--- MITgcm/model/src/dynamics.F 1998/05/25 16:17:36 1.7 +++ MITgcm/model/src/dynamics.F 2001/03/08 20:25:01 1.65 @@ -1,8 +1,9 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.7 1998/05/25 16:17:36 cnh Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.65 2001/03/08 20:25:01 jmc Exp $ +C $Name: $ -#include "CPP_EEOPTIONS.h" +#include "CPP_OPTIONS.h" - SUBROUTINE DYNAMICS(myThid) + SUBROUTINE DYNAMICS(myTime, myIter, myThid) C /==========================================================\ C | SUBROUTINE DYNAMICS | C | o Controlling routine for the explicit part of the model | @@ -20,77 +21,162 @@ C | C*P* comments indicating place holders for which code is | C | presently being developed. | C \==========================================================/ + IMPLICIT NONE C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" -#include "CG2D.h" #include "PARAMS.h" #include "DYNVARS.h" +#include "GRID.h" + +#ifdef ALLOW_AUTODIFF_TAMC +# include "tamc.h" +# include "tamc_keys.h" +#endif /* ALLOW_AUTODIFF_TAMC */ + +#ifdef ALLOW_KPP +# include "KPP.h" +#endif + +#ifdef ALLOW_TIMEAVE +#include "TIMEAVE_STATV.h" +#endif C == Routine arguments == +C myTime - Current time in simulation +C myIter - Current iteration number in simulation C myThid - Thread number for this instance of the routine. + _RL myTime + INTEGER myIter INTEGER myThid C == Local variables C xA, yA - Per block temporaries holding face areas -C uTrans, vTrans, wTrans - Per block temporaries holding flow transport +C uTrans, vTrans, rTrans - Per block temporaries holding flow +C transport C o uTrans: Zonal transport C o vTrans: Meridional transport -C o wTrans: Vertical transport +C o rTrans: Vertical transport C maskC,maskUp o maskC: land/water mask for tracer cells C o maskUp: land/water mask for W points -C aTerm, xTerm, cTerm - Work arrays for holding separate terms in -C mTerm, pTerm, tendency equations. -C fZon, fMer, fVer[STUV] o aTerm: Advection term -C o xTerm: Mixing term -C o cTerm: Coriolis term -C o mTerm: Metric term -C o pTerm: Pressure term -C o fZon: Zonal flux term -C o fMer: Meridional flux term -C o fVer: Vertical flux term - note fVer +C fVer[STUV] o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. -C iMin, iMax - Ranges and sub-block indices on which calculations -C jMin, jMax are applied. +C rhoK, rhoKM1 - Density at current level, and level above +C phiHyd - Hydrostatic part of the potential phiHydi. +C In z coords phiHydiHyd is the hydrostatic +C Potential (=pressure/rho0) anomaly +C In p coords phiHydiHyd is the geopotential +C surface height anomaly. +C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean) +C phiSurfY or geopotentiel (atmos) in X and Y direction +C KappaRT, - Total diffusion in vertical for T and S. +C KappaRS (background + spatially varying, isopycnal term). +C iMin, iMax - Ranges and sub-block indices on which calculations +C jMin, jMax are applied. C bi, bj -C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown -C are switched with layer to be the appropriate index -C into fVerTerm - _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL pH (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) - _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) - _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) - _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) - _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy) +C k, kup, - Index for layer above and below. kup and kDown +C kDown, km1 are switched with layer to be the appropriate +C index into fVerTerm. + _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) + _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) + _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) + _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) + _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + +C This is currently used by IVDC and Diagnostics + _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j - INTEGER k, kM1, kUp, kDown + INTEGER k, km1, kup, kDown + +Cjmc : add for phiHyd output <- but not working if multi tile per CPU +c CHARACTER*(MAX_LEN_MBUF) suff +c LOGICAL DIFFERENT_MULTIPLE +c EXTERNAL DIFFERENT_MULTIPLE +Cjmc(end) + +#ifdef ALLOW_AUTODIFF_TAMC + INTEGER isbyte + PARAMETER( isbyte = 4 ) + + INTEGER act1, act2, act3, act4 + INTEGER max1, max2, max3 + INTEGER iikey, kkey + INTEGER maximpl +#endif /* ALLOW_AUTODIFF_TAMC */ + +C--- The algorithm... +C +C "Correction Step" +C ================= +C Here we update the horizontal velocities with the surface +C pressure such that the resulting flow is either consistent +C with the free-surface evolution or the rigid-lid: +C U[n] = U* + dt x d/dx P +C V[n] = V* + dt x d/dy P +C +C "Calculation of Gs" +C =================== +C This is where all the accelerations and tendencies (ie. +C physics, parameterizations etc...) are calculated +C rho = rho ( theta[n], salt[n] ) +C b = b(rho, theta) +C K31 = K31 ( rho ) +C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) +C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) +C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) +C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) +C +C "Time-stepping" or "Prediction" +C ================================ +C The models variables are stepped forward with the appropriate +C time-stepping scheme (currently we use Adams-Bashforth II) +C - For momentum, the result is always *only* a "prediction" +C in that the flow may be divergent and will be "corrected" +C later with a surface pressure gradient. +C - Normally for tracers the result is the new field at time +C level [n+1} *BUT* in the case of implicit diffusion the result +C is also *only* a prediction. +C - We denote "predictors" with an asterisk (*). +C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) +C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) +C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C With implicit diffusion: +C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) +C (1 + dt * K * d_zz) theta[n] = theta* +C (1 + dt * K * d_zz) salt[n] = salt* +C--- + +#ifdef ALLOW_AUTODIFF_TAMC +C-- dummy statement to end declaration part + ikey = 1 +#endif /* ALLOW_AUTODIFF_TAMC */ C-- Set up work arrays with valid (i.e. not NaN) values C These inital values do not alter the numerical results. They @@ -103,50 +189,80 @@ yA(i,j) = 0. _d 0 uTrans(i,j) = 0. _d 0 vTrans(i,j) = 0. _d 0 - aTerm(i,j) = 0. _d 0 - xTerm(i,j) = 0. _d 0 - cTerm(i,j) = 0. _d 0 - mTerm(i,j) = 0. _d 0 - pTerm(i,j) = 0. _d 0 - fZon(i,j) = 0. _d 0 - fMer(i,j) = 0. _d 0 - DO K=1,nZ - pH (i,j,k) = 0. _d 0 - K13(i,j,k) = 0. _d 0 - K23(i,j,k) = 0. _d 0 - K33(i,j,k) = 0. _d 0 + DO k=1,Nr + phiHyd(i,j,k) = 0. _d 0 + KappaRU(i,j,k) = 0. _d 0 + KappaRV(i,j,k) = 0. _d 0 + sigmaX(i,j,k) = 0. _d 0 + sigmaY(i,j,k) = 0. _d 0 + sigmaR(i,j,k) = 0. _d 0 ENDDO - rhokm1(i,j) = 0. _d 0 - rhokp1(i,j) = 0. _d 0 + rhoKM1 (i,j) = 0. _d 0 + rhok (i,j) = 0. _d 0 + maskC (i,j) = 0. _d 0 + phiSurfX(i,j) = 0. _d 0 + phiSurfY(i,j) = 0. _d 0 ENDDO ENDDO + +#ifdef ALLOW_AUTODIFF_TAMC +C-- HPF directive to help TAMC +CHPF$ INDEPENDENT +#endif /* ALLOW_AUTODIFF_TAMC */ + DO bj=myByLo(myThid),myByHi(myThid) + +#ifdef ALLOW_AUTODIFF_TAMC +C-- HPF directive to help TAMC +CHPF$ INDEPENDENT, NEW (rTrans,fVerT,fVerS,fVerU,fVerV +CHPF$& ,phiHyd,utrans,vtrans,maskc,xA,yA +CHPF$& ,KappaRT,KappaRS,KappaRU,KappaRV +CHPF$& ) +#endif /* ALLOW_AUTODIFF_TAMC */ + DO bi=myBxLo(myThid),myBxHi(myThid) -C-- Boundary condition on hydrostatic pressure is pH(z=0)=0 +#ifdef ALLOW_AUTODIFF_TAMC + act1 = bi - myBxLo(myThid) + max1 = myBxHi(myThid) - myBxLo(myThid) + 1 + + act2 = bj - myByLo(myThid) + max2 = myByHi(myThid) - myByLo(myThid) + 1 + + act3 = myThid - 1 + max3 = nTx*nTy + + act4 = ikey_dynamics - 1 + + ikey = (act1 + 1) + act2*max1 + & + act3*max1*max2 + & + act4*max1*max2*max3 +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Set up work arrays that need valid initial values DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx - pH(i,j,1) = 0. _d 0 - K13(i,j,1) = 0. _d 0 - K23(i,j,1) = 0. _d 0 - K33(i,j,1) = 0. _d 0 - KapGM(i,j) = 0. _d 0 + rTrans(i,j) = 0. _d 0 + fVerT (i,j,1) = 0. _d 0 + fVerT (i,j,2) = 0. _d 0 + fVerS (i,j,1) = 0. _d 0 + fVerS (i,j,2) = 0. _d 0 + fVerU (i,j,1) = 0. _d 0 + fVerU (i,j,2) = 0. _d 0 + fVerV (i,j,1) = 0. _d 0 + fVerV (i,j,2) = 0. _d 0 ENDDO ENDDO -C-- Set up work arrays that need valid initial values - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - wTrans(i,j) = 0. _d 0 - fVerT(i,j,1) = 0. _d 0 - fVerT(i,j,2) = 0. _d 0 - fVerS(i,j,1) = 0. _d 0 - fVerS(i,j,2) = 0. _d 0 - fVerU(i,j,1) = 0. _d 0 - fVerU(i,j,2) = 0. _d 0 - fVerV(i,j,1) = 0. _d 0 - fVerV(i,j,2) = 0. _d 0 + DO k=1,Nr + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx +C This is currently also used by IVDC and Diagnostics + ConvectCount(i,j,k) = 0. + KappaRT(i,j,k) = 0. _d 0 + KappaRS(i,j,k) = 0. _d 0 + ENDDO ENDDO ENDDO @@ -155,122 +271,413 @@ jMin = 1-OLy+1 jMax = sNy+OLy -C-- Calculate gradient of surface pressure - CALL GRAD_PSURF( - I bi,bj,iMin,iMax,jMin,jMax, - O pSurfX,pSurfY, - I myThid) - -C-- Update fields in top level according to tendency terms - CALL TIMESTEP( - I bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid) - -C-- Density of 1st level (below W(1)) reference to level 1 - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, 1, 1, 'LINEAR', - O rhoKm1, - I myThid ) -C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 - CALL CALC_PH( - I bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1, - U pH, - I myThid ) - - DO K=2,Nz -C-- Update fields in Kth level according to tendency terms - CALL TIMESTEP( - I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid) -C-- Density of K-1 level (above W(K)) reference to K level - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K-1, K, 'LINEAR', - O rhoKm1, - I myThid ) -C-- Density of K level (below W(K)) reference to K level - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, 'LINEAR', - O rhoKp1, - I myThid ) -C-- Calculate iso-neutral slopes for the GM/Redi parameterisation - CALL CALC_ISOSLOPES( - I bi, bj, iMin, iMax, jMin, jMax, K, - I rhoKm1, rhoKp1, - O K13, K23, K33, KapGM, - I myThid ) -C-- Calculate static stability and mix where convectively unstable - CALL CONVECT( - I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,myThid) -C-- Density of K-1 level (above W(K)) reference to K-1 level - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, 'LINEAR', - O rhoKm1, - I myThid ) -C-- Density of K level (below W(K)) referenced to K level - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, 'LINEAR', - O rhoKp1, - I myThid ) -C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 - CALL CALC_PH( - I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1, - U pH, - I myThid ) +C-- Start of diagnostic loop + DO k=Nr,1,-1 + +#ifdef ALLOW_AUTODIFF_TAMC +C? Patrick, is this formula correct now that we change the loop range? +C? Do we still need this? + kkey = (ikey-1)*(Nr-2+1) + (k-2) + 1 +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Integrate continuity vertically for vertical velocity + CALL INTEGRATE_FOR_W( + I bi, bj, k, uVel, vVel, + O wVel, + I myThid ) + +#ifdef ALLOW_OBCS +#ifdef ALLOW_NONHYDROSTATIC +C-- Apply OBC to W if in N-H mode + IF (useOBCS.AND.nonHydrostatic) THEN + CALL OBCS_APPLY_W( bi, bj, k, wVel, myThid ) + ENDIF +#endif /* ALLOW_NONHYDROSTATIC */ +#endif /* ALLOW_OBCS */ + +C-- Calculate gradients of potential density for isoneutral +C slope terms (e.g. GM/Redi tensor or IVDC diffusivity) +c IF ( k.GT.1 .AND. (useGMRedi.OR.ivdc_kappa.NE.0.) ) THEN + IF ( useGMRedi .OR. (k.GT.1 .AND. ivdc_kappa.NE.0.) ) THEN + CALL FIND_RHO( + I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, + I theta, salt, + O rhoK, + I myThid ) + IF (k.GT.1) CALL FIND_RHO( + I bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType, + I theta, salt, + O rhoKm1, + I myThid ) + CALL GRAD_SIGMA( + I bi, bj, iMin, iMax, jMin, jMax, k, + I rhoK, rhoKm1, rhoK, + O sigmaX, sigmaY, sigmaR, + I myThid ) + ENDIF + +C-- Implicit Vertical Diffusion for Convection +c ==> should use sigmaR !!! + IF (k.GT.1 .AND. ivdc_kappa.NE.0.) THEN + CALL CALC_IVDC( + I bi, bj, iMin, iMax, jMin, jMax, k, + I rhoKm1, rhoK, + U ConvectCount, KappaRT, KappaRS, + I myTime, myIter, myThid) + ENDIF + +C-- end of diagnostic k loop (Nr:1) ENDDO - DO K = Nz, 1, -1 - kM1 =max(1,k-1) ! Points to level above k (=k-1) - kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above - kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer - iMin = 1-OLx+2 - iMax = sNx+OLx-1 - jMin = 1-OLy+2 - jMax = sNy+OLy-1 +#ifdef ALLOW_OBCS +C-- Calculate future values on open boundaries + IF (useOBCS) THEN + CALL OBCS_CALC( bi, bj, myTime+deltaT, + I uVel, vVel, wVel, theta, salt, + I myThid ) + ENDIF +#endif /* ALLOW_OBCS */ + +C-- Determines forcing terms based on external fields +C relaxation terms, etc. + CALL EXTERNAL_FORCING_SURF( + I bi, bj, iMin, iMax, jMin, jMax, + I myThid ) + +#ifdef ALLOW_GMREDI +C-- Calculate iso-neutral slopes for the GM/Redi parameterisation + IF (useGMRedi) THEN + DO k=1,Nr + CALL GMREDI_CALC_TENSOR( + I bi, bj, iMin, iMax, jMin, jMax, k, + I sigmaX, sigmaY, sigmaR, + I myThid ) + ENDDO +#ifdef ALLOW_AUTODIFF_TAMC + ELSE + DO k=1, Nr + CALL GMREDI_CALC_TENSOR_DUMMY( + I bi, bj, iMin, iMax, jMin, jMax, k, + I sigmaX, sigmaY, sigmaR, + I myThid ) + ENDDO +#endif /* ALLOW_AUTODIFF_TAMC */ + ENDIF +#endif /* ALLOW_GMREDI */ + +#ifdef ALLOW_KPP +C-- Compute KPP mixing coefficients + IF (useKPP) THEN + CALL KPP_CALC( + I bi, bj, myTime, myThid ) + ENDIF +#endif /* ALLOW_KPP */ + +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE KappaRT(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE KappaRS(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + +#ifdef ALLOW_AIM +C AIM - atmospheric intermediate model, physics package code. +C note(jmc) : phiHyd=0 at this point but is not really used in Molteni Physics + IF ( useAIM ) THEN + CALL TIMER_START('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid) + CALL AIM_DO_ATMOS_PHYSICS( phiHyd, myTime, myThid ) + CALL TIMER_STOP ('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid) + ENDIF +#endif /* ALLOW_AIM */ + + +C-- Start of thermodynamics loop + DO k=Nr,1,-1 + +C-- km1 Points to level above k (=k-1) +C-- kup Cycles through 1,2 to point to layer above +C-- kDown Cycles through 2,1 to point to current layer + + km1 = MAX(1,k-1) + kup = 1+MOD(k+1,2) + kDown= 1+MOD(k,2) + + iMin = 1-OLx+2 + iMax = sNx+OLx-1 + jMin = 1-OLy+2 + jMax = sNy+OLy-1 + +#ifdef ALLOW_AUTODIFF_TAMC +CPatrick Is this formula correct? + kkey = (ikey-1)*(Nr-1+1) + (k-1) + 1 +CADJ STORE rTrans(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte +CADJ STORE KappaRT(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte +CADJ STORE KappaRS(:,:,:) = comlev1_bibj_k, key = kkey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ C-- Get temporary terms used by tendency routines CALL CALC_COMMON_FACTORS ( - I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, - O xA,yA,uTrans,vTrans,wTrans,maskC,maskUp, + I bi,bj,iMin,iMax,jMin,jMax,k,km1,kup,kDown, + O xA,yA,uTrans,vTrans,rTrans,maskC,maskUp, I myThid) -C-- Calculate accelerations in the momentum equations - CALL CALC_MOM_RHS( - I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, - I xA,yA,uTrans,vTrans,wTrans,maskC, - I pH, - U aTerm,xTerm,cTerm,mTerm,pTerm, - U fZon, fMer, fVerU, fVerV, +#ifdef INCLUDE_CALC_DIFFUSIVITY_CALL +C-- Calculate the total vertical diffusivity + CALL CALC_DIFFUSIVITY( + I bi,bj,iMin,iMax,jMin,jMax,k, + I maskC,maskup, + O KappaRT,KappaRS,KappaRU,KappaRV, I myThid) +#endif -C-- Calculate active tracer tendencies - CALL CALC_GT( - I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, - I xA,yA,uTrans,vTrans,wTrans,maskUp, - I K13,K23,K33,KapGM, - U aTerm,xTerm,fZon,fMer,fVerT, - I myThid) -Cdbg CALL CALC_GS( -Cdbg I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, -Cdbg I xA,yA,uTrans,vTrans,wTrans,maskUp, -Cdbg I K13,K23,K33,KapGM, -Cdbg U aTerm,xTerm,fZon,fMer,fVerS, -Cdbg I myThid) +C-- Calculate active tracer tendencies (gT,gS,...) +C and step forward storing result in gTnm1, gSnm1, etc. + IF ( tempStepping ) THEN + CALL CALC_GT( + I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, + I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, + I KappaRT, + U fVerT, + I myTime, myThid) + CALL TIMESTEP_TRACER( + I bi,bj,iMin,iMax,jMin,jMax,k, + I theta, gT, + U gTnm1, + I myIter, myThid) + ENDIF + IF ( saltStepping ) THEN + CALL CALC_GS( + I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, + I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, + I KappaRS, + U fVerS, + I myTime, myThid) + CALL TIMESTEP_TRACER( + I bi,bj,iMin,iMax,jMin,jMax,k, + I salt, gS, + U gSnm1, + I myIter, myThid) + ENDIF + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid ) + END IF +#endif /* ALLOW_OBCS */ + +C-- Freeze water + IF (allowFreezing) THEN +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k +CADJ & , key = kkey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid ) + END IF + +C-- end of thermodynamic k loop (Nr:1) + ENDDO + +#ifdef ALLOW_AUTODIFF_TAMC +CPatrick? What about this one? + maximpl = 6 + iikey = (ikey-1)*maximpl +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Implicit diffusion + IF (implicitDiffusion) THEN + + IF (tempStepping) THEN +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 1 +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTtracer, KappaRT, recip_HFacC, + U gTNm1, + I myThid ) + ENDIF + + IF (saltStepping) THEN +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 2 +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTtracer, KappaRS, recip_HFacC, + U gSNm1, + I myThid ) + ENDIF + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + DO K=1,Nr + CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid ) + ENDDO + END IF +#endif /* ALLOW_OBCS */ + +C-- End If implicitDiffusion + ENDIF + +C-- Start computation of dynamics + iMin = 1-OLx+2 + iMax = sNx+OLx-1 + jMin = 1-OLy+2 + jMax = sNy+OLy-1 + +C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP) +C (note: this loop will be replaced by CALL CALC_GRAD_ETA) + IF (implicSurfPress.NE.1.) THEN + CALL CALC_GRAD_PHI_SURF( + I bi,bj,iMin,iMax,jMin,jMax, + I etaN, + O phiSurfX,phiSurfY, + I myThid ) + ENDIF + +C-- Start of dynamics loop + DO k=1,Nr + +C-- km1 Points to level above k (=k-1) +C-- kup Cycles through 1,2 to point to layer above +C-- kDown Cycles through 2,1 to point to current layer + + km1 = MAX(1,k-1) + kup = 1+MOD(k+1,2) + kDown= 1+MOD(k,2) + +C-- Integrate hydrostatic balance for phiHyd with BC of +C phiHyd(z=0)=0 +C distinguishe between Stagger and Non Stagger time stepping + IF (staggerTimeStep) THEN + CALL CALC_PHI_HYD( + I bi,bj,iMin,iMax,jMin,jMax,k, + I gTnm1, gSnm1, + U phiHyd, + I myThid ) + ELSE + CALL CALC_PHI_HYD( + I bi,bj,iMin,iMax,jMin,jMax,k, + I theta, salt, + U phiHyd, + I myThid ) + ENDIF + +C-- Calculate accelerations in the momentum equations (gU, gV, ...) +C and step forward storing the result in gUnm1, gVnm1, etc... + IF ( momStepping ) THEN + CALL CALC_MOM_RHS( + I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, + I phiHyd,KappaRU,KappaRV, + U fVerU, fVerV, + I myTime, myThid) + CALL TIMESTEP( + I bi,bj,iMin,iMax,jMin,jMax,k, + I phiHyd, phiSurfX, phiSurfY, + I myIter, myThid) + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) + END IF +#endif /* ALLOW_OBCS */ + +#ifdef ALLOW_AUTODIFF_TAMC +#ifdef INCLUDE_CD_CODE + ELSE + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + guCD(i,j,k,bi,bj) = 0.0 + gvCD(i,j,k,bi,bj) = 0.0 + END DO + END DO +#endif /* INCLUDE_CD_CODE */ +#endif /* ALLOW_AUTODIFF_TAMC */ + ENDIF + + +C-- end of dynamics k loop (1:Nr) ENDDO + + + +C-- Implicit viscosity + IF (implicitViscosity.AND.momStepping) THEN +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 3 +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRU,recip_HFacW, + U gUNm1, + I myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 4 +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRV,recip_HFacS, + U gVNm1, + I myThid ) + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + DO K=1,Nr + CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) + ENDDO + END IF +#endif /* ALLOW_OBCS */ + +#ifdef INCLUDE_CD_CODE +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 5 +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRU,recip_HFacW, + U vVelD, + I myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 6 +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRV,recip_HFacS, + U uVelD, + I myThid ) +#endif /* INCLUDE_CD_CODE */ +C-- End If implicitViscosity.AND.momStepping + ENDIF +Cjmc : add for phiHyd output <- but not working if multi tile per CPU +c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime) +c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN +c WRITE(suff,'(I10.10)') myIter+1 +c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid) +c ENDIF +Cjmc(end) + +#ifdef ALLOW_TIMEAVE + IF (taveFreq.GT.0.) THEN + CALL TIMEAVE_CUMULATE(phiHydtave, phiHyd, Nr, + I deltaTclock, bi, bj, myThid) + IF (ivdc_kappa.NE.0.) THEN + CALL TIMEAVE_CUMULATE(ConvectCountTave, ConvectCount, Nr, + I deltaTclock, bi, bj, myThid) + ENDIF + ENDIF +#endif /* ALLOW_TIMEAVE */ + ENDDO ENDDO -!dbg write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x) -!dbg write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)), -!dbg & maxval(uVel(1:sNx,1:sNy,:,:,:)) -!dbg write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)), -!dbg & maxval(vVel(1:sNx,1:sNy,:,:,:)) -!dbg write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)), -!dbg & maxval(gT(1:sNx,1:sNy,:,:,:)) -!dbg write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)), -!dbg & maxval(Theta(1:sNx,1:sNy,:,:,:)) -!dbg write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)), -!dbg & maxval(pH/(Gravity*Rhonil)) - RETURN END