/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.162 - (show annotations) (download)
Sun Mar 18 22:19:45 2012 UTC (12 years, 2 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint64, checkpoint63p, checkpoint63q, checkpoint63r, checkpoint63s, checkpoint63l, checkpoint63m, checkpoint63n, checkpoint63o
Changes since 1.161: +23 -27 lines
separate fVer?(:,:,kUp) & fVer?(:,:,kDown) in argument list of MOM_FLUXFORM
 & MOM_VECINV subroutines (to help TAF).

1 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.161 2012/03/05 18:21:12 jmc Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6 #ifdef ALLOW_OBCS
7 # include "OBCS_OPTIONS.h"
8 #endif
9
10 #undef DYNAMICS_GUGV_EXCH_CHECK
11
12 CBOP
13 C !ROUTINE: DYNAMICS
14 C !INTERFACE:
15 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16 C !DESCRIPTION: \bv
17 C *==========================================================*
18 C | SUBROUTINE DYNAMICS
19 C | o Controlling routine for the explicit part of the model
20 C | dynamics.
21 C *==========================================================*
22 C | This routine evaluates the "dynamics" terms for each
23 C | block of ocean in turn. Because the blocks of ocean have
24 C | overlap regions they are independent of one another.
25 C | If terms involving lateral integrals are needed in this
26 C | routine care will be needed. Similarly finite-difference
27 C | operations with stencils wider than the overlap region
28 C | require special consideration.
29 C | The algorithm...
30 C |
31 C | "Correction Step"
32 C | =================
33 C | Here we update the horizontal velocities with the surface
34 C | pressure such that the resulting flow is either consistent
35 C | with the free-surface evolution or the rigid-lid:
36 C | U[n] = U* + dt x d/dx P
37 C | V[n] = V* + dt x d/dy P
38 C | W[n] = W* + dt x d/dz P (NH mode)
39 C |
40 C | "Calculation of Gs"
41 C | ===================
42 C | This is where all the accelerations and tendencies (ie.
43 C | physics, parameterizations etc...) are calculated
44 C | rho = rho ( theta[n], salt[n] )
45 C | b = b(rho, theta)
46 C | K31 = K31 ( rho )
47 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51 C |
52 C | "Time-stepping" or "Prediction"
53 C | ================================
54 C | The models variables are stepped forward with the appropriate
55 C | time-stepping scheme (currently we use Adams-Bashforth II)
56 C | - For momentum, the result is always *only* a "prediction"
57 C | in that the flow may be divergent and will be "corrected"
58 C | later with a surface pressure gradient.
59 C | - Normally for tracers the result is the new field at time
60 C | level [n+1} *BUT* in the case of implicit diffusion the result
61 C | is also *only* a prediction.
62 C | - We denote "predictors" with an asterisk (*).
63 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67 C | With implicit diffusion:
68 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70 C | (1 + dt * K * d_zz) theta[n] = theta*
71 C | (1 + dt * K * d_zz) salt[n] = salt*
72 C |
73 C *==========================================================*
74 C \ev
75 C !USES:
76 IMPLICIT NONE
77 C == Global variables ===
78 #include "SIZE.h"
79 #include "EEPARAMS.h"
80 #include "PARAMS.h"
81 #include "DYNVARS.h"
82 #ifdef ALLOW_CD_CODE
83 #include "CD_CODE_VARS.h"
84 #endif
85 #include "GRID.h"
86 #ifdef ALLOW_AUTODIFF_TAMC
87 # include "tamc.h"
88 # include "tamc_keys.h"
89 # include "FFIELDS.h"
90 # include "EOS.h"
91 # ifdef ALLOW_KPP
92 # include "KPP.h"
93 # endif
94 # ifdef ALLOW_PTRACERS
95 # include "PTRACERS_SIZE.h"
96 # include "PTRACERS_FIELDS.h"
97 # endif
98 # ifdef ALLOW_OBCS
99 # include "OBCS_FIELDS.h"
100 # ifdef ALLOW_PTRACERS
101 # include "OBCS_PTRACERS.h"
102 # endif
103 # endif
104 # ifdef ALLOW_MOM_FLUXFORM
105 # include "MOM_FLUXFORM.h"
106 # endif
107 #endif /* ALLOW_AUTODIFF_TAMC */
108
109 C !CALLING SEQUENCE:
110 C DYNAMICS()
111 C |
112 C |-- CALC_EP_FORCING
113 C |
114 C |-- CALC_GRAD_PHI_SURF
115 C |
116 C |-- CALC_VISCOSITY
117 C |
118 C |-- CALC_PHI_HYD
119 C |
120 C |-- MOM_FLUXFORM
121 C |
122 C |-- MOM_VECINV
123 C |
124 C |-- TIMESTEP
125 C |
126 C |-- MOM_U_IMPLICIT_R
127 C |-- MOM_V_IMPLICIT_R
128 C |
129 C |-- IMPLDIFF
130 C |
131 C |-- OBCS_APPLY_UV
132 C |
133 C |-- CALC_GW
134 C |
135 C |-- DIAGNOSTICS_FILL
136 C |-- DEBUG_STATS_RL
137
138 C !INPUT/OUTPUT PARAMETERS:
139 C == Routine arguments ==
140 C myTime :: Current time in simulation
141 C myIter :: Current iteration number in simulation
142 C myThid :: Thread number for this instance of the routine.
143 _RL myTime
144 INTEGER myIter
145 INTEGER myThid
146
147 C !FUNCTIONS:
148 #ifdef ALLOW_DIAGNOSTICS
149 LOGICAL DIAGNOSTICS_IS_ON
150 EXTERNAL DIAGNOSTICS_IS_ON
151 #endif
152
153 C !LOCAL VARIABLES:
154 C == Local variables
155 C fVer[UV] o fVer: Vertical flux term - note fVer
156 C is "pipelined" in the vertical
157 C so we need an fVer for each
158 C variable.
159 C phiHydC :: hydrostatic potential anomaly at cell center
160 C In z coords phiHyd is the hydrostatic potential
161 C (=pressure/rho0) anomaly
162 C In p coords phiHyd is the geopotential height anomaly.
163 C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
164 C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
165 C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
166 C phiSurfY or geopotential (atmos) in X and Y direction
167 C guDissip :: dissipation tendency (all explicit terms), u component
168 C gvDissip :: dissipation tendency (all explicit terms), v component
169 C KappaRU :: vertical viscosity
170 C KappaRV :: vertical viscosity
171 C iMin, iMax :: Ranges and sub-block indices on which calculations
172 C jMin, jMax are applied.
173 C bi, bj :: tile indices
174 C k :: current level index
175 C km1, kp1 :: index of level above (k-1) and below (k+1)
176 C kUp, kDown :: Index for interface above and below. kUp and kDown are
177 C are switched with k to be the appropriate index into fVerU,V
178 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
179 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
180 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
181 _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182 _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183 _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
185 _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187 _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
188 _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
189 _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
190
191 INTEGER iMin, iMax
192 INTEGER jMin, jMax
193 INTEGER bi, bj
194 INTEGER i, j
195 INTEGER k, km1, kp1, kUp, kDown
196
197 #ifdef ALLOW_DIAGNOSTICS
198 LOGICAL dPhiHydDiagIsOn
199 _RL tmpFac
200 #endif /* ALLOW_DIAGNOSTICS */
201
202
203 C--- The algorithm...
204 C
205 C "Correction Step"
206 C =================
207 C Here we update the horizontal velocities with the surface
208 C pressure such that the resulting flow is either consistent
209 C with the free-surface evolution or the rigid-lid:
210 C U[n] = U* + dt x d/dx P
211 C V[n] = V* + dt x d/dy P
212 C
213 C "Calculation of Gs"
214 C ===================
215 C This is where all the accelerations and tendencies (ie.
216 C physics, parameterizations etc...) are calculated
217 C rho = rho ( theta[n], salt[n] )
218 C b = b(rho, theta)
219 C K31 = K31 ( rho )
220 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
221 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
222 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
223 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
224 C
225 C "Time-stepping" or "Prediction"
226 C ================================
227 C The models variables are stepped forward with the appropriate
228 C time-stepping scheme (currently we use Adams-Bashforth II)
229 C - For momentum, the result is always *only* a "prediction"
230 C in that the flow may be divergent and will be "corrected"
231 C later with a surface pressure gradient.
232 C - Normally for tracers the result is the new field at time
233 C level [n+1} *BUT* in the case of implicit diffusion the result
234 C is also *only* a prediction.
235 C - We denote "predictors" with an asterisk (*).
236 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
237 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
238 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
239 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
240 C With implicit diffusion:
241 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
242 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
243 C (1 + dt * K * d_zz) theta[n] = theta*
244 C (1 + dt * K * d_zz) salt[n] = salt*
245 C---
246 CEOP
247
248 #ifdef ALLOW_DEBUG
249 IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
250 #endif
251
252 #ifdef ALLOW_DIAGNOSTICS
253 dPhiHydDiagIsOn = .FALSE.
254 IF ( useDiagnostics )
255 & dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
256 & .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
257 #endif
258
259 C-- Call to routine for calculation of
260 C Eliassen-Palm-flux-forced U-tendency,
261 C if desired:
262 #ifdef INCLUDE_EP_FORCING_CODE
263 CALL CALC_EP_FORCING(myThid)
264 #endif
265
266 #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
267 CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
268 #endif
269
270 #ifdef ALLOW_AUTODIFF_TAMC
271 C-- HPF directive to help TAMC
272 CHPF$ INDEPENDENT
273 #endif /* ALLOW_AUTODIFF_TAMC */
274
275 DO bj=myByLo(myThid),myByHi(myThid)
276
277 #ifdef ALLOW_AUTODIFF_TAMC
278 C-- HPF directive to help TAMC
279 CHPF$ INDEPENDENT, NEW (fVerU,fVerV
280 CHPF$& ,phiHydF
281 CHPF$& ,KappaRU,KappaRV
282 CHPF$& )
283 #endif /* ALLOW_AUTODIFF_TAMC */
284
285 DO bi=myBxLo(myThid),myBxHi(myThid)
286
287 #ifdef ALLOW_AUTODIFF_TAMC
288 act1 = bi - myBxLo(myThid)
289 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
290 act2 = bj - myByLo(myThid)
291 max2 = myByHi(myThid) - myByLo(myThid) + 1
292 act3 = myThid - 1
293 max3 = nTx*nTy
294 act4 = ikey_dynamics - 1
295 idynkey = (act1 + 1) + act2*max1
296 & + act3*max1*max2
297 & + act4*max1*max2*max3
298 #endif /* ALLOW_AUTODIFF_TAMC */
299
300 C-- Set up work arrays with valid (i.e. not NaN) values
301 C These initial values do not alter the numerical results. They
302 C just ensure that all memory references are to valid floating
303 C point numbers. This prevents spurious hardware signals due to
304 C uninitialised but inert locations.
305
306 #ifdef ALLOW_AUTODIFF_TAMC
307 DO k=1,Nr
308 DO j=1-OLy,sNy+OLy
309 DO i=1-OLx,sNx+OLx
310 KappaRU(i,j,k) = 0. _d 0
311 KappaRV(i,j,k) = 0. _d 0
312 cph(
313 c-- need some re-initialisation here to break dependencies
314 cph)
315 gU(i,j,k,bi,bj) = 0. _d 0
316 gV(i,j,k,bi,bj) = 0. _d 0
317 ENDDO
318 ENDDO
319 ENDDO
320 #endif /* ALLOW_AUTODIFF_TAMC */
321 DO j=1-OLy,sNy+OLy
322 DO i=1-OLx,sNx+OLx
323 fVerU (i,j,1) = 0. _d 0
324 fVerU (i,j,2) = 0. _d 0
325 fVerV (i,j,1) = 0. _d 0
326 fVerV (i,j,2) = 0. _d 0
327 phiHydF (i,j) = 0. _d 0
328 phiHydC (i,j) = 0. _d 0
329 #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
330 dPhiHydX(i,j) = 0. _d 0
331 dPhiHydY(i,j) = 0. _d 0
332 #endif
333 phiSurfX(i,j) = 0. _d 0
334 phiSurfY(i,j) = 0. _d 0
335 guDissip(i,j) = 0. _d 0
336 gvDissip(i,j) = 0. _d 0
337 #ifdef ALLOW_AUTODIFF_TAMC
338 phiHydLow(i,j,bi,bj) = 0. _d 0
339 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
340 # ifndef DISABLE_RSTAR_CODE
341 dWtransC(i,j,bi,bj) = 0. _d 0
342 dWtransU(i,j,bi,bj) = 0. _d 0
343 dWtransV(i,j,bi,bj) = 0. _d 0
344 # endif
345 # endif
346 #endif
347 ENDDO
348 ENDDO
349
350 C-- Start computation of dynamics
351 iMin = 0
352 iMax = sNx+1
353 jMin = 0
354 jMax = sNy+1
355
356 #ifdef ALLOW_AUTODIFF_TAMC
357 CADJ STORE wVel (:,:,:,bi,bj) =
358 CADJ & comlev1_bibj, key=idynkey, byte=isbyte
359 #endif /* ALLOW_AUTODIFF_TAMC */
360
361 C-- Explicit part of the Surface Potential Gradient (add in TIMESTEP)
362 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
363 IF (implicSurfPress.NE.1.) THEN
364 CALL CALC_GRAD_PHI_SURF(
365 I bi,bj,iMin,iMax,jMin,jMax,
366 I etaN,
367 O phiSurfX,phiSurfY,
368 I myThid )
369 ENDIF
370
371 #ifdef ALLOW_AUTODIFF_TAMC
372 CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
373 CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
374 #ifdef ALLOW_KPP
375 CADJ STORE KPPviscAz (:,:,:,bi,bj)
376 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
377 #endif /* ALLOW_KPP */
378 #endif /* ALLOW_AUTODIFF_TAMC */
379
380 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
381 C-- Calculate the total vertical viscosity
382 CALL CALC_VISCOSITY(
383 I bi,bj, iMin,iMax,jMin,jMax,
384 O KappaRU, KappaRV,
385 I myThid )
386 #else
387 DO k=1,Nr
388 DO j=1-OLy,sNy+OLy
389 DO i=1-OLx,sNx+OLx
390 KappaRU(i,j,k) = 0. _d 0
391 KappaRV(i,j,k) = 0. _d 0
392 ENDDO
393 ENDDO
394 ENDDO
395 #endif
396
397 #ifdef ALLOW_AUTODIFF_TAMC
398 CADJ STORE KappaRU(:,:,:)
399 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
400 CADJ STORE KappaRV(:,:,:)
401 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
402 #endif /* ALLOW_AUTODIFF_TAMC */
403
404 #ifdef ALLOW_OBCS
405 C-- For Stevens boundary conditions velocities need to be extrapolated
406 C (copied) to a narrow strip outside the domain
407 IF ( useOBCS ) THEN
408 CALL OBCS_COPY_UV_N(
409 U uVel(1-OLx,1-OLy,1,bi,bj),
410 U vVel(1-OLx,1-OLy,1,bi,bj),
411 I Nr, bi, bj, myThid )
412 ENDIF
413 #endif /* ALLOW_OBCS */
414
415 C-- Start of dynamics loop
416 DO k=1,Nr
417
418 C-- km1 Points to level above k (=k-1)
419 C-- kup Cycles through 1,2 to point to layer above
420 C-- kDown Cycles through 2,1 to point to current layer
421
422 km1 = MAX(1,k-1)
423 kp1 = MIN(k+1,Nr)
424 kup = 1+MOD(k+1,2)
425 kDown= 1+MOD(k,2)
426
427 #ifdef ALLOW_AUTODIFF_TAMC
428 kkey = (idynkey-1)*Nr + k
429 c
430 CADJ STORE totPhiHyd (:,:,k,bi,bj)
431 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
432 CADJ STORE phiHydLow (:,:,bi,bj)
433 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
434 CADJ STORE theta (:,:,k,bi,bj)
435 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
436 CADJ STORE salt (:,:,k,bi,bj)
437 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
438 CADJ STORE gT(:,:,k,bi,bj)
439 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
440 CADJ STORE gS(:,:,k,bi,bj)
441 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
442 # ifdef NONLIN_FRSURF
443 cph-test
444 CADJ STORE phiHydC (:,:)
445 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
446 CADJ STORE phiHydF (:,:)
447 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
448 CADJ STORE guDissip (:,:)
449 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
450 CADJ STORE gvDissip (:,:)
451 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
452 CADJ STORE fVerU (:,:,:)
453 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
454 CADJ STORE fVerV (:,:,:)
455 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
456 CADJ STORE gU(:,:,k,bi,bj)
457 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
458 CADJ STORE gV(:,:,k,bi,bj)
459 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
460 # ifndef ALLOW_ADAMSBASHFORTH_3
461 CADJ STORE guNm1(:,:,k,bi,bj)
462 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
463 CADJ STORE gvNm1(:,:,k,bi,bj)
464 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
465 # else
466 CADJ STORE guNm(:,:,k,bi,bj,1)
467 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
468 CADJ STORE guNm(:,:,k,bi,bj,2)
469 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
470 CADJ STORE gvNm(:,:,k,bi,bj,1)
471 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
472 CADJ STORE gvNm(:,:,k,bi,bj,2)
473 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
474 # endif
475 # ifdef ALLOW_CD_CODE
476 CADJ STORE uNM1(:,:,k,bi,bj)
477 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
478 CADJ STORE vNM1(:,:,k,bi,bj)
479 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
480 CADJ STORE uVelD(:,:,k,bi,bj)
481 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
482 CADJ STORE vVelD(:,:,k,bi,bj)
483 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
484 # endif
485 # endif
486 # ifdef ALLOW_DEPTH_CONTROL
487 CADJ STORE fVerU (:,:,:)
488 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
489 CADJ STORE fVerV (:,:,:)
490 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
491 # endif
492 #endif /* ALLOW_AUTODIFF_TAMC */
493
494 C-- Integrate hydrostatic balance for phiHyd with BC of
495 C phiHyd(z=0)=0
496 IF ( implicitIntGravWave ) THEN
497 CALL CALC_PHI_HYD(
498 I bi,bj,iMin,iMax,jMin,jMax,k,
499 I gT, gS,
500 U phiHydF,
501 O phiHydC, dPhiHydX, dPhiHydY,
502 I myTime, myIter, myThid )
503 ELSE
504 CALL CALC_PHI_HYD(
505 I bi,bj,iMin,iMax,jMin,jMax,k,
506 I theta, salt,
507 U phiHydF,
508 O phiHydC, dPhiHydX, dPhiHydY,
509 I myTime, myIter, myThid )
510 ENDIF
511 #ifdef ALLOW_DIAGNOSTICS
512 IF ( dPhiHydDiagIsOn ) THEN
513 tmpFac = -1. _d 0
514 CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
515 & 'Um_dPHdx', k, 1, 2, bi, bj, myThid )
516 CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
517 & 'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
518 ENDIF
519 #endif /* ALLOW_DIAGNOSTICS */
520
521 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
522 C and step forward storing the result in gU, gV, etc...
523 IF ( momStepping ) THEN
524 #ifdef ALLOW_AUTODIFF_TAMC
525 # ifdef NONLIN_FRSURF
526 # if (defined ALLOW_MOM_FLUXFORM) && !(defined DISABLE_RSTAR_CODE)
527 CADJ STORE dWtransC(:,:,bi,bj)
528 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
529 CADJ STORE dWtransU(:,:,bi,bj)
530 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
531 CADJ STORE dWtransV(:,:,bi,bj)
532 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
533 # endif
534 CADJ STORE fVerU(:,:,:)
535 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
536 CADJ STORE fVerV(:,:,:)
537 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
538 # endif /* NONLIN_FRSURF */
539 #endif /* ALLOW_AUTODIFF_TAMC */
540 IF (.NOT. vectorInvariantMomentum) THEN
541 #ifdef ALLOW_MOM_FLUXFORM
542 CALL MOM_FLUXFORM(
543 I bi,bj,k,iMin,iMax,jMin,jMax,
544 I KappaRU, KappaRV,
545 U fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
546 O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
547 O guDissip, gvDissip,
548 I myTime, myIter, myThid)
549 #endif
550 ELSE
551 #ifdef ALLOW_MOM_VECINV
552 CALL MOM_VECINV(
553 I bi,bj,k,iMin,iMax,jMin,jMax,
554 I KappaRU, KappaRV,
555 I fVerU(1-OLx,1-OLy,kUp), fVerV(1-OLx,1-OLy,kUp),
556 O fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
557 O guDissip, gvDissip,
558 I myTime, myIter, myThid)
559 #endif
560 ENDIF
561 C
562 CALL TIMESTEP(
563 I bi,bj,iMin,iMax,jMin,jMax,k,
564 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
565 I guDissip, gvDissip,
566 I myTime, myIter, myThid)
567
568 ENDIF
569
570 C-- end of dynamics k loop (1:Nr)
571 ENDDO
572
573 C-- Implicit Vertical advection & viscosity
574 #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
575 defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
576 IF ( momImplVertAdv ) THEN
577 CALL MOM_U_IMPLICIT_R( kappaRU,
578 I bi, bj, myTime, myIter, myThid )
579 CALL MOM_V_IMPLICIT_R( kappaRV,
580 I bi, bj, myTime, myIter, myThid )
581 ELSEIF ( implicitViscosity ) THEN
582 #else /* INCLUDE_IMPLVERTADV_CODE */
583 IF ( implicitViscosity ) THEN
584 #endif /* INCLUDE_IMPLVERTADV_CODE */
585 #ifdef ALLOW_AUTODIFF_TAMC
586 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
587 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
588 #endif /* ALLOW_AUTODIFF_TAMC */
589 CALL IMPLDIFF(
590 I bi, bj, iMin, iMax, jMin, jMax,
591 I -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
592 U gU,
593 I myThid )
594 #ifdef ALLOW_AUTODIFF_TAMC
595 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
596 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
597 #endif /* ALLOW_AUTODIFF_TAMC */
598 CALL IMPLDIFF(
599 I bi, bj, iMin, iMax, jMin, jMax,
600 I -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
601 U gV,
602 I myThid )
603 ENDIF
604
605 #ifdef ALLOW_OBCS
606 C-- Apply open boundary conditions
607 IF ( useOBCS ) THEN
608 C-- but first save intermediate velocities to be used in the
609 C next time step for the Stevens boundary conditions
610 CALL OBCS_SAVE_UV_N(
611 I bi, bj, iMin, iMax, jMin, jMax, 0,
612 I gU, gV, myThid )
613 CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
614 ENDIF
615 #endif /* ALLOW_OBCS */
616
617 #ifdef ALLOW_CD_CODE
618 IF (implicitViscosity.AND.useCDscheme) THEN
619 #ifdef ALLOW_AUTODIFF_TAMC
620 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
621 #endif /* ALLOW_AUTODIFF_TAMC */
622 CALL IMPLDIFF(
623 I bi, bj, iMin, iMax, jMin, jMax,
624 I 0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
625 U vVelD,
626 I myThid )
627 #ifdef ALLOW_AUTODIFF_TAMC
628 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
629 #endif /* ALLOW_AUTODIFF_TAMC */
630 CALL IMPLDIFF(
631 I bi, bj, iMin, iMax, jMin, jMax,
632 I 0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
633 U uVelD,
634 I myThid )
635 ENDIF
636 #endif /* ALLOW_CD_CODE */
637 C-- End implicit Vertical advection & viscosity
638
639 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
640
641 #ifdef ALLOW_NONHYDROSTATIC
642 C-- Step forward W field in N-H algorithm
643 IF ( nonHydrostatic ) THEN
644 #ifdef ALLOW_DEBUG
645 IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
646 #endif
647 CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
648 CALL CALC_GW(
649 I bi,bj, KappaRU, KappaRV,
650 I myTime, myIter, myThid )
651 ENDIF
652 IF ( nonHydrostatic.OR.implicitIntGravWave )
653 & CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
654 IF ( nonHydrostatic )
655 & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
656 #endif
657
658 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
659
660 C- end of bi,bj loops
661 ENDDO
662 ENDDO
663
664 #ifdef ALLOW_OBCS
665 IF (useOBCS) THEN
666 CALL OBCS_EXCHANGES( myThid )
667 ENDIF
668 #endif
669
670 Cml(
671 C In order to compare the variance of phiHydLow of a p/z-coordinate
672 C run with etaH of a z/p-coordinate run the drift of phiHydLow
673 C has to be removed by something like the following subroutine:
674 C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
675 C & 'phiHydLow', myTime, myThid )
676 Cml)
677
678 #ifdef ALLOW_DIAGNOSTICS
679 IF ( useDiagnostics ) THEN
680
681 CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
682 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
683
684 tmpFac = 1. _d 0
685 CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
686 & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
687
688 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
689 & 'PHIBOTSQ',0, 1,0,1,1,myThid)
690
691 ENDIF
692 #endif /* ALLOW_DIAGNOSTICS */
693
694 #ifdef ALLOW_DEBUG
695 IF ( debugLevel .GE. debLevD ) THEN
696 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
697 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
698 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
699 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
700 CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
701 CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
702 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
703 CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
704 CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
705 CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
706 #ifndef ALLOW_ADAMSBASHFORTH_3
707 CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
708 CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
709 CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
710 CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
711 #endif
712 ENDIF
713 #endif
714
715 #ifdef DYNAMICS_GUGV_EXCH_CHECK
716 C- jmc: For safety checking only: This Exchange here should not change
717 C the solution. If solution changes, it means something is wrong,
718 C but it does not mean that it is less wrong with this exchange.
719 IF ( debugLevel .GE. debLevE ) THEN
720 CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
721 ENDIF
722 #endif
723
724 #ifdef ALLOW_DEBUG
725 IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
726 #endif
727
728 RETURN
729 END

  ViewVC Help
Powered by ViewVC 1.1.22