/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.160 - (show annotations) (download)
Thu Dec 1 14:22:27 2011 UTC (12 years, 5 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint63g, checkpoint63h, checkpoint63i, checkpoint63j
Changes since 1.159: +9 -9 lines
change argument recip_hFac (drop bi,bj indices) in IMPLDIFF S/R

1 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.159 2011/10/25 15:09:49 mlosch Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6 #ifdef ALLOW_OBCS
7 # include "OBCS_OPTIONS.h"
8 #endif
9
10 #undef DYNAMICS_GUGV_EXCH_CHECK
11
12 CBOP
13 C !ROUTINE: DYNAMICS
14 C !INTERFACE:
15 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16 C !DESCRIPTION: \bv
17 C *==========================================================*
18 C | SUBROUTINE DYNAMICS
19 C | o Controlling routine for the explicit part of the model
20 C | dynamics.
21 C *==========================================================*
22 C | This routine evaluates the "dynamics" terms for each
23 C | block of ocean in turn. Because the blocks of ocean have
24 C | overlap regions they are independent of one another.
25 C | If terms involving lateral integrals are needed in this
26 C | routine care will be needed. Similarly finite-difference
27 C | operations with stencils wider than the overlap region
28 C | require special consideration.
29 C | The algorithm...
30 C |
31 C | "Correction Step"
32 C | =================
33 C | Here we update the horizontal velocities with the surface
34 C | pressure such that the resulting flow is either consistent
35 C | with the free-surface evolution or the rigid-lid:
36 C | U[n] = U* + dt x d/dx P
37 C | V[n] = V* + dt x d/dy P
38 C | W[n] = W* + dt x d/dz P (NH mode)
39 C |
40 C | "Calculation of Gs"
41 C | ===================
42 C | This is where all the accelerations and tendencies (ie.
43 C | physics, parameterizations etc...) are calculated
44 C | rho = rho ( theta[n], salt[n] )
45 C | b = b(rho, theta)
46 C | K31 = K31 ( rho )
47 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51 C |
52 C | "Time-stepping" or "Prediction"
53 C | ================================
54 C | The models variables are stepped forward with the appropriate
55 C | time-stepping scheme (currently we use Adams-Bashforth II)
56 C | - For momentum, the result is always *only* a "prediction"
57 C | in that the flow may be divergent and will be "corrected"
58 C | later with a surface pressure gradient.
59 C | - Normally for tracers the result is the new field at time
60 C | level [n+1} *BUT* in the case of implicit diffusion the result
61 C | is also *only* a prediction.
62 C | - We denote "predictors" with an asterisk (*).
63 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67 C | With implicit diffusion:
68 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70 C | (1 + dt * K * d_zz) theta[n] = theta*
71 C | (1 + dt * K * d_zz) salt[n] = salt*
72 C |
73 C *==========================================================*
74 C \ev
75 C !USES:
76 IMPLICIT NONE
77 C == Global variables ===
78 #include "SIZE.h"
79 #include "EEPARAMS.h"
80 #include "PARAMS.h"
81 #include "DYNVARS.h"
82 #ifdef ALLOW_CD_CODE
83 #include "CD_CODE_VARS.h"
84 #endif
85 #include "GRID.h"
86 #ifdef ALLOW_AUTODIFF_TAMC
87 # include "tamc.h"
88 # include "tamc_keys.h"
89 # include "FFIELDS.h"
90 # include "EOS.h"
91 # ifdef ALLOW_KPP
92 # include "KPP.h"
93 # endif
94 # ifdef ALLOW_PTRACERS
95 # include "PTRACERS_SIZE.h"
96 # include "PTRACERS_FIELDS.h"
97 # endif
98 # ifdef ALLOW_OBCS
99 # include "OBCS_FIELDS.h"
100 # ifdef ALLOW_PTRACERS
101 # include "OBCS_PTRACERS.h"
102 # endif
103 # endif
104 # ifdef ALLOW_MOM_FLUXFORM
105 # include "MOM_FLUXFORM.h"
106 # endif
107 #endif /* ALLOW_AUTODIFF_TAMC */
108
109 C !CALLING SEQUENCE:
110 C DYNAMICS()
111 C |
112 C |-- CALC_EP_FORCING
113 C |
114 C |-- CALC_GRAD_PHI_SURF
115 C |
116 C |-- CALC_VISCOSITY
117 C |
118 C |-- CALC_PHI_HYD
119 C |
120 C |-- MOM_FLUXFORM
121 C |
122 C |-- MOM_VECINV
123 C |
124 C |-- TIMESTEP
125 C |
126 C |-- OBCS_APPLY_UV
127 C |
128 C |-- MOM_U_IMPLICIT_R
129 C |-- MOM_V_IMPLICIT_R
130 C |
131 C |-- IMPLDIFF
132 C |
133 C |-- OBCS_APPLY_UV
134 C |
135 C |-- CALC_GW
136 C |
137 C |-- DIAGNOSTICS_FILL
138 C |-- DEBUG_STATS_RL
139
140 C !INPUT/OUTPUT PARAMETERS:
141 C == Routine arguments ==
142 C myTime :: Current time in simulation
143 C myIter :: Current iteration number in simulation
144 C myThid :: Thread number for this instance of the routine.
145 _RL myTime
146 INTEGER myIter
147 INTEGER myThid
148
149 C !FUNCTIONS:
150 #ifdef ALLOW_DIAGNOSTICS
151 LOGICAL DIAGNOSTICS_IS_ON
152 EXTERNAL DIAGNOSTICS_IS_ON
153 #endif
154
155 C !LOCAL VARIABLES:
156 C == Local variables
157 C fVer[UV] o fVer: Vertical flux term - note fVer
158 C is "pipelined" in the vertical
159 C so we need an fVer for each
160 C variable.
161 C phiHydC :: hydrostatic potential anomaly at cell center
162 C In z coords phiHyd is the hydrostatic potential
163 C (=pressure/rho0) anomaly
164 C In p coords phiHyd is the geopotential height anomaly.
165 C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
166 C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
167 C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
168 C phiSurfY or geopotential (atmos) in X and Y direction
169 C guDissip :: dissipation tendency (all explicit terms), u component
170 C gvDissip :: dissipation tendency (all explicit terms), v component
171 C KappaRU :: vertical viscosity
172 C KappaRV :: vertical viscosity
173 C iMin, iMax - Ranges and sub-block indices on which calculations
174 C jMin, jMax are applied.
175 C bi, bj
176 C k, kup, - Index for layer above and below. kup and kDown
177 C kDown, km1 are switched with layer to be the appropriate
178 C index into fVerTerm.
179 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
180 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
181 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182 _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
184 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
185 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186 _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
188 _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
189 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
190 _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
191
192 INTEGER iMin, iMax
193 INTEGER jMin, jMax
194 INTEGER bi, bj
195 INTEGER i, j
196 INTEGER k, km1, kp1, kup, kDown
197
198 #ifdef ALLOW_DIAGNOSTICS
199 LOGICAL dPhiHydDiagIsOn
200 _RL tmpFac
201 #endif /* ALLOW_DIAGNOSTICS */
202
203
204 C--- The algorithm...
205 C
206 C "Correction Step"
207 C =================
208 C Here we update the horizontal velocities with the surface
209 C pressure such that the resulting flow is either consistent
210 C with the free-surface evolution or the rigid-lid:
211 C U[n] = U* + dt x d/dx P
212 C V[n] = V* + dt x d/dy P
213 C
214 C "Calculation of Gs"
215 C ===================
216 C This is where all the accelerations and tendencies (ie.
217 C physics, parameterizations etc...) are calculated
218 C rho = rho ( theta[n], salt[n] )
219 C b = b(rho, theta)
220 C K31 = K31 ( rho )
221 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
222 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
223 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
224 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
225 C
226 C "Time-stepping" or "Prediction"
227 C ================================
228 C The models variables are stepped forward with the appropriate
229 C time-stepping scheme (currently we use Adams-Bashforth II)
230 C - For momentum, the result is always *only* a "prediction"
231 C in that the flow may be divergent and will be "corrected"
232 C later with a surface pressure gradient.
233 C - Normally for tracers the result is the new field at time
234 C level [n+1} *BUT* in the case of implicit diffusion the result
235 C is also *only* a prediction.
236 C - We denote "predictors" with an asterisk (*).
237 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
238 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
239 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
240 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
241 C With implicit diffusion:
242 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
243 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
244 C (1 + dt * K * d_zz) theta[n] = theta*
245 C (1 + dt * K * d_zz) salt[n] = salt*
246 C---
247 CEOP
248
249 #ifdef ALLOW_DEBUG
250 IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
251 #endif
252
253 #ifdef ALLOW_DIAGNOSTICS
254 dPhiHydDiagIsOn = .FALSE.
255 IF ( useDiagnostics )
256 & dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
257 & .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
258 #endif
259
260 C-- Call to routine for calculation of
261 C Eliassen-Palm-flux-forced U-tendency,
262 C if desired:
263 #ifdef INCLUDE_EP_FORCING_CODE
264 CALL CALC_EP_FORCING(myThid)
265 #endif
266
267 #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
268 CALL DUMMY_IN_DYNAMICS( mytime, myiter, myThid )
269 #endif
270
271 #ifdef ALLOW_AUTODIFF_TAMC
272 C-- HPF directive to help TAMC
273 CHPF$ INDEPENDENT
274 #endif /* ALLOW_AUTODIFF_TAMC */
275
276 DO bj=myByLo(myThid),myByHi(myThid)
277
278 #ifdef ALLOW_AUTODIFF_TAMC
279 C-- HPF directive to help TAMC
280 CHPF$ INDEPENDENT, NEW (fVerU,fVerV
281 CHPF$& ,phiHydF
282 CHPF$& ,KappaRU,KappaRV
283 CHPF$& )
284 #endif /* ALLOW_AUTODIFF_TAMC */
285
286 DO bi=myBxLo(myThid),myBxHi(myThid)
287
288 #ifdef ALLOW_AUTODIFF_TAMC
289 act1 = bi - myBxLo(myThid)
290 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
291 act2 = bj - myByLo(myThid)
292 max2 = myByHi(myThid) - myByLo(myThid) + 1
293 act3 = myThid - 1
294 max3 = nTx*nTy
295 act4 = ikey_dynamics - 1
296 idynkey = (act1 + 1) + act2*max1
297 & + act3*max1*max2
298 & + act4*max1*max2*max3
299 #endif /* ALLOW_AUTODIFF_TAMC */
300
301 C-- Set up work arrays with valid (i.e. not NaN) values
302 C These inital values do not alter the numerical results. They
303 C just ensure that all memory references are to valid floating
304 C point numbers. This prevents spurious hardware signals due to
305 C uninitialised but inert locations.
306
307 #ifdef ALLOW_AUTODIFF_TAMC
308 DO k=1,Nr
309 DO j=1-OLy,sNy+OLy
310 DO i=1-OLx,sNx+OLx
311 KappaRU(i,j,k) = 0. _d 0
312 KappaRV(i,j,k) = 0. _d 0
313 cph(
314 c-- need some re-initialisation here to break dependencies
315 cph)
316 gU(i,j,k,bi,bj) = 0. _d 0
317 gV(i,j,k,bi,bj) = 0. _d 0
318 ENDDO
319 ENDDO
320 ENDDO
321 #endif /* ALLOW_AUTODIFF_TAMC */
322 DO j=1-OLy,sNy+OLy
323 DO i=1-OLx,sNx+OLx
324 fVerU (i,j,1) = 0. _d 0
325 fVerU (i,j,2) = 0. _d 0
326 fVerV (i,j,1) = 0. _d 0
327 fVerV (i,j,2) = 0. _d 0
328 phiHydF (i,j) = 0. _d 0
329 phiHydC (i,j) = 0. _d 0
330 #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
331 dPhiHydX(i,j) = 0. _d 0
332 dPhiHydY(i,j) = 0. _d 0
333 #endif
334 phiSurfX(i,j) = 0. _d 0
335 phiSurfY(i,j) = 0. _d 0
336 guDissip(i,j) = 0. _d 0
337 gvDissip(i,j) = 0. _d 0
338 #ifdef ALLOW_AUTODIFF_TAMC
339 phiHydLow(i,j,bi,bj) = 0. _d 0
340 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
341 # ifndef DISABLE_RSTAR_CODE
342 dWtransC(i,j,bi,bj) = 0. _d 0
343 dWtransU(i,j,bi,bj) = 0. _d 0
344 dWtransV(i,j,bi,bj) = 0. _d 0
345 # endif
346 # endif
347 #endif
348 ENDDO
349 ENDDO
350
351 C-- Start computation of dynamics
352 iMin = 0
353 iMax = sNx+1
354 jMin = 0
355 jMax = sNy+1
356
357 #ifdef ALLOW_AUTODIFF_TAMC
358 CADJ STORE wvel (:,:,:,bi,bj) =
359 CADJ & comlev1_bibj, key=idynkey, byte=isbyte
360 #endif /* ALLOW_AUTODIFF_TAMC */
361
362 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
363 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
364 IF (implicSurfPress.NE.1.) THEN
365 CALL CALC_GRAD_PHI_SURF(
366 I bi,bj,iMin,iMax,jMin,jMax,
367 I etaN,
368 O phiSurfX,phiSurfY,
369 I myThid )
370 ENDIF
371
372 #ifdef ALLOW_AUTODIFF_TAMC
373 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
374 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
375 #ifdef ALLOW_KPP
376 CADJ STORE KPPviscAz (:,:,:,bi,bj)
377 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
378 #endif /* ALLOW_KPP */
379 #endif /* ALLOW_AUTODIFF_TAMC */
380
381 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
382 C-- Calculate the total vertical viscosity
383 CALL CALC_VISCOSITY(
384 I bi,bj, iMin,iMax,jMin,jMax,
385 O KappaRU, KappaRV,
386 I myThid )
387 #else
388 DO k=1,Nr
389 DO j=1-OLy,sNy+OLy
390 DO i=1-OLx,sNx+OLx
391 KappaRU(i,j,k) = 0. _d 0
392 KappaRV(i,j,k) = 0. _d 0
393 ENDDO
394 ENDDO
395 ENDDO
396 #endif
397
398 #ifdef ALLOW_AUTODIFF_TAMC
399 CADJ STORE KappaRU(:,:,:)
400 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
401 CADJ STORE KappaRV(:,:,:)
402 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
403 #endif /* ALLOW_AUTODIFF_TAMC */
404
405 #ifdef ALLOW_OBCS
406 C-- For Stevens boundary conditions velocities need to be extrapolated
407 C (copied) to a narrow strip outside the domain
408 IF ( useOBCS ) THEN
409 CALL OBCS_COPY_UV_N(
410 U uVel(1-Olx,1-Oly,1,bi,bj),
411 U vVel(1-Olx,1-Oly,1,bi,bj),
412 I Nr, bi, bj, myThid )
413 ENDIF
414 #endif /* ALLOW_OBCS */
415
416 C-- Start of dynamics loop
417 DO k=1,Nr
418
419 C-- km1 Points to level above k (=k-1)
420 C-- kup Cycles through 1,2 to point to layer above
421 C-- kDown Cycles through 2,1 to point to current layer
422
423 km1 = MAX(1,k-1)
424 kp1 = MIN(k+1,Nr)
425 kup = 1+MOD(k+1,2)
426 kDown= 1+MOD(k,2)
427
428 #ifdef ALLOW_AUTODIFF_TAMC
429 kkey = (idynkey-1)*Nr + k
430 c
431 CADJ STORE totphihyd (:,:,k,bi,bj)
432 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
433 CADJ STORE phihydlow (:,:,bi,bj)
434 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
435 CADJ STORE theta (:,:,k,bi,bj)
436 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
437 CADJ STORE salt (:,:,k,bi,bj)
438 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
439 CADJ STORE gt(:,:,k,bi,bj)
440 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
441 CADJ STORE gs(:,:,k,bi,bj)
442 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
443 # ifdef NONLIN_FRSURF
444 cph-test
445 CADJ STORE phiHydC (:,:)
446 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
447 CADJ STORE phiHydF (:,:)
448 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
449 CADJ STORE gudissip (:,:)
450 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
451 CADJ STORE gvdissip (:,:)
452 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
453 CADJ STORE fVerU (:,:,:)
454 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
455 CADJ STORE fVerV (:,:,:)
456 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
457 CADJ STORE gu(:,:,k,bi,bj)
458 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
459 CADJ STORE gv(:,:,k,bi,bj)
460 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
461 # ifndef ALLOW_ADAMSBASHFORTH_3
462 CADJ STORE gunm1(:,:,k,bi,bj)
463 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
464 CADJ STORE gvnm1(:,:,k,bi,bj)
465 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
466 # else
467 CADJ STORE gunm(:,:,k,bi,bj,1)
468 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
469 CADJ STORE gunm(:,:,k,bi,bj,2)
470 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
471 CADJ STORE gvnm(:,:,k,bi,bj,1)
472 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
473 CADJ STORE gvnm(:,:,k,bi,bj,2)
474 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
475 # endif
476 # ifdef ALLOW_CD_CODE
477 CADJ STORE unm1(:,:,k,bi,bj)
478 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
479 CADJ STORE vnm1(:,:,k,bi,bj)
480 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
481 CADJ STORE uVelD(:,:,k,bi,bj)
482 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
483 CADJ STORE vVelD(:,:,k,bi,bj)
484 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
485 # endif
486 # endif
487 # ifdef ALLOW_DEPTH_CONTROL
488 CADJ STORE fVerU (:,:,:)
489 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
490 CADJ STORE fVerV (:,:,:)
491 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
492 # endif
493 #endif /* ALLOW_AUTODIFF_TAMC */
494
495 C-- Integrate hydrostatic balance for phiHyd with BC of
496 C phiHyd(z=0)=0
497 IF ( implicitIntGravWave ) THEN
498 CALL CALC_PHI_HYD(
499 I bi,bj,iMin,iMax,jMin,jMax,k,
500 I gT, gS,
501 U phiHydF,
502 O phiHydC, dPhiHydX, dPhiHydY,
503 I myTime, myIter, myThid )
504 ELSE
505 CALL CALC_PHI_HYD(
506 I bi,bj,iMin,iMax,jMin,jMax,k,
507 I theta, salt,
508 U phiHydF,
509 O phiHydC, dPhiHydX, dPhiHydY,
510 I myTime, myIter, myThid )
511 ENDIF
512 #ifdef ALLOW_DIAGNOSTICS
513 IF ( dPhiHydDiagIsOn ) THEN
514 tmpFac = -1. _d 0
515 CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
516 & 'Um_dPHdx', k, 1, 2, bi, bj, myThid )
517 CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
518 & 'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
519 ENDIF
520 #endif /* ALLOW_DIAGNOSTICS */
521
522 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
523 C and step forward storing the result in gU, gV, etc...
524 IF ( momStepping ) THEN
525 #ifdef ALLOW_AUTODIFF_TAMC
526 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
527 # ifndef DISABLE_RSTAR_CODE
528 CADJ STORE dWtransC(:,:,bi,bj)
529 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
530 CADJ STORE dWtransU(:,:,bi,bj)
531 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
532 CADJ STORE dWtransV(:,:,bi,bj)
533 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
534 # endif
535 # endif
536 #endif
537 IF (.NOT. vectorInvariantMomentum) THEN
538 #ifdef ALLOW_MOM_FLUXFORM
539 C
540 CALL MOM_FLUXFORM(
541 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
542 I KappaRU, KappaRV,
543 U fVerU, fVerV,
544 O guDissip, gvDissip,
545 I myTime, myIter, myThid)
546 #endif
547 ELSE
548 #ifdef ALLOW_MOM_VECINV
549 C
550 # ifdef ALLOW_AUTODIFF_TAMC
551 # ifdef NONLIN_FRSURF
552 CADJ STORE fVerU(:,:,:)
553 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
554 CADJ STORE fVerV(:,:,:)
555 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
556 # endif
557 # endif /* ALLOW_AUTODIFF_TAMC */
558 C
559 CALL MOM_VECINV(
560 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
561 I KappaRU, KappaRV,
562 U fVerU, fVerV,
563 O guDissip, gvDissip,
564 I myTime, myIter, myThid)
565 #endif
566 ENDIF
567 C
568 CALL TIMESTEP(
569 I bi,bj,iMin,iMax,jMin,jMax,k,
570 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
571 I guDissip, gvDissip,
572 I myTime, myIter, myThid)
573
574 ENDIF
575
576 C-- end of dynamics k loop (1:Nr)
577 ENDDO
578
579 C-- Implicit Vertical advection & viscosity
580 #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
581 defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
582 IF ( momImplVertAdv ) THEN
583 CALL MOM_U_IMPLICIT_R( kappaRU,
584 I bi, bj, myTime, myIter, myThid )
585 CALL MOM_V_IMPLICIT_R( kappaRV,
586 I bi, bj, myTime, myIter, myThid )
587 ELSEIF ( implicitViscosity ) THEN
588 #else /* INCLUDE_IMPLVERTADV_CODE */
589 IF ( implicitViscosity ) THEN
590 #endif /* INCLUDE_IMPLVERTADV_CODE */
591 #ifdef ALLOW_AUTODIFF_TAMC
592 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
593 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
594 #endif /* ALLOW_AUTODIFF_TAMC */
595 CALL IMPLDIFF(
596 I bi, bj, iMin, iMax, jMin, jMax,
597 I -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
598 U gU,
599 I myThid )
600 #ifdef ALLOW_AUTODIFF_TAMC
601 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
602 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
603 #endif /* ALLOW_AUTODIFF_TAMC */
604 CALL IMPLDIFF(
605 I bi, bj, iMin, iMax, jMin, jMax,
606 I -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
607 U gV,
608 I myThid )
609 ENDIF
610
611 #ifdef ALLOW_OBCS
612 C-- Apply open boundary conditions
613 IF ( useOBCS ) THEN
614 C-- but first save intermediate velocities to be used in the
615 C next time step for the Stevens boundary conditions
616 CALL OBCS_SAVE_UV_N(
617 I bi, bj, iMin, iMax, jMin, jMax, 0,
618 I gU, gV, myThid )
619 CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
620 ENDIF
621 #endif /* ALLOW_OBCS */
622
623 #ifdef ALLOW_CD_CODE
624 IF (implicitViscosity.AND.useCDscheme) THEN
625 #ifdef ALLOW_AUTODIFF_TAMC
626 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
627 #endif /* ALLOW_AUTODIFF_TAMC */
628 CALL IMPLDIFF(
629 I bi, bj, iMin, iMax, jMin, jMax,
630 I 0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
631 U vVelD,
632 I myThid )
633 #ifdef ALLOW_AUTODIFF_TAMC
634 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
635 #endif /* ALLOW_AUTODIFF_TAMC */
636 CALL IMPLDIFF(
637 I bi, bj, iMin, iMax, jMin, jMax,
638 I 0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
639 U uVelD,
640 I myThid )
641 ENDIF
642 #endif /* ALLOW_CD_CODE */
643 C-- End implicit Vertical advection & viscosity
644
645 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
646
647 #ifdef ALLOW_NONHYDROSTATIC
648 C-- Step forward W field in N-H algorithm
649 IF ( nonHydrostatic ) THEN
650 #ifdef ALLOW_DEBUG
651 IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
652 #endif
653 CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
654 CALL CALC_GW(
655 I bi,bj, KappaRU, KappaRV,
656 I myTime, myIter, myThid )
657 ENDIF
658 IF ( nonHydrostatic.OR.implicitIntGravWave )
659 & CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
660 IF ( nonHydrostatic )
661 & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
662 #endif
663
664 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
665
666 C- end of bi,bj loops
667 ENDDO
668 ENDDO
669
670 #ifdef ALLOW_OBCS
671 IF (useOBCS) THEN
672 CALL OBCS_EXCHANGES( myThid )
673 ENDIF
674 #endif
675
676 Cml(
677 C In order to compare the variance of phiHydLow of a p/z-coordinate
678 C run with etaH of a z/p-coordinate run the drift of phiHydLow
679 C has to be removed by something like the following subroutine:
680 C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
681 C & 'phiHydLow', myTime, myThid )
682 Cml)
683
684 #ifdef ALLOW_DIAGNOSTICS
685 IF ( useDiagnostics ) THEN
686
687 CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
688 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
689
690 tmpFac = 1. _d 0
691 CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
692 & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
693
694 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
695 & 'PHIBOTSQ',0, 1,0,1,1,myThid)
696
697 ENDIF
698 #endif /* ALLOW_DIAGNOSTICS */
699
700 #ifdef ALLOW_DEBUG
701 IF ( debugLevel .GE. debLevD ) THEN
702 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
703 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
704 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
705 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
706 CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
707 CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
708 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
709 CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
710 CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
711 CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
712 #ifndef ALLOW_ADAMSBASHFORTH_3
713 CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
714 CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
715 CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
716 CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
717 #endif
718 ENDIF
719 #endif
720
721 #ifdef DYNAMICS_GUGV_EXCH_CHECK
722 C- jmc: For safety checking only: This Exchange here should not change
723 C the solution. If solution changes, it means something is wrong,
724 C but it does not mean that it is less wrong with this exchange.
725 IF ( debugLevel .GE. debLevE ) THEN
726 CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
727 ENDIF
728 #endif
729
730 #ifdef ALLOW_DEBUG
731 IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
732 #endif
733
734 RETURN
735 END

  ViewVC Help
Powered by ViewVC 1.1.22