion for Convection
319 c ==> should use sigmaR !!!
320 IF (k.GT.1 .AND. ivdc_kappa.NE.0.) THEN
321 CALL CALC_IVDC(
322 I bi, bj, iMin, iMax, jMin, jMax, k,
323 I rhoKm1, rhoK,
324 U ConvectCount, KappaRT, KappaRS,
325 I myTime, myIter, myThid)
326 ENDIF
327
328 C-- end of diagnostic k loop (Nr:1)
329 ENDDO
330
331 #ifdef ALLOW_OBCS
332 C-- Calculate future values on open boundaries
333 IF (useOBCS) THEN
334 CALL OBCS_CALC( bi, bj, myTime+deltaT,
335 I uVel, vVel, wVel, theta, salt,
336 I myThid )
337 ENDIF
338 #endif /* ALLOW_OBCS */
339
340 C-- Determines forcing terms based on external fields
341 C relaxation terms, etc.
342 CALL EXTERNAL_FORCING_SURF(
343 I bi, bj, iMin, iMax, jMin, jMax,
344 I myThid )
345
346 #ifdef ALLOW_GMREDI
347 C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
348 IF (useGMRedi) THEN
349 DO k=1,Nr
350 CALL GMREDI_CALC_TENSOR(
351 I bi, bj, iMin, iMax, jMin, jMax, k,
352 I sigmaX, sigmaY, sigmaR,
353 I myThid )
354 ENDDO
355 #ifdef ALLOW_AUTODIFF_TAMC
356 ELSE
357 DO k=1, Nr
358 CALL GMREDI_CALC_TENSOR_DUMMY(
359 I bi, bj, iMin, iMax, jMin, jMax, k,
360 I sigmaX, sigmaY, sigmaR,
361 I myThid )
362 ENDDO
363 #endif /* ALLOW_AUTODIFF_TAMC */
364 ENDIF
365 #endif /* ALLOW_GMREDI */
366
367 #ifdef ALLOW_KPP
368 C-- Compute KPP mixing coefficients
369 IF (useKPP) THEN
370 CALL KPP_CALC(
371 I bi, bj, myTime, myThid )
372 ENDIF
373 #endif /* ALLOW_KPP */
374
375 #ifdef ALLOW_AUTODIFF_TAMC
376 CADJ STORE KappaRT(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte
377 CADJ STORE KappaRS(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte
378 CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
379 CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
380 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
381 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
382 #endif /* ALLOW_AUTODIFF_TAMC */
383
384 #ifdef ALLOW_AIM
385 C AIM - atmospheric intermediate model, physics package code.
386 C note(jmc) : phiHyd=0 at this point but is not really used in Molteni Physics
387 IF ( useAIM ) THEN
388 CALL TIMER_START('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid)
389 CALL AIM_DO_ATMOS_PHYSICS( phiHyd, myTime, myThid )
390 CALL TIMER_STOP ('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid)
391 ENDIF
392 #endif /* ALLOW_AIM */
393
394
395 C-- Start of thermodynamics loop
396 DO k=Nr,1,-1
397
398 C-- km1 Points to level above k (=k-1)
399 C-- kup Cycles through 1,2 to point to layer above
400 C-- kDown Cycles through 2,1 to point to current layer
401
402 km1 = MAX(1,k-1)
403 kup = 1+MOD(k+1,2)
404 kDown= 1+MOD(k,2)
405
406 iMin = 1-OLx+2
407 iMax = sNx+OLx-1
408 jMin = 1-OLy+2
409 jMax = sNy+OLy-1
410
411 #ifdef ALLOW_AUTODIFF_TAMC
412 CPatrick Is this formula correct?
413 kkey = (ikey-1)*(Nr-1+1) + (k-1) + 1
414 CADJ STORE rTrans(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte
415 CADJ STORE KappaRT(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte
416 CADJ STORE KappaRS(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte
417 #endif /* ALLOW_AUTODIFF_TAMC */
418
419 C-- Get temporary terms used by tendency routines
420 CALL CALC_COMMON_FACTORS (
421 I bi,bj,iMin,iMax,jMin,jMax,k,km1,kup,kDown,
422 O xA,yA,uTrans,vTrans,rTrans,maskC,maskUp,
423 I myThid)
424
425 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
426 C-- Calculate the total vertical diffusivity
427 CALL CALC_DIFFUSIVITY(
428 I bi,bj,iMin,iMax,jMin,jMax,k,
429 I maskC,maskup,
430 O KappaRT,KappaRS,KappaRU,KappaRV,
431 I myThid)
432 #endif
433
434 C-- Calculate active tracer tendencies (gT,gS,...)
435 C and step forward storing result in gTnm1, gSnm1, etc.
436 IF ( tempStepping ) THEN
437 CALL CALC_GT(
438 I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,
439 I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,
440 I KappaRT,
441 U fVerT,
442 I myTime, myThid)
443 CALL TIMESTEP_TRACER(
444 I bi,bj,iMin,iMax,jMin,jMax,k,
445 I theta, gT,
446 U gTnm1,
447 I myIter, myThid)
448 ENDIF
449 IF ( saltStepping ) THEN
450 CALL CALC_GS(
451 I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,
452 I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC,
453 I KappaRS,
454 U fVerS,
455 I myTime, myThid)
456 CALL TIMESTEP_TRACER(
457 I bi,bj,iMin,iMax,jMin,jMax,k,
458 I salt, gS,
459 U gSnm1,
460 I myIter, myThid)
461 ENDIF
462
463 #ifdef ALLOW_OBCS
464 C-- Apply open boundary conditions
465 IF (useOBCS) THEN
466 CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid )
467 END IF
468 #endif /* ALLOW_OBCS */
469
470 C-- Freeze water
471 IF (allowFreezing) THEN
472 #ifdef ALLOW_AUTODIFF_TAMC
473 CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k
474 CADJ & , key = kkey, byte = isbyte
475 #endif /* ALLOW_AUTODIFF_TAMC */
476 CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid )
477 END IF
478
479 C-- end of thermodynamic k loop (Nr:1)
480 ENDDO
481
482
483 #ifdef ALLOW_AUTODIFF_TAMC
484 CPatrick? What about this one?
485 maximpl = 6
486 iikey = (ikey-1)*maximpl
487 #endif /* ALLOW_AUTODIFF_TAMC */
488
489 C-- Implicit diffusion
490 IF (implicitDiffusion) THEN
491
492 IF (tempStepping) THEN
493 #ifdef ALLOW_AUTODIFF_TAMC
494 idkey = iikey + 1
495 #endif /* ALLOW_AUTODIFF_TAMC */
496 CALL IMPLDIFF(
497 I bi, bj, iMin, iMax, jMin, jMax,
498 I deltaTtracer, KappaRT, recip_HFacC,
499 U gTNm1,
500 I myThid )
501 ENDIF
502
503 IF (saltStepping) THEN
504 #ifdef ALLOW_AUTODIFF_TAMC
505 idkey = iikey + 2
506 #endif /* ALLOW_AUTODIFF_TAMC */
507 CALL IMPLDIFF(
508 I bi, bj, iMin, iMax, jMin, jMax,
509 I deltaTtracer, KappaRS, recip_HFacC,
510 U gSNm1,
511 I myThid )
512 ENDIF
513
514 #ifdef ALLOW_OBCS
515 C-- Apply open boundary conditions
516 IF (useOBCS) THEN
517 DO K=1,Nr
518 CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid )
519 ENDDO
520 END IF
521 #endif /* ALLOW_OBCS */
522
523 C-- End If implicitDiffusion
524 ENDIF
525
526
527
528 C-- Start of dynamics loop
529 DO k=1,Nr
530
531 C-- km1 Points to level above k (=k-1)
532 C-- kup Cycles through 1,2 to point to layer above
533 C-- kDown Cycles through 2,1 to point to current layer
534
535 km1 = MAX(1,k-1)
536 kup = 1+MOD(k+1,2)
537 kDown= 1+MOD(k,2)
538
539 iMin = 1-OLx+2
540 iMax = sNx+OLx-1
541 jMin = 1-OLy+2
542 jMax = sNy+OLy-1
543
544 C-- Integrate hydrostatic balance for phiHyd with BC of
545 C phiHyd(z=0)=0
546 C distinguishe between Stagger and Non Stagger time stepping
547 IF (staggerTimeStep) THEN
548 CALL CALC_PHI_HYD(
549 I bi,bj,iMin,iMax,jMin,jMax,k,
550 I gTnm1, gSnm1,
551 U phiHyd,
552 I myThid )
553 ELSE
554 CALL CALC_PHI_HYD(
555 I bi,bj,iMin,iMax,jMin,jMax,k,
556 I theta, salt,
557 U phiHyd,
558 I myThid )
559 ENDIF
560
561 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
562 C and step forward storing the result in gUnm1, gVnm1, etc...
563 IF ( momStepping ) THEN
564 CALL CALC_MOM_RHS(
565 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
566 I phiHyd,KappaRU,KappaRV,
567 U fVerU, fVerV,
568 I myTime, myThid)
569 CALL TIMESTEP(
570 I bi,bj,iMin,iMax,jMin,jMax,k,phiHyd,
571 I myIter, myThid)
572
573 #ifdef ALLOW_OBCS
574 C-- Apply open boundary conditions
575 IF (useOBCS) THEN
576 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
577 END IF
578 #endif /* ALLOW_OBCS */
579
580 #ifdef ALLOW_AUTODIFF_TAMC
581 #ifdef INCLUDE_CD_CODE
582 ELSE
583 DO j=1-OLy,sNy+OLy
584 DO i=1-OLx,sNx+OLx
585 guCD(i,j,k,bi,bj) = 0.0
586 gvCD(i,j,k,bi,bj) = 0.0
587 END DO
588 END DO
589 #endif /* INCLUDE_CD_CODE */
590 #endif /* ALLOW_AUTODIFF_TAMC */
591 ENDIF
592
593
594 C-- end of dynamics k loop (1:Nr)
595 ENDDO
596
597
598
599 C-- Implicit viscosity
600 IF (implicitViscosity.AND.momStepping) THEN
601 #ifdef ALLOW_AUTODIFF_TAMC
602 idkey = iikey + 3
603 #endif /* ALLOW_AUTODIFF_TAMC */
604 CALL IMPLDIFF(
605 I bi, bj, iMin, iMax, jMin, jMax,
606 I deltaTmom, KappaRU,recip_HFacW,
607 U gUNm1,
608 I myThid )
609 #ifdef ALLOW_AUTODIFF_TAMC
610 idkey = iikey + 4
611 #endif /* ALLOW_AUTODIFF_TAMC */
612 CALL IMPLDIFF(
613 I bi, bj, iMin, iMax, jMin, jMax,
614 I deltaTmom, KappaRV,recip_HFacS,
615 U gVNm1,
616 I myThid )
617
618 #ifdef ALLOW_OBCS
619 C-- Apply open boundary conditions
620 IF (useOBCS) THEN
621 DO K=1,Nr
622 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
623 ENDDO
624 END IF
625 #endif /* ALLOW_OBCS */
626
627 #ifdef INCLUDE_CD_CODE
628 #ifdef ALLOW_AUTODIFF_TAMC
629 idkey = iikey + 5
630 #endif /* ALLOW_AUTODIFF_TAMC */
631 CALL IMPLDIFF(
632 I bi, bj, iMin, iMax, jMin, jMax,
633 I deltaTmom, KappaRU,recip_HFacW,
634 U vVelD,
635 I myThid )
636 #ifdef ALLOW_AUTODIFF_TAMC
637 idkey = iikey + 6
638 #endif /* ALLOW_AUTODIFF_TAMC */
639 CALL IMPLDIFF(
640 I bi, bj, iMin, iMax, jMin, jMax,
641 I deltaTmom, KappaRV,recip_HFacS,
642 U uVelD,
643 I myThid )
644 #endif /* INCLUDE_CD_CODE */
645 C-- End If implicitViscosity.AND.momStepping
646 ENDIF
647
648 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
649 c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime)
650 c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
651 c WRITE(suff,'(I10.10)') myIter+1
652 c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid)
653 c ENDIF
654 Cjmc(end)
655
656 #ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE
657 IF (taveFreq.GT.0.) THEN
658 DO K=1,Nr
659 CALL TIMEAVER_1FLD_XYZ(phiHyd, phiHydtave,
660 I deltaTclock, bi, bj, K, myThid)
661 IF (ivdc_kappa.NE.0.) THEN
662 CALL TIMEAVER_1FLD_XYZ(ConvectCount, ConvectCountTave,
663 I deltaTclock, bi, bj, K, myThid)
664 ENDIF
665 ENDDO
666 ENDIF
667 #endif /* INCLUDE_DIAGNOSTICS_INTERFACE_CODE */
668
669 ENDDO
670 ENDDO
671
672 RETURN
673 END

  ViewVC Help
Powered by ViewVC 1.1.22