/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.10 by adcroft, Thu May 28 16:19:50 1998 UTC revision 1.11 by adcroft, Mon Jun 1 20:36:13 1998 UTC
# Line 97  C                          into fVerTerm Line 97  C                          into fVerTerm
97        INTEGER i, j        INTEGER i, j
98        INTEGER k, kM1, kUp, kDown        INTEGER k, kM1, kUp, kDown
99    
100    C---    The algorithm...
101    C
102    C       "Correction Step"
103    C       =================
104    C       Here we update the horizontal velocities with the surface
105    C       pressure such that the resulting flow is either consistent
106    C       with the free-surface evolution or the rigid-lid:
107    C         U[n] = U* + dt x d/dx P
108    C         V[n] = V* + dt x d/dy P
109    C       With implicit diffusion, the tracers must also be "finalized"
110    C         (1 + dt * K * d_zz) theta[n] = theta*
111    C         (1 + dt * K * d_zz) salt[n] = salt*
112    C
113    C       "Calculation of Gs"
114    C       ===================
115    C       This is where all the accelerations and tendencies (ie.
116    C       physics, parameterizations etc...) are calculated
117    C         w = sum_z ( div. u[n] )
118    C         rho = rho ( theta[n], salt[n] )
119    C         K31 = K31 ( rho )
120    C         Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )
121    C         Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )
122    C         Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )
123    C         Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )
124    C
125    C       "Time-stepping" or "Predicition"
126    C       ================================
127    C       The models variables are stepped forward with the appropriate
128    C       time-stepping scheme (currently we use Adams-Bashforth II)
129    C       - For momentum, the result is always *only* a "prediction"
130    C       in that the flow may be divergent and will be "corrected"
131    C       later with a surface pressure gradient.
132    C       - Normally for tracers the result is the new field at time
133    C       level [n+1} *BUT* in the case of implicit diffusion the result
134    C       is also *only* a prediction.
135    C       - We denote "predictors" with an asterisk (*).
136    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
137    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
138    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
139    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
140    C       or with implicit diffusion
141    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
142    C
143    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
144    C---
145    
146    
147  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
148  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
149  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
# Line 130  C     uninitialised but inert locations. Line 177  C     uninitialised but inert locations.
177        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
178         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
179    
 C--     Boundary condition on hydrostatic pressure is pH(z=0)=0  
         DO j=1-OLy,sNy+OLy  
          DO i=1-OLx,sNx+OLx  
           pH(i,j,1) = 0. _d 0  
           K13(i,j,1) = 0. _d 0  
           K23(i,j,1) = 0. _d 0  
           K33(i,j,1) = 0. _d 0  
           KapGM(i,j) = 0. _d 0  
          ENDDO  
         ENDDO  
   
180  C--     Set up work arrays that need valid initial values  C--     Set up work arrays that need valid initial values
181          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
182           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
# Line 153  C--     Set up work arrays that need val Line 189  C--     Set up work arrays that need val
189            fVerU(i,j,2) = 0. _d 0            fVerU(i,j,2) = 0. _d 0
190            fVerV(i,j,1) = 0. _d 0            fVerV(i,j,1) = 0. _d 0
191            fVerV(i,j,2) = 0. _d 0            fVerV(i,j,2) = 0. _d 0
192              pH(i,j,1) = 0. _d 0
193              K13(i,j,1) = 0. _d 0
194              K23(i,j,1) = 0. _d 0
195              K33(i,j,1) = 0. _d 0
196              KapGM(i,j) = 0. _d 0
197           ENDDO           ENDDO
198          ENDDO          ENDDO
199    
# Line 168  C--     Calculate gradient of surface pr Line 209  C--     Calculate gradient of surface pr
209       I       myThid)       I       myThid)
210    
211  C--     Update fields in top level according to tendency terms  C--     Update fields in top level according to tendency terms
212          CALL TIMESTEP(          CALL CORRECTION_STEP(
213       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)
214    
215  C--     Density of 1st level (below W(1)) reference to level 1  C--     Density of 1st level (below W(1)) reference to level 1
# Line 189  C--     Integrate hydrostatic balance fo Line 230  C--     Integrate hydrostatic balance fo
230    
231          DO K=2,Nz          DO K=2,Nz
232  C--     Update fields in Kth level according to tendency terms  C--     Update fields in Kth level according to tendency terms
233          CALL TIMESTEP(          CALL CORRECTION_STEP(
234       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)
235  C--     Density of K-1 level (above W(K)) reference to K-1 level  C--     Density of K-1 level (above W(K)) reference to K-1 level
236  copt    CALL FIND_RHO(  copt    CALL FIND_RHO(
# Line 238  C--     Integrate hydrostatic balance fo Line 279  C--     Integrate hydrostatic balance fo
279       U      pH,       U      pH,
280       I      myThid )       I      myThid )
281    
282            ENDDO ! K
283    
284    C--     Initial boundary condition on barotropic divergence integral
285            DO j=1-OLy,sNy+OLy
286             DO i=1-OLx,sNx+OLx
287              cg2d_b(i,j,bi,bj) = 0. _d 0
288             ENDDO
289          ENDDO          ENDDO
290    
291          DO K = Nz, 1, -1          DO K = Nz, 1, -1
# Line 282  Cdbg I        K13,K23,K33,KapGM, Line 330  Cdbg I        K13,K23,K33,KapGM,
330  Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,
331  Cdbg I        myThid)  Cdbg I        myThid)
332    
333          ENDDO  C--      Prediction step (step forward all model variables)
334             CALL TIMESTEP(
335         I       bi,bj,iMin,iMax,jMin,jMax,K,
336         I       myThid)
337    
338    C--      Diagnose barotropic divergence of predicted fields
339             CALL DIV_G(
340         I       bi,bj,iMin,iMax,jMin,jMax,K,
341         I       xA,yA,
342         I       myThid)
343    
344            ENDDO ! K
345    
346         ENDDO         ENDDO
347        ENDDO        ENDDO

Legend:
Removed from v.1.10  
changed lines
  Added in v.1.11

  ViewVC Help
Powered by ViewVC 1.1.22