/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.164 - (show annotations) (download)
Thu Mar 21 18:15:44 2013 UTC (11 years, 2 months ago) by jahn
Branch: MAIN
CVS Tags: checkpoint64i, checkpoint64h, checkpoint64k, checkpoint64j, checkpoint64g, checkpoint64f
Changes since 1.163: +3 -1 lines
revert to local variables for OpenAD

1 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.163 2012/11/15 15:55:42 dimitri Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6 #ifdef ALLOW_OBCS
7 # include "OBCS_OPTIONS.h"
8 #endif
9
10 #undef DYNAMICS_GUGV_EXCH_CHECK
11
12 CBOP
13 C !ROUTINE: DYNAMICS
14 C !INTERFACE:
15 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16 C !DESCRIPTION: \bv
17 C *==========================================================*
18 C | SUBROUTINE DYNAMICS
19 C | o Controlling routine for the explicit part of the model
20 C | dynamics.
21 C *==========================================================*
22 C | This routine evaluates the "dynamics" terms for each
23 C | block of ocean in turn. Because the blocks of ocean have
24 C | overlap regions they are independent of one another.
25 C | If terms involving lateral integrals are needed in this
26 C | routine care will be needed. Similarly finite-difference
27 C | operations with stencils wider than the overlap region
28 C | require special consideration.
29 C | The algorithm...
30 C |
31 C | "Correction Step"
32 C | =================
33 C | Here we update the horizontal velocities with the surface
34 C | pressure such that the resulting flow is either consistent
35 C | with the free-surface evolution or the rigid-lid:
36 C | U[n] = U* + dt x d/dx P
37 C | V[n] = V* + dt x d/dy P
38 C | W[n] = W* + dt x d/dz P (NH mode)
39 C |
40 C | "Calculation of Gs"
41 C | ===================
42 C | This is where all the accelerations and tendencies (ie.
43 C | physics, parameterizations etc...) are calculated
44 C | rho = rho ( theta[n], salt[n] )
45 C | b = b(rho, theta)
46 C | K31 = K31 ( rho )
47 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51 C |
52 C | "Time-stepping" or "Prediction"
53 C | ================================
54 C | The models variables are stepped forward with the appropriate
55 C | time-stepping scheme (currently we use Adams-Bashforth II)
56 C | - For momentum, the result is always *only* a "prediction"
57 C | in that the flow may be divergent and will be "corrected"
58 C | later with a surface pressure gradient.
59 C | - Normally for tracers the result is the new field at time
60 C | level [n+1} *BUT* in the case of implicit diffusion the result
61 C | is also *only* a prediction.
62 C | - We denote "predictors" with an asterisk (*).
63 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67 C | With implicit diffusion:
68 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70 C | (1 + dt * K * d_zz) theta[n] = theta*
71 C | (1 + dt * K * d_zz) salt[n] = salt*
72 C |
73 C *==========================================================*
74 C \ev
75 C !USES:
76 IMPLICIT NONE
77 C == Global variables ===
78 #include "SIZE.h"
79 #include "EEPARAMS.h"
80 #include "PARAMS.h"
81 #include "DYNVARS.h"
82 #ifdef ALLOW_CD_CODE
83 #include "CD_CODE_VARS.h"
84 #endif
85 #include "GRID.h"
86 #ifdef ALLOW_AUTODIFF_TAMC
87 # include "tamc.h"
88 # include "tamc_keys.h"
89 # include "FFIELDS.h"
90 # include "EOS.h"
91 # ifdef ALLOW_KPP
92 # include "KPP.h"
93 # endif
94 # ifdef ALLOW_PTRACERS
95 # include "PTRACERS_SIZE.h"
96 # include "PTRACERS_FIELDS.h"
97 # endif
98 # ifdef ALLOW_OBCS
99 #include "OBCS_PARAMS.h"
100 # include "OBCS_FIELDS.h"
101 # ifdef ALLOW_PTRACERS
102 # include "OBCS_PTRACERS.h"
103 # endif
104 # endif
105 # ifdef ALLOW_MOM_FLUXFORM
106 # include "MOM_FLUXFORM.h"
107 # endif
108 #endif /* ALLOW_AUTODIFF_TAMC */
109
110 C !CALLING SEQUENCE:
111 C DYNAMICS()
112 C |
113 C |-- CALC_EP_FORCING
114 C |
115 C |-- CALC_GRAD_PHI_SURF
116 C |
117 C |-- CALC_VISCOSITY
118 C |
119 C |-- CALC_PHI_HYD
120 C |
121 C |-- MOM_FLUXFORM
122 C |
123 C |-- MOM_VECINV
124 C |
125 C |-- TIMESTEP
126 C |
127 C |-- MOM_U_IMPLICIT_R
128 C |-- MOM_V_IMPLICIT_R
129 C |
130 C |-- IMPLDIFF
131 C |
132 C |-- OBCS_APPLY_UV
133 C |
134 C |-- CALC_GW
135 C |
136 C |-- DIAGNOSTICS_FILL
137 C |-- DEBUG_STATS_RL
138
139 C !INPUT/OUTPUT PARAMETERS:
140 C == Routine arguments ==
141 C myTime :: Current time in simulation
142 C myIter :: Current iteration number in simulation
143 C myThid :: Thread number for this instance of the routine.
144 _RL myTime
145 INTEGER myIter
146 INTEGER myThid
147
148 C !FUNCTIONS:
149 #ifdef ALLOW_DIAGNOSTICS
150 LOGICAL DIAGNOSTICS_IS_ON
151 EXTERNAL DIAGNOSTICS_IS_ON
152 #endif
153
154 C !LOCAL VARIABLES:
155 C == Local variables
156 C fVer[UV] o fVer: Vertical flux term - note fVer
157 C is "pipelined" in the vertical
158 C so we need an fVer for each
159 C variable.
160 C phiHydC :: hydrostatic potential anomaly at cell center
161 C In z coords phiHyd is the hydrostatic potential
162 C (=pressure/rho0) anomaly
163 C In p coords phiHyd is the geopotential height anomaly.
164 C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
165 C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
166 C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
167 C phiSurfY or geopotential (atmos) in X and Y direction
168 C guDissip :: dissipation tendency (all explicit terms), u component
169 C gvDissip :: dissipation tendency (all explicit terms), v component
170 C KappaRU :: vertical viscosity
171 C KappaRV :: vertical viscosity
172 C iMin, iMax :: Ranges and sub-block indices on which calculations
173 C jMin, jMax are applied.
174 C bi, bj :: tile indices
175 C k :: current level index
176 C km1, kp1 :: index of level above (k-1) and below (k+1)
177 C kUp, kDown :: Index for interface above and below. kUp and kDown are
178 C are switched with k to be the appropriate index into fVerU,V
179 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
180 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
181 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182 _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183 _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184 _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
185 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186 _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
188 _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
189 _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
190 _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
191
192 INTEGER iMin, iMax
193 INTEGER jMin, jMax
194 INTEGER bi, bj
195 INTEGER i, j
196 INTEGER k, km1, kp1, kUp, kDown
197
198 #ifdef ALLOW_DIAGNOSTICS
199 LOGICAL dPhiHydDiagIsOn
200 _RL tmpFac
201 #endif /* ALLOW_DIAGNOSTICS */
202
203
204 C--- The algorithm...
205 C
206 C "Correction Step"
207 C =================
208 C Here we update the horizontal velocities with the surface
209 C pressure such that the resulting flow is either consistent
210 C with the free-surface evolution or the rigid-lid:
211 C U[n] = U* + dt x d/dx P
212 C V[n] = V* + dt x d/dy P
213 C
214 C "Calculation of Gs"
215 C ===================
216 C This is where all the accelerations and tendencies (ie.
217 C physics, parameterizations etc...) are calculated
218 C rho = rho ( theta[n], salt[n] )
219 C b = b(rho, theta)
220 C K31 = K31 ( rho )
221 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
222 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
223 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
224 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
225 C
226 C "Time-stepping" or "Prediction"
227 C ================================
228 C The models variables are stepped forward with the appropriate
229 C time-stepping scheme (currently we use Adams-Bashforth II)
230 C - For momentum, the result is always *only* a "prediction"
231 C in that the flow may be divergent and will be "corrected"
232 C later with a surface pressure gradient.
233 C - Normally for tracers the result is the new field at time
234 C level [n+1} *BUT* in the case of implicit diffusion the result
235 C is also *only* a prediction.
236 C - We denote "predictors" with an asterisk (*).
237 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
238 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
239 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
240 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
241 C With implicit diffusion:
242 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
243 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
244 C (1 + dt * K * d_zz) theta[n] = theta*
245 C (1 + dt * K * d_zz) salt[n] = salt*
246 C---
247 CEOP
248
249 #ifdef ALLOW_DEBUG
250 IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
251 #endif
252
253 #ifdef ALLOW_DIAGNOSTICS
254 dPhiHydDiagIsOn = .FALSE.
255 IF ( useDiagnostics )
256 & dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
257 & .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
258 #endif
259
260 C-- Call to routine for calculation of
261 C Eliassen-Palm-flux-forced U-tendency,
262 C if desired:
263 #ifdef INCLUDE_EP_FORCING_CODE
264 CALL CALC_EP_FORCING(myThid)
265 #endif
266
267 #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
268 CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
269 #endif
270
271 #ifdef ALLOW_AUTODIFF_TAMC
272 C-- HPF directive to help TAMC
273 CHPF$ INDEPENDENT
274 #endif /* ALLOW_AUTODIFF_TAMC */
275
276 DO bj=myByLo(myThid),myByHi(myThid)
277
278 #ifdef ALLOW_AUTODIFF_TAMC
279 C-- HPF directive to help TAMC
280 CHPF$ INDEPENDENT, NEW (fVerU,fVerV
281 CHPF$& ,phiHydF
282 CHPF$& ,KappaRU,KappaRV
283 CHPF$& )
284 #endif /* ALLOW_AUTODIFF_TAMC */
285
286 DO bi=myBxLo(myThid),myBxHi(myThid)
287
288 #ifdef ALLOW_AUTODIFF_TAMC
289 act1 = bi - myBxLo(myThid)
290 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
291 act2 = bj - myByLo(myThid)
292 max2 = myByHi(myThid) - myByLo(myThid) + 1
293 act3 = myThid - 1
294 max3 = nTx*nTy
295 act4 = ikey_dynamics - 1
296 idynkey = (act1 + 1) + act2*max1
297 & + act3*max1*max2
298 & + act4*max1*max2*max3
299 #endif /* ALLOW_AUTODIFF_TAMC */
300
301 C-- Set up work arrays with valid (i.e. not NaN) values
302 C These initial values do not alter the numerical results. They
303 C just ensure that all memory references are to valid floating
304 C point numbers. This prevents spurious hardware signals due to
305 C uninitialised but inert locations.
306
307 #ifdef ALLOW_AUTODIFF_TAMC
308 DO k=1,Nr
309 DO j=1-OLy,sNy+OLy
310 DO i=1-OLx,sNx+OLx
311 KappaRU(i,j,k) = 0. _d 0
312 KappaRV(i,j,k) = 0. _d 0
313 cph(
314 c-- need some re-initialisation here to break dependencies
315 cph)
316 gU(i,j,k,bi,bj) = 0. _d 0
317 gV(i,j,k,bi,bj) = 0. _d 0
318 ENDDO
319 ENDDO
320 ENDDO
321 #endif /* ALLOW_AUTODIFF_TAMC */
322 DO j=1-OLy,sNy+OLy
323 DO i=1-OLx,sNx+OLx
324 fVerU (i,j,1) = 0. _d 0
325 fVerU (i,j,2) = 0. _d 0
326 fVerV (i,j,1) = 0. _d 0
327 fVerV (i,j,2) = 0. _d 0
328 phiHydF (i,j) = 0. _d 0
329 phiHydC (i,j) = 0. _d 0
330 #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
331 dPhiHydX(i,j) = 0. _d 0
332 dPhiHydY(i,j) = 0. _d 0
333 #endif
334 phiSurfX(i,j) = 0. _d 0
335 phiSurfY(i,j) = 0. _d 0
336 guDissip(i,j) = 0. _d 0
337 gvDissip(i,j) = 0. _d 0
338 #ifdef ALLOW_AUTODIFF_TAMC
339 phiHydLow(i,j,bi,bj) = 0. _d 0
340 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
341 # ifndef DISABLE_RSTAR_CODE
342 # ifndef ALLOW_AUTODIFF_OPENAD
343 dWtransC(i,j,bi,bj) = 0. _d 0
344 dWtransU(i,j,bi,bj) = 0. _d 0
345 dWtransV(i,j,bi,bj) = 0. _d 0
346 # endif
347 # endif
348 # endif
349 #endif
350 ENDDO
351 ENDDO
352
353 C-- Start computation of dynamics
354 iMin = 0
355 iMax = sNx+1
356 jMin = 0
357 jMax = sNy+1
358
359 #ifdef ALLOW_AUTODIFF_TAMC
360 CADJ STORE wVel (:,:,:,bi,bj) =
361 CADJ & comlev1_bibj, key=idynkey, byte=isbyte
362 #endif /* ALLOW_AUTODIFF_TAMC */
363
364 C-- Explicit part of the Surface Potential Gradient (add in TIMESTEP)
365 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
366 IF (implicSurfPress.NE.1.) THEN
367 CALL CALC_GRAD_PHI_SURF(
368 I bi,bj,iMin,iMax,jMin,jMax,
369 I etaN,
370 O phiSurfX,phiSurfY,
371 I myThid )
372 ENDIF
373
374 #ifdef ALLOW_AUTODIFF_TAMC
375 CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
376 CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
377 #ifdef ALLOW_KPP
378 CADJ STORE KPPviscAz (:,:,:,bi,bj)
379 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
380 #endif /* ALLOW_KPP */
381 #endif /* ALLOW_AUTODIFF_TAMC */
382
383 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
384 C-- Calculate the total vertical viscosity
385 CALL CALC_VISCOSITY(
386 I bi,bj, iMin,iMax,jMin,jMax,
387 O KappaRU, KappaRV,
388 I myThid )
389 #else
390 DO k=1,Nr
391 DO j=1-OLy,sNy+OLy
392 DO i=1-OLx,sNx+OLx
393 KappaRU(i,j,k) = 0. _d 0
394 KappaRV(i,j,k) = 0. _d 0
395 ENDDO
396 ENDDO
397 ENDDO
398 #endif
399
400 #ifdef ALLOW_AUTODIFF_TAMC
401 CADJ STORE KappaRU(:,:,:)
402 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
403 CADJ STORE KappaRV(:,:,:)
404 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
405 #endif /* ALLOW_AUTODIFF_TAMC */
406
407 #ifdef ALLOW_OBCS
408 C-- For Stevens boundary conditions velocities need to be extrapolated
409 C (copied) to a narrow strip outside the domain
410 IF ( useOBCS ) THEN
411 CALL OBCS_COPY_UV_N(
412 U uVel(1-OLx,1-OLy,1,bi,bj),
413 U vVel(1-OLx,1-OLy,1,bi,bj),
414 I Nr, bi, bj, myThid )
415 ENDIF
416 #endif /* ALLOW_OBCS */
417
418 C-- Start of dynamics loop
419 DO k=1,Nr
420
421 C-- km1 Points to level above k (=k-1)
422 C-- kup Cycles through 1,2 to point to layer above
423 C-- kDown Cycles through 2,1 to point to current layer
424
425 km1 = MAX(1,k-1)
426 kp1 = MIN(k+1,Nr)
427 kup = 1+MOD(k+1,2)
428 kDown= 1+MOD(k,2)
429
430 #ifdef ALLOW_AUTODIFF_TAMC
431 kkey = (idynkey-1)*Nr + k
432 c
433 CADJ STORE totPhiHyd (:,:,k,bi,bj)
434 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
435 CADJ STORE phiHydLow (:,:,bi,bj)
436 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
437 CADJ STORE theta (:,:,k,bi,bj)
438 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
439 CADJ STORE salt (:,:,k,bi,bj)
440 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
441 CADJ STORE gT(:,:,k,bi,bj)
442 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
443 CADJ STORE gS(:,:,k,bi,bj)
444 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
445 # ifdef NONLIN_FRSURF
446 cph-test
447 CADJ STORE phiHydC (:,:)
448 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
449 CADJ STORE phiHydF (:,:)
450 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
451 CADJ STORE guDissip (:,:)
452 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
453 CADJ STORE gvDissip (:,:)
454 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
455 CADJ STORE fVerU (:,:,:)
456 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
457 CADJ STORE fVerV (:,:,:)
458 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
459 CADJ STORE gU(:,:,k,bi,bj)
460 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
461 CADJ STORE gV(:,:,k,bi,bj)
462 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
463 # ifndef ALLOW_ADAMSBASHFORTH_3
464 CADJ STORE guNm1(:,:,k,bi,bj)
465 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
466 CADJ STORE gvNm1(:,:,k,bi,bj)
467 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
468 # else
469 CADJ STORE guNm(:,:,k,bi,bj,1)
470 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
471 CADJ STORE guNm(:,:,k,bi,bj,2)
472 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
473 CADJ STORE gvNm(:,:,k,bi,bj,1)
474 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
475 CADJ STORE gvNm(:,:,k,bi,bj,2)
476 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
477 # endif
478 # ifdef ALLOW_CD_CODE
479 CADJ STORE uNM1(:,:,k,bi,bj)
480 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
481 CADJ STORE vNM1(:,:,k,bi,bj)
482 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
483 CADJ STORE uVelD(:,:,k,bi,bj)
484 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
485 CADJ STORE vVelD(:,:,k,bi,bj)
486 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
487 # endif
488 # endif
489 # ifdef ALLOW_DEPTH_CONTROL
490 CADJ STORE fVerU (:,:,:)
491 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
492 CADJ STORE fVerV (:,:,:)
493 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
494 # endif
495 #endif /* ALLOW_AUTODIFF_TAMC */
496
497 C-- Integrate hydrostatic balance for phiHyd with BC of
498 C phiHyd(z=0)=0
499 IF ( implicitIntGravWave ) THEN
500 CALL CALC_PHI_HYD(
501 I bi,bj,iMin,iMax,jMin,jMax,k,
502 I gT, gS,
503 U phiHydF,
504 O phiHydC, dPhiHydX, dPhiHydY,
505 I myTime, myIter, myThid )
506 ELSE
507 CALL CALC_PHI_HYD(
508 I bi,bj,iMin,iMax,jMin,jMax,k,
509 I theta, salt,
510 U phiHydF,
511 O phiHydC, dPhiHydX, dPhiHydY,
512 I myTime, myIter, myThid )
513 ENDIF
514 #ifdef ALLOW_DIAGNOSTICS
515 IF ( dPhiHydDiagIsOn ) THEN
516 tmpFac = -1. _d 0
517 CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
518 & 'Um_dPHdx', k, 1, 2, bi, bj, myThid )
519 CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
520 & 'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
521 ENDIF
522 #endif /* ALLOW_DIAGNOSTICS */
523
524 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
525 C and step forward storing the result in gU, gV, etc...
526 IF ( momStepping ) THEN
527 #ifdef ALLOW_AUTODIFF_TAMC
528 # ifdef NONLIN_FRSURF
529 # if (defined ALLOW_MOM_FLUXFORM) && !(defined DISABLE_RSTAR_CODE)
530 CADJ STORE dWtransC(:,:,bi,bj)
531 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
532 CADJ STORE dWtransU(:,:,bi,bj)
533 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
534 CADJ STORE dWtransV(:,:,bi,bj)
535 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
536 # endif
537 CADJ STORE fVerU(:,:,:)
538 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
539 CADJ STORE fVerV(:,:,:)
540 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
541 # endif /* NONLIN_FRSURF */
542 #endif /* ALLOW_AUTODIFF_TAMC */
543 IF (.NOT. vectorInvariantMomentum) THEN
544 #ifdef ALLOW_MOM_FLUXFORM
545 CALL MOM_FLUXFORM(
546 I bi,bj,k,iMin,iMax,jMin,jMax,
547 I KappaRU, KappaRV,
548 U fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
549 O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
550 O guDissip, gvDissip,
551 I myTime, myIter, myThid)
552 #endif
553 ELSE
554 #ifdef ALLOW_MOM_VECINV
555 CALL MOM_VECINV(
556 I bi,bj,k,iMin,iMax,jMin,jMax,
557 I KappaRU, KappaRV,
558 I fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
559 O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
560 O guDissip, gvDissip,
561 I myTime, myIter, myThid)
562 #endif
563 ENDIF
564 C
565 CALL TIMESTEP(
566 I bi,bj,iMin,iMax,jMin,jMax,k,
567 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
568 I guDissip, gvDissip,
569 I myTime, myIter, myThid)
570
571 ENDIF
572
573 C-- end of dynamics k loop (1:Nr)
574 ENDDO
575
576 C-- Implicit Vertical advection & viscosity
577 #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
578 defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
579 IF ( momImplVertAdv ) THEN
580 CALL MOM_U_IMPLICIT_R( kappaRU,
581 I bi, bj, myTime, myIter, myThid )
582 CALL MOM_V_IMPLICIT_R( kappaRV,
583 I bi, bj, myTime, myIter, myThid )
584 ELSEIF ( implicitViscosity ) THEN
585 #else /* INCLUDE_IMPLVERTADV_CODE */
586 IF ( implicitViscosity ) THEN
587 #endif /* INCLUDE_IMPLVERTADV_CODE */
588 #ifdef ALLOW_AUTODIFF_TAMC
589 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
590 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
591 #endif /* ALLOW_AUTODIFF_TAMC */
592 CALL IMPLDIFF(
593 I bi, bj, iMin, iMax, jMin, jMax,
594 I -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
595 U gU,
596 I myThid )
597 #ifdef ALLOW_AUTODIFF_TAMC
598 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
599 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
600 #endif /* ALLOW_AUTODIFF_TAMC */
601 CALL IMPLDIFF(
602 I bi, bj, iMin, iMax, jMin, jMax,
603 I -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
604 U gV,
605 I myThid )
606 ENDIF
607
608 #ifdef ALLOW_OBCS
609 C-- Apply open boundary conditions
610 IF ( useOBCS ) THEN
611 C-- but first save intermediate velocities to be used in the
612 C next time step for the Stevens boundary conditions
613 CALL OBCS_SAVE_UV_N(
614 I bi, bj, iMin, iMax, jMin, jMax, 0,
615 I gU, gV, myThid )
616 CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
617 ENDIF
618 #endif /* ALLOW_OBCS */
619
620 #ifdef ALLOW_CD_CODE
621 IF (implicitViscosity.AND.useCDscheme) THEN
622 #ifdef ALLOW_AUTODIFF_TAMC
623 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
624 #endif /* ALLOW_AUTODIFF_TAMC */
625 CALL IMPLDIFF(
626 I bi, bj, iMin, iMax, jMin, jMax,
627 I 0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
628 U vVelD,
629 I myThid )
630 #ifdef ALLOW_AUTODIFF_TAMC
631 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
632 #endif /* ALLOW_AUTODIFF_TAMC */
633 CALL IMPLDIFF(
634 I bi, bj, iMin, iMax, jMin, jMax,
635 I 0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
636 U uVelD,
637 I myThid )
638 ENDIF
639 #endif /* ALLOW_CD_CODE */
640 C-- End implicit Vertical advection & viscosity
641
642 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
643
644 #ifdef ALLOW_NONHYDROSTATIC
645 C-- Step forward W field in N-H algorithm
646 IF ( nonHydrostatic ) THEN
647 #ifdef ALLOW_DEBUG
648 IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
649 #endif
650 CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
651 CALL CALC_GW(
652 I bi,bj, KappaRU, KappaRV,
653 I myTime, myIter, myThid )
654 ENDIF
655 IF ( nonHydrostatic.OR.implicitIntGravWave )
656 & CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
657 IF ( nonHydrostatic )
658 & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
659 #endif
660
661 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
662
663 C- end of bi,bj loops
664 ENDDO
665 ENDDO
666
667 #ifdef ALLOW_OBCS
668 IF (useOBCS) THEN
669 CALL OBCS_EXCHANGES( myThid )
670 ENDIF
671 #endif
672
673 Cml(
674 C In order to compare the variance of phiHydLow of a p/z-coordinate
675 C run with etaH of a z/p-coordinate run the drift of phiHydLow
676 C has to be removed by something like the following subroutine:
677 C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
678 C & 'phiHydLow', myTime, myThid )
679 Cml)
680
681 #ifdef ALLOW_DIAGNOSTICS
682 IF ( useDiagnostics ) THEN
683
684 CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
685 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
686
687 tmpFac = 1. _d 0
688 CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
689 & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
690
691 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
692 & 'PHIBOTSQ',0, 1,0,1,1,myThid)
693
694 ENDIF
695 #endif /* ALLOW_DIAGNOSTICS */
696
697 #ifdef ALLOW_DEBUG
698 IF ( debugLevel .GE. debLevD ) THEN
699 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
700 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
701 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
702 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
703 CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
704 CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
705 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
706 CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
707 CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
708 CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
709 #ifndef ALLOW_ADAMSBASHFORTH_3
710 CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
711 CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
712 CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
713 CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
714 #endif
715 ENDIF
716 #endif
717
718 #ifdef DYNAMICS_GUGV_EXCH_CHECK
719 C- jmc: For safety checking only: This Exchange here should not change
720 C the solution. If solution changes, it means something is wrong,
721 C but it does not mean that it is less wrong with this exchange.
722 IF ( debugLevel .GE. debLevE ) THEN
723 CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
724 ENDIF
725 #endif
726
727 #ifdef ALLOW_DEBUG
728 IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
729 #endif
730
731 RETURN
732 END

  ViewVC Help
Powered by ViewVC 1.1.22