/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by cnh, Wed Apr 22 19:15:30 1998 UTC revision 1.154 by heimbach, Sat Feb 26 00:42:26 2011 UTC
# Line 1  Line 1 
1  C $Id$  C $Header$
2    C $Name$
 #include "CPP_EEOPTIONS.h"  
   
       SUBROUTINE DYNAMICS(myThid)  
 C     /==========================================================\  
 C     | SUBROUTINE DYNAMICS                                      |  
 C     | o Controlling routine for the explicit part of the model |  
 C     |   dynamics.                                              |  
 C     |==========================================================|  
 C     | This routine evaluates the "dynamics" terms for each     |  
 C     | block of ocean in turn. Because the blocks of ocean have |  
 C     | overlap regions they are independent of one another.     |  
 C     | If terms involving lateral integrals are needed in this  |  
 C     | routine care will be needed. Similarly finite-difference |  
 C     | operations with stencils wider than the overlap region   |  
 C     | require special consideration.                           |  
 C     | Notes                                                    |  
 C     | =====                                                    |  
 C     | C*P* comments indicating place holders for which code is |  
 C     |      presently being developed.                          |  
 C     \==========================================================/  
3    
4    #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6    #ifdef ALLOW_OBCS
7    # include "OBCS_OPTIONS.h"
8    #endif
9    
10    #undef DYNAMICS_GUGV_EXCH_CHECK
11    
12    CBOP
13    C     !ROUTINE: DYNAMICS
14    C     !INTERFACE:
15          SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16    C     !DESCRIPTION: \bv
17    C     *==========================================================*
18    C     | SUBROUTINE DYNAMICS
19    C     | o Controlling routine for the explicit part of the model
20    C     |   dynamics.
21    C     *==========================================================*
22    C     | This routine evaluates the "dynamics" terms for each
23    C     | block of ocean in turn. Because the blocks of ocean have
24    C     | overlap regions they are independent of one another.
25    C     | If terms involving lateral integrals are needed in this
26    C     | routine care will be needed. Similarly finite-difference
27    C     | operations with stencils wider than the overlap region
28    C     | require special consideration.
29    C     | The algorithm...
30    C     |
31    C     | "Correction Step"
32    C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76          IMPLICIT NONE
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
80  #include "CG2D.h"  #include "PARAMS.h"
81    #include "DYNVARS.h"
82    #ifdef ALLOW_CD_CODE
83    #include "CD_CODE_VARS.h"
84    #endif
85    #include "GRID.h"
86    #ifdef ALLOW_AUTODIFF_TAMC
87    # include "tamc.h"
88    # include "tamc_keys.h"
89    # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS_FIELDS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #  include "OBCS.h"
100    #  ifdef ALLOW_PTRACERS
101    #   include "OBCS_PTRACERS.h"
102    #  endif
103    # endif
104    # ifdef ALLOW_MOM_FLUXFORM
105    #  include "MOM_FLUXFORM.h"
106    # endif
107    #endif /* ALLOW_AUTODIFF_TAMC */
108    
109    C     !CALLING SEQUENCE:
110    C     DYNAMICS()
111    C      |
112    C      |-- CALC_EP_FORCING
113    C      |
114    C      |-- CALC_GRAD_PHI_SURF
115    C      |
116    C      |-- CALC_VISCOSITY
117    C      |
118    C      |-- CALC_PHI_HYD
119    C      |
120    C      |-- MOM_FLUXFORM
121    C      |
122    C      |-- MOM_VECINV
123    C      |
124    C      |-- TIMESTEP
125    C      |
126    C      |-- OBCS_APPLY_UV
127    C      |
128    C      |-- MOM_U_IMPLICIT_R
129    C      |-- MOM_V_IMPLICIT_R
130    C      |
131    C      |-- IMPLDIFF
132    C      |
133    C      |-- OBCS_APPLY_UV
134    C      |
135    C      |-- CALC_GW
136    C      |
137    C      |-- DIAGNOSTICS_FILL
138    C      |-- DEBUG_STATS_RL
139    
140    C     !INPUT/OUTPUT PARAMETERS:
141  C     == Routine arguments ==  C     == Routine arguments ==
142  C     myThid - Thread number for this instance of the routine.  C     myTime :: Current time in simulation
143    C     myIter :: Current iteration number in simulation
144    C     myThid :: Thread number for this instance of the routine.
145          _RL myTime
146          INTEGER myIter
147        INTEGER myThid        INTEGER myThid
148    
149    C     !FUNCTIONS:
150    #ifdef ALLOW_DIAGNOSTICS
151          LOGICAL  DIAGNOSTICS_IS_ON
152          EXTERNAL DIAGNOSTICS_IS_ON
153    #endif
154    
155    C     !LOCAL VARIABLES:
156  C     == Local variables  C     == Local variables
157  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
158  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
159  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
160  C                              o vTrans: Meridional transport  C                                    variable.
161  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
162  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
163  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
164  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
165  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
166  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
167  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
168  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
169  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
170  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
171  C                              o fZon: Zonal flux term  C     KappaRU    :: vertical viscosity
172  C                              o fMer: Meridional flux term  C     KappaRV    :: vertical viscosity
173  C                              o fVer: Vertical flux term - note fVer  C     iMin, iMax     - Ranges and sub-block indices on which calculations
174  C                                      is "pipelined" in the vertical  C     jMin, jMax       are applied.
 C                                      so we need an fVer for each  
 C                                      variable.  
 C     iMin, iMax - Ranges and sub-block indices on which calculations  
 C     jMin, jMax   are applied.  
175  C     bi, bj  C     bi, bj
176  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
177  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
178  C                          into fVerTerm  C                      index into fVerTerm.
179        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
180        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
181        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
184        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
185        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
188        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
189        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
190        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
191        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
192        INTEGER iMin, iMax        INTEGER iMin, iMax
193        INTEGER jMin, jMax        INTEGER jMin, jMax
194        INTEGER bi, bj        INTEGER bi, bj
195        INTEGER i, j        INTEGER i, j
196        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
197    
198    #ifdef ALLOW_DIAGNOSTICS
199          LOGICAL dPhiHydDiagIsOn
200          _RL tmpFac
201    #endif /* ALLOW_DIAGNOSTICS */
202    
203    
204    C---    The algorithm...
205    C
206    C       "Correction Step"
207    C       =================
208    C       Here we update the horizontal velocities with the surface
209    C       pressure such that the resulting flow is either consistent
210    C       with the free-surface evolution or the rigid-lid:
211    C         U[n] = U* + dt x d/dx P
212    C         V[n] = V* + dt x d/dy P
213    C
214    C       "Calculation of Gs"
215    C       ===================
216    C       This is where all the accelerations and tendencies (ie.
217    C       physics, parameterizations etc...) are calculated
218    C         rho = rho ( theta[n], salt[n] )
219    C         b   = b(rho, theta)
220    C         K31 = K31 ( rho )
221    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
222    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
223    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
224    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
225    C
226    C       "Time-stepping" or "Prediction"
227    C       ================================
228    C       The models variables are stepped forward with the appropriate
229    C       time-stepping scheme (currently we use Adams-Bashforth II)
230    C       - For momentum, the result is always *only* a "prediction"
231    C       in that the flow may be divergent and will be "corrected"
232    C       later with a surface pressure gradient.
233    C       - Normally for tracers the result is the new field at time
234    C       level [n+1} *BUT* in the case of implicit diffusion the result
235    C       is also *only* a prediction.
236    C       - We denote "predictors" with an asterisk (*).
237    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
238    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
239    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
240    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
241    C       With implicit diffusion:
242    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
243    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
244    C         (1 + dt * K * d_zz) theta[n] = theta*
245    C         (1 + dt * K * d_zz) salt[n] = salt*
246    C---
247    CEOP
248    
249    #ifdef ALLOW_DEBUG
250          IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
251    #endif
252    
253    #ifdef ALLOW_DIAGNOSTICS
254          dPhiHydDiagIsOn = .FALSE.
255          IF ( useDiagnostics )
256         &  dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
257         &               .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
258    #endif
259    
260    C-- Call to routine for calculation of
261    C   Eliassen-Palm-flux-forced U-tendency,
262    C   if desired:
263    #ifdef INCLUDE_EP_FORCING_CODE
264          CALL CALC_EP_FORCING(myThid)
265    #endif
266    
267    #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
268          CALL DUMMY_IN_DYNAMICS( mytime, myiter, myThid )
269    #endif
270    
271    #ifdef ALLOW_AUTODIFF_TAMC
272    C--   HPF directive to help TAMC
273    CHPF$ INDEPENDENT
274    #endif /* ALLOW_AUTODIFF_TAMC */
275    
276          DO bj=myByLo(myThid),myByHi(myThid)
277    
278    #ifdef ALLOW_AUTODIFF_TAMC
279    C--    HPF directive to help TAMC
280    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
281    CHPF$&                  ,phiHydF
282    CHPF$&                  ,KappaRU,KappaRV
283    CHPF$&                  )
284    #endif /* ALLOW_AUTODIFF_TAMC */
285    
286           DO bi=myBxLo(myThid),myBxHi(myThid)
287    
288    #ifdef ALLOW_AUTODIFF_TAMC
289              act1 = bi - myBxLo(myThid)
290              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
291              act2 = bj - myByLo(myThid)
292              max2 = myByHi(myThid) - myByLo(myThid) + 1
293              act3 = myThid - 1
294              max3 = nTx*nTy
295              act4 = ikey_dynamics - 1
296              idynkey = (act1 + 1) + act2*max1
297         &                      + act3*max1*max2
298         &                      + act4*max1*max2*max3
299    #endif /* ALLOW_AUTODIFF_TAMC */
300    
301  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
302  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
303  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
304  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
305  C     uninitialised but inert locations.  C     uninitialised but inert locations.
306        DO j=1-OLy,sNy+OLy  
307         DO i=1-OLx,sNx+OLx  #ifdef ALLOW_AUTODIFF_TAMC
308          xA(i,j)      = 0.*1. _d 37          DO k=1,Nr
309          yA(i,j)      = 0.*1. _d 37           DO j=1-OLy,sNy+OLy
310          uTrans(i,j)  = 0.*1. _d 37            DO i=1-OLx,sNx+OLx
311          vTrans(i,j)  = 0.*1. _d 37             KappaRU(i,j,k) = 0. _d 0
312          aTerm(i,j)   = 0.*1. _d 37             KappaRV(i,j,k) = 0. _d 0
313          xTerm(i,j)   = 0.*1. _d 37  cph(
314          cTerm(i,j)   = 0.*1. _d 37  c--   need some re-initialisation here to break dependencies
315          mTerm(i,j)   = 0.*1. _d 37  cph)
316          pTerm(i,j)   = 0.*1. _d 37             gU(i,j,k,bi,bj) = 0. _d 0
317          fZon(i,j)    = 0.*1. _d 37             gV(i,j,k,bi,bj) = 0. _d 0
318          fMer(i,j)    = 0.*1. _d 37            ENDDO
319          DO K=1,nZ           ENDDO
320           pH (i,j,k)  = 0.*1. _d 37          ENDDO
321    #endif /* ALLOW_AUTODIFF_TAMC */
322            DO j=1-OLy,sNy+OLy
323             DO i=1-OLx,sNx+OLx
324              fVerU  (i,j,1) = 0. _d 0
325              fVerU  (i,j,2) = 0. _d 0
326              fVerV  (i,j,1) = 0. _d 0
327              fVerV  (i,j,2) = 0. _d 0
328              phiHydF (i,j)  = 0. _d 0
329              phiHydC (i,j)  = 0. _d 0
330    #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
331              dPhiHydX(i,j)  = 0. _d 0
332              dPhiHydY(i,j)  = 0. _d 0
333    #endif
334              phiSurfX(i,j)  = 0. _d 0
335              phiSurfY(i,j)  = 0. _d 0
336              guDissip(i,j)  = 0. _d 0
337              gvDissip(i,j)  = 0. _d 0
338    #ifdef ALLOW_AUTODIFF_TAMC
339              phiHydLow(i,j,bi,bj) = 0. _d 0
340    # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
341    #  ifndef DISABLE_RSTAR_CODE
342              dWtransC(i,j,bi,bj) = 0. _d 0
343              dWtransU(i,j,bi,bj) = 0. _d 0
344              dWtransV(i,j,bi,bj) = 0. _d 0
345    #  endif
346    # endif
347    #endif
348             ENDDO
349          ENDDO          ENDDO
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
        ENDDO  
       ENDDO  
350    
351        DO bj=myByLo(myThid),myByHi(myThid)  C--     Start computation of dynamics
352         DO bi=myBxLo(myThid),myBxHi(myThid)          iMin = 0
353            iMax = sNx+1
354            jMin = 0
355            jMax = sNy+1
356    
357    #ifdef ALLOW_AUTODIFF_TAMC
358    CADJ STORE wvel (:,:,:,bi,bj) =
359    CADJ &     comlev1_bibj, key=idynkey, byte=isbyte
360    #endif /* ALLOW_AUTODIFF_TAMC */
361    
362    C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
363    C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
364            IF (implicSurfPress.NE.1.) THEN
365              CALL CALC_GRAD_PHI_SURF(
366         I         bi,bj,iMin,iMax,jMin,jMax,
367         I         etaN,
368         O         phiSurfX,phiSurfY,
369         I         myThid )
370            ENDIF
371    
372    #ifdef ALLOW_AUTODIFF_TAMC
373    CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
374    CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
375    #ifdef ALLOW_KPP
376    CADJ STORE KPPviscAz (:,:,:,bi,bj)
377    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
378    #endif /* ALLOW_KPP */
379    #endif /* ALLOW_AUTODIFF_TAMC */
380    
381    #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
382    C--     Calculate the total vertical viscosity
383            CALL CALC_VISCOSITY(
384         I            bi,bj, iMin,iMax,jMin,jMax,
385         O            KappaRU, KappaRV,
386         I            myThid )
387    #else
388            DO k=1,Nr
389             DO j=1-OLy,sNy+OLy
390              DO i=1-OLx,sNx+OLx
391               KappaRU(i,j,k) = 0. _d 0
392               KappaRV(i,j,k) = 0. _d 0
393              ENDDO
394             ENDDO
395            ENDDO
396    #endif
397    
398    #ifdef ALLOW_AUTODIFF_TAMC
399    CADJ STORE KappaRU(:,:,:)
400    CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
401    CADJ STORE KappaRV(:,:,:)
402    CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
403    #endif /* ALLOW_AUTODIFF_TAMC */
404    
405    C--     Start of dynamics loop
406            DO k=1,Nr
407    
408    C--       km1    Points to level above k (=k-1)
409    C--       kup    Cycles through 1,2 to point to layer above
410    C--       kDown  Cycles through 2,1 to point to current layer
411    
412              km1  = MAX(1,k-1)
413              kp1  = MIN(k+1,Nr)
414              kup  = 1+MOD(k+1,2)
415              kDown= 1+MOD(k,2)
416    
417    #ifdef ALLOW_AUTODIFF_TAMC
418             kkey = (idynkey-1)*Nr + k
419    c
420    CADJ STORE totphihyd (:,:,k,bi,bj)
421    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
422    CADJ STORE phihydlow (:,:,bi,bj)
423    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
424    CADJ STORE theta (:,:,k,bi,bj)
425    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
426    CADJ STORE salt  (:,:,k,bi,bj)
427    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
428    CADJ STORE gt(:,:,k,bi,bj)
429    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
430    CADJ STORE gs(:,:,k,bi,bj)
431    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
432    # ifdef NONLIN_FRSURF
433    cph-test
434    CADJ STORE  phiHydC (:,:)
435    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
436    CADJ STORE  phiHydF (:,:)
437    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
438    CADJ STORE  gudissip (:,:)
439    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
440    CADJ STORE  gvdissip (:,:)
441    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
442    CADJ STORE  fVerU (:,:,:)
443    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
444    CADJ STORE  fVerV (:,:,:)
445    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
446    CADJ STORE gu(:,:,k,bi,bj)
447    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
448    CADJ STORE gv(:,:,k,bi,bj)
449    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
450    #  ifndef ALLOW_ADAMSBASHFORTH_3
451    CADJ STORE gunm1(:,:,k,bi,bj)
452    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
453    CADJ STORE gvnm1(:,:,k,bi,bj)
454    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
455    #  else
456    CADJ STORE gunm(:,:,k,bi,bj,1)
457    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
458    CADJ STORE gunm(:,:,k,bi,bj,2)
459    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
460    CADJ STORE gvnm(:,:,k,bi,bj,1)
461    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
462    CADJ STORE gvnm(:,:,k,bi,bj,2)
463    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
464    #  endif
465    #  ifdef ALLOW_CD_CODE
466    CADJ STORE unm1(:,:,k,bi,bj)
467    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
468    CADJ STORE vnm1(:,:,k,bi,bj)
469    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
470    CADJ STORE uVelD(:,:,k,bi,bj)
471    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
472    CADJ STORE vVelD(:,:,k,bi,bj)
473    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
474    #  endif
475    # endif
476    # ifdef ALLOW_DEPTH_CONTROL
477    CADJ STORE  fVerU (:,:,:)
478    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
479    CADJ STORE  fVerV (:,:,:)
480    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
481    # endif
482    #endif /* ALLOW_AUTODIFF_TAMC */
483    
484    C--      Integrate hydrostatic balance for phiHyd with BC of
485    C        phiHyd(z=0)=0
486             IF ( implicitIntGravWave ) THEN
487               CALL CALC_PHI_HYD(
488         I        bi,bj,iMin,iMax,jMin,jMax,k,
489         I        gT, gS,
490         U        phiHydF,
491         O        phiHydC, dPhiHydX, dPhiHydY,
492         I        myTime, myIter, myThid )
493             ELSE
494               CALL CALC_PHI_HYD(
495         I        bi,bj,iMin,iMax,jMin,jMax,k,
496         I        theta, salt,
497         U        phiHydF,
498         O        phiHydC, dPhiHydX, dPhiHydY,
499         I        myTime, myIter, myThid )
500             ENDIF
501    #ifdef ALLOW_DIAGNOSTICS
502             IF ( dPhiHydDiagIsOn ) THEN
503               tmpFac = -1. _d 0
504               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
505         &                           'Um_dPHdx', k, 1, 2, bi, bj, myThid )
506               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
507         &                           'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
508             ENDIF
509    #endif /* ALLOW_DIAGNOSTICS */
510    
511    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
512    C        and step forward storing the result in gU, gV, etc...
513             IF ( momStepping ) THEN
514    #ifdef ALLOW_AUTODIFF_TAMC
515    # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
516    #  ifndef DISABLE_RSTAR_CODE
517    CADJ STORE dWtransC(:,:,bi,bj)
518    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
519    CADJ STORE dWtransU(:,:,bi,bj)
520    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
521    CADJ STORE dWtransV(:,:,bi,bj)
522    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
523    #  endif
524    # endif
525    #endif
526               IF (.NOT. vectorInvariantMomentum) THEN
527    #ifdef ALLOW_MOM_FLUXFORM
528    C
529                  CALL MOM_FLUXFORM(
530         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
531         I         KappaRU, KappaRV,
532         U         fVerU, fVerV,
533         O         guDissip, gvDissip,
534         I         myTime, myIter, myThid)
535    #endif
536               ELSE
537    #ifdef ALLOW_MOM_VECINV
538    C
539    # ifdef ALLOW_AUTODIFF_TAMC
540    #  ifdef NONLIN_FRSURF
541    CADJ STORE fVerU(:,:,:)
542    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
543    CADJ STORE fVerV(:,:,:)
544    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
545    #  endif
546    # endif /* ALLOW_AUTODIFF_TAMC */
547    C
548                 CALL MOM_VECINV(
549         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
550         I         KappaRU, KappaRV,
551         U         fVerU, fVerV,
552         O         guDissip, gvDissip,
553         I         myTime, myIter, myThid)
554    #endif
555               ENDIF
556    C
557               CALL TIMESTEP(
558         I         bi,bj,iMin,iMax,jMin,jMax,k,
559         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
560         I         guDissip, gvDissip,
561         I         myTime, myIter, myThid)
562    
563    #ifdef   ALLOW_OBCS
564    C--      Apply open boundary conditions
565    c          IF (useOBCS) THEN
566    c            CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
567    c          ENDIF
568    #endif   /* ALLOW_OBCS */
569    
570          iMin = 1-OLx+1           ENDIF
         iMax = sNx+OLx  
         jMin = 1-OLy+1  
         jMax = sNy+OLy  
   
 C--     Update fields according to tendency terms  
         CALL TIMESTEP(  
      I       bi,bj,iMin,iMax,jMin,jMax,myThid)  
   
 C--     Calculate rho with the appropriate equation of state  
         CALL FIND_RHO(  
      I       bi,bj,iMin,iMax,jMin,jMax,myThid)  
   
 C--     Calculate static stability and mix where convectively unstable  
         CALL CONVECT(  
      I       bi,bj,iMin,iMax,jMin,jMax,myThid)  
   
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I       bi,bj,iMin,iMax,jMin,jMax,  
      O       pH,  
      I       myThid )  
   
         DO K = Nz, 1, -1  
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
      I        myThid)  
   
 C--      Calculate accelerations in the momentum equations  
          CALL CALC_MOM_RHS(  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskC,  
      I        pH,  
      U        aTerm,xTerm,cTerm,mTerm,pTerm,  
      U        fZon, fMer, fVerU, fVerV,  
      I        myThid)  
   
 C--      Calculate active tracer tendencies  
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
571    
572    C--     end of dynamics k loop (1:Nr)
573          ENDDO          ENDDO
574    
575    C--     Implicit Vertical advection & viscosity
576    #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
577         defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
578            IF ( momImplVertAdv ) THEN
579              CALL MOM_U_IMPLICIT_R( kappaRU,
580         I                           bi, bj, myTime, myIter, myThid )
581              CALL MOM_V_IMPLICIT_R( kappaRV,
582         I                           bi, bj, myTime, myIter, myThid )
583            ELSEIF ( implicitViscosity ) THEN
584    #else /* INCLUDE_IMPLVERTADV_CODE */
585            IF     ( implicitViscosity ) THEN
586    #endif /* INCLUDE_IMPLVERTADV_CODE */
587    #ifdef    ALLOW_AUTODIFF_TAMC
588    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
589    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
590    #endif    /* ALLOW_AUTODIFF_TAMC */
591              CALL IMPLDIFF(
592         I         bi, bj, iMin, iMax, jMin, jMax,
593         I         -1, KappaRU,recip_HFacW,
594         U         gU,
595         I         myThid )
596    #ifdef    ALLOW_AUTODIFF_TAMC
597    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
598    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
599    #endif    /* ALLOW_AUTODIFF_TAMC */
600              CALL IMPLDIFF(
601         I         bi, bj, iMin, iMax, jMin, jMax,
602         I         -2, KappaRV,recip_HFacS,
603         U         gV,
604         I         myThid )
605            ENDIF
606    
607    #ifdef   ALLOW_OBCS
608    C--      Apply open boundary conditions
609    c       IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
610    c          DO K=1,Nr
611    c            CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
612    c          ENDDO
613            IF ( useOBCS ) THEN
614              CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
615            ENDIF
616    #endif   /* ALLOW_OBCS */
617    
618    #ifdef    ALLOW_CD_CODE
619            IF (implicitViscosity.AND.useCDscheme) THEN
620    #ifdef    ALLOW_AUTODIFF_TAMC
621    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
622    #endif    /* ALLOW_AUTODIFF_TAMC */
623              CALL IMPLDIFF(
624         I         bi, bj, iMin, iMax, jMin, jMax,
625         I         0, KappaRU,recip_HFacW,
626         U         vVelD,
627         I         myThid )
628    #ifdef    ALLOW_AUTODIFF_TAMC
629    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
630    #endif    /* ALLOW_AUTODIFF_TAMC */
631              CALL IMPLDIFF(
632         I         bi, bj, iMin, iMax, jMin, jMax,
633         I         0, KappaRV,recip_HFacS,
634         U         uVelD,
635         I         myThid )
636            ENDIF
637    #endif    /* ALLOW_CD_CODE */
638    C--     End implicit Vertical advection & viscosity
639    
640    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
641    
642    #ifdef ALLOW_NONHYDROSTATIC
643    C--   Step forward W field in N-H algorithm
644            IF ( nonHydrostatic ) THEN
645    #ifdef ALLOW_DEBUG
646             IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
647    #endif
648             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
649             CALL CALC_GW(
650         I                 bi,bj, KappaRU, KappaRV,
651         I                 myTime, myIter, myThid )
652            ENDIF
653            IF ( nonHydrostatic.OR.implicitIntGravWave )
654         &   CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
655            IF ( nonHydrostatic )
656         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
657    #endif
658    
659    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
660    
661    C-    end of bi,bj loops
662         ENDDO         ENDDO
663        ENDDO        ENDDO
664    
665    #ifdef ALLOW_OBCS
666          IF (useOBCS) THEN
667           CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
668          ENDIF
669    #endif
670    
671    Cml(
672    C     In order to compare the variance of phiHydLow of a p/z-coordinate
673    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
674    C     has to be removed by something like the following subroutine:
675    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
676    C     &                     'phiHydLow', myTime, myThid )
677    Cml)
678    
679    #ifdef ALLOW_DIAGNOSTICS
680          IF ( useDiagnostics ) THEN
681    
682           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
683           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
684    
685           tmpFac = 1. _d 0
686           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
687         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
688    
689           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
690         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
691    
692          ENDIF
693    #endif /* ALLOW_DIAGNOSTICS */
694    
695    #ifdef ALLOW_DEBUG
696          IF ( debugLevel .GE. debLevB ) THEN
697           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
698           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
699           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
700           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
701           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
702           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
703           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
704           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
705           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
706           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
707    #ifndef ALLOW_ADAMSBASHFORTH_3
708           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
709           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
710           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
711           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
712    #endif
713          ENDIF
714    #endif
715    
716    #ifdef DYNAMICS_GUGV_EXCH_CHECK
717    C- jmc: For safety checking only: This Exchange here should not change
718    C       the solution. If solution changes, it means something is wrong,
719    C       but it does not mean that it is less wrong with this exchange.
720          IF ( debugLevel .GT. debLevB ) THEN
721           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
722          ENDIF
723    #endif
724    
725    #ifdef ALLOW_DEBUG
726          IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
727    #endif
728    
729        RETURN        RETURN
730        END        END

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.154

  ViewVC Help
Powered by ViewVC 1.1.22