/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by cnh, Fri Apr 24 02:05:40 1998 UTC revision 1.162 by jmc, Sun Mar 18 22:19:45 2012 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6        SUBROUTINE DYNAMICS(myThid)  #ifdef ALLOW_OBCS
7  C     /==========================================================\  # include "OBCS_OPTIONS.h"
8  C     | SUBROUTINE DYNAMICS                                      |  #endif
9  C     | o Controlling routine for the explicit part of the model |  
10  C     |   dynamics.                                              |  #undef DYNAMICS_GUGV_EXCH_CHECK
11  C     |==========================================================|  
12  C     | This routine evaluates the "dynamics" terms for each     |  CBOP
13  C     | block of ocean in turn. Because the blocks of ocean have |  C     !ROUTINE: DYNAMICS
14  C     | overlap regions they are independent of one another.     |  C     !INTERFACE:
15  C     | If terms involving lateral integrals are needed in this  |        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16  C     | routine care will be needed. Similarly finite-difference |  C     !DESCRIPTION: \bv
17  C     | operations with stencils wider than the overlap region   |  C     *==========================================================*
18  C     | require special consideration.                           |  C     | SUBROUTINE DYNAMICS
19  C     | Notes                                                    |  C     | o Controlling routine for the explicit part of the model
20  C     | =====                                                    |  C     |   dynamics.
21  C     | C*P* comments indicating place holders for which code is |  C     *==========================================================*
22  C     |      presently being developed.                          |  C     | This routine evaluates the "dynamics" terms for each
23  C     \==========================================================/  C     | block of ocean in turn. Because the blocks of ocean have
24    C     | overlap regions they are independent of one another.
25    C     | If terms involving lateral integrals are needed in this
26    C     | routine care will be needed. Similarly finite-difference
27    C     | operations with stencils wider than the overlap region
28    C     | require special consideration.
29    C     | The algorithm...
30    C     |
31    C     | "Correction Step"
32    C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76          IMPLICIT NONE
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
80  #include "CG2D.h"  #include "PARAMS.h"
81    #include "DYNVARS.h"
82    #ifdef ALLOW_CD_CODE
83    #include "CD_CODE_VARS.h"
84    #endif
85    #include "GRID.h"
86    #ifdef ALLOW_AUTODIFF_TAMC
87    # include "tamc.h"
88    # include "tamc_keys.h"
89    # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS_FIELDS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #  include "OBCS_FIELDS.h"
100    #  ifdef ALLOW_PTRACERS
101    #   include "OBCS_PTRACERS.h"
102    #  endif
103    # endif
104    # ifdef ALLOW_MOM_FLUXFORM
105    #  include "MOM_FLUXFORM.h"
106    # endif
107    #endif /* ALLOW_AUTODIFF_TAMC */
108    
109    C     !CALLING SEQUENCE:
110    C     DYNAMICS()
111    C      |
112    C      |-- CALC_EP_FORCING
113    C      |
114    C      |-- CALC_GRAD_PHI_SURF
115    C      |
116    C      |-- CALC_VISCOSITY
117    C      |
118    C      |-- CALC_PHI_HYD
119    C      |
120    C      |-- MOM_FLUXFORM
121    C      |
122    C      |-- MOM_VECINV
123    C      |
124    C      |-- TIMESTEP
125    C      |
126    C      |-- MOM_U_IMPLICIT_R
127    C      |-- MOM_V_IMPLICIT_R
128    C      |
129    C      |-- IMPLDIFF
130    C      |
131    C      |-- OBCS_APPLY_UV
132    C      |
133    C      |-- CALC_GW
134    C      |
135    C      |-- DIAGNOSTICS_FILL
136    C      |-- DEBUG_STATS_RL
137    
138    C     !INPUT/OUTPUT PARAMETERS:
139  C     == Routine arguments ==  C     == Routine arguments ==
140  C     myThid - Thread number for this instance of the routine.  C     myTime :: Current time in simulation
141    C     myIter :: Current iteration number in simulation
142    C     myThid :: Thread number for this instance of the routine.
143          _RL myTime
144          INTEGER myIter
145        INTEGER myThid        INTEGER myThid
146    
147    C     !FUNCTIONS:
148    #ifdef ALLOW_DIAGNOSTICS
149          LOGICAL  DIAGNOSTICS_IS_ON
150          EXTERNAL DIAGNOSTICS_IS_ON
151    #endif
152    
153    C     !LOCAL VARIABLES:
154  C     == Local variables  C     == Local variables
155  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
156  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
157  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
158  C                              o vTrans: Meridional transport  C                                    variable.
159  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
160  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
161  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
162  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
163  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
164  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
165  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
166  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
167  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
168  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
169  C                              o fZon: Zonal flux term  C     KappaRU    :: vertical viscosity
170  C                              o fMer: Meridional flux term  C     KappaRV    :: vertical viscosity
171  C                              o fVer: Vertical flux term - note fVer  C     iMin, iMax :: Ranges and sub-block indices on which calculations
172  C                                      is "pipelined" in the vertical  C     jMin, jMax    are applied.
173  C                                      so we need an fVer for each  C     bi, bj     :: tile indices
174  C                                      variable.  C     k          :: current level index
175  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     km1, kp1   :: index of level above (k-1) and below (k+1)
176  C     jMin, jMax   are applied.  C     kUp, kDown :: Index for interface above and below. kUp and kDown are
177  C     bi, bj  C                   are switched with k to be the appropriate index into fVerU,V
178  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
179  C                          are switched with layer to be the appropriate index        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
180  C                          into fVerTerm        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
181        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
185        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
188        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
189        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
190        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
191        INTEGER iMin, iMax        INTEGER iMin, iMax
192        INTEGER jMin, jMax        INTEGER jMin, jMax
193        INTEGER bi, bj        INTEGER bi, bj
194        INTEGER i, j        INTEGER i, j
195        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kUp, kDown
196    
197    #ifdef ALLOW_DIAGNOSTICS
198          LOGICAL dPhiHydDiagIsOn
199          _RL tmpFac
200    #endif /* ALLOW_DIAGNOSTICS */
201    
202    
203    C---    The algorithm...
204    C
205    C       "Correction Step"
206    C       =================
207    C       Here we update the horizontal velocities with the surface
208    C       pressure such that the resulting flow is either consistent
209    C       with the free-surface evolution or the rigid-lid:
210    C         U[n] = U* + dt x d/dx P
211    C         V[n] = V* + dt x d/dy P
212    C
213    C       "Calculation of Gs"
214    C       ===================
215    C       This is where all the accelerations and tendencies (ie.
216    C       physics, parameterizations etc...) are calculated
217    C         rho = rho ( theta[n], salt[n] )
218    C         b   = b(rho, theta)
219    C         K31 = K31 ( rho )
220    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
221    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
222    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
223    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
224    C
225    C       "Time-stepping" or "Prediction"
226    C       ================================
227    C       The models variables are stepped forward with the appropriate
228    C       time-stepping scheme (currently we use Adams-Bashforth II)
229    C       - For momentum, the result is always *only* a "prediction"
230    C       in that the flow may be divergent and will be "corrected"
231    C       later with a surface pressure gradient.
232    C       - Normally for tracers the result is the new field at time
233    C       level [n+1} *BUT* in the case of implicit diffusion the result
234    C       is also *only* a prediction.
235    C       - We denote "predictors" with an asterisk (*).
236    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
237    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
238    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
239    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
240    C       With implicit diffusion:
241    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
242    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
243    C         (1 + dt * K * d_zz) theta[n] = theta*
244    C         (1 + dt * K * d_zz) salt[n] = salt*
245    C---
246    CEOP
247    
248    #ifdef ALLOW_DEBUG
249          IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
250    #endif
251    
252    #ifdef ALLOW_DIAGNOSTICS
253          dPhiHydDiagIsOn = .FALSE.
254          IF ( useDiagnostics )
255         &  dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
256         &               .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
257    #endif
258    
259    C-- Call to routine for calculation of
260    C   Eliassen-Palm-flux-forced U-tendency,
261    C   if desired:
262    #ifdef INCLUDE_EP_FORCING_CODE
263          CALL CALC_EP_FORCING(myThid)
264    #endif
265    
266    #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
267          CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
268    #endif
269    
270    #ifdef ALLOW_AUTODIFF_TAMC
271    C--   HPF directive to help TAMC
272    CHPF$ INDEPENDENT
273    #endif /* ALLOW_AUTODIFF_TAMC */
274    
275          DO bj=myByLo(myThid),myByHi(myThid)
276    
277    #ifdef ALLOW_AUTODIFF_TAMC
278    C--    HPF directive to help TAMC
279    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
280    CHPF$&                  ,phiHydF
281    CHPF$&                  ,KappaRU,KappaRV
282    CHPF$&                  )
283    #endif /* ALLOW_AUTODIFF_TAMC */
284    
285           DO bi=myBxLo(myThid),myBxHi(myThid)
286    
287    #ifdef ALLOW_AUTODIFF_TAMC
288              act1 = bi - myBxLo(myThid)
289              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
290              act2 = bj - myByLo(myThid)
291              max2 = myByHi(myThid) - myByLo(myThid) + 1
292              act3 = myThid - 1
293              max3 = nTx*nTy
294              act4 = ikey_dynamics - 1
295              idynkey = (act1 + 1) + act2*max1
296         &                      + act3*max1*max2
297         &                      + act4*max1*max2*max3
298    #endif /* ALLOW_AUTODIFF_TAMC */
299    
300  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
301  C     These inital values do not alter the numerical results. They  C     These initial values do not alter the numerical results. They
302  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
303  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
304  C     uninitialised but inert locations.  C     uninitialised but inert locations.
305        DO j=1-OLy,sNy+OLy  
306         DO i=1-OLx,sNx+OLx  #ifdef ALLOW_AUTODIFF_TAMC
307          xA(i,j)      = 0.*1. _d 37          DO k=1,Nr
308          yA(i,j)      = 0.*1. _d 37           DO j=1-OLy,sNy+OLy
309          uTrans(i,j)  = 0.*1. _d 37            DO i=1-OLx,sNx+OLx
310          vTrans(i,j)  = 0.*1. _d 37             KappaRU(i,j,k) = 0. _d 0
311          aTerm(i,j)   = 0.*1. _d 37             KappaRV(i,j,k) = 0. _d 0
312          xTerm(i,j)   = 0.*1. _d 37  cph(
313          cTerm(i,j)   = 0.*1. _d 37  c--   need some re-initialisation here to break dependencies
314          mTerm(i,j)   = 0.*1. _d 37  cph)
315          pTerm(i,j)   = 0.*1. _d 37             gU(i,j,k,bi,bj) = 0. _d 0
316          fZon(i,j)    = 0.*1. _d 37             gV(i,j,k,bi,bj) = 0. _d 0
317          fMer(i,j)    = 0.*1. _d 37            ENDDO
318          DO K=1,nZ           ENDDO
319           pH (i,j,k)  = 0.*1. _d 37          ENDDO
320    #endif /* ALLOW_AUTODIFF_TAMC */
321            DO j=1-OLy,sNy+OLy
322             DO i=1-OLx,sNx+OLx
323              fVerU  (i,j,1) = 0. _d 0
324              fVerU  (i,j,2) = 0. _d 0
325              fVerV  (i,j,1) = 0. _d 0
326              fVerV  (i,j,2) = 0. _d 0
327              phiHydF (i,j)  = 0. _d 0
328              phiHydC (i,j)  = 0. _d 0
329    #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
330              dPhiHydX(i,j)  = 0. _d 0
331              dPhiHydY(i,j)  = 0. _d 0
332    #endif
333              phiSurfX(i,j)  = 0. _d 0
334              phiSurfY(i,j)  = 0. _d 0
335              guDissip(i,j)  = 0. _d 0
336              gvDissip(i,j)  = 0. _d 0
337    #ifdef ALLOW_AUTODIFF_TAMC
338              phiHydLow(i,j,bi,bj) = 0. _d 0
339    # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
340    #  ifndef DISABLE_RSTAR_CODE
341              dWtransC(i,j,bi,bj) = 0. _d 0
342              dWtransU(i,j,bi,bj) = 0. _d 0
343              dWtransV(i,j,bi,bj) = 0. _d 0
344    #  endif
345    # endif
346    #endif
347             ENDDO
348          ENDDO          ENDDO
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
        ENDDO  
       ENDDO  
349    
350        DO bj=myByLo(myThid),myByHi(myThid)  C--     Start computation of dynamics
351         DO bi=myBxLo(myThid),myBxHi(myThid)          iMin = 0
352            iMax = sNx+1
353            jMin = 0
354            jMax = sNy+1
355    
356    #ifdef ALLOW_AUTODIFF_TAMC
357    CADJ STORE wVel (:,:,:,bi,bj) =
358    CADJ &     comlev1_bibj, key=idynkey, byte=isbyte
359    #endif /* ALLOW_AUTODIFF_TAMC */
360    
361    C--     Explicit part of the Surface Potential Gradient (add in TIMESTEP)
362    C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
363            IF (implicSurfPress.NE.1.) THEN
364              CALL CALC_GRAD_PHI_SURF(
365         I         bi,bj,iMin,iMax,jMin,jMax,
366         I         etaN,
367         O         phiSurfX,phiSurfY,
368         I         myThid )
369            ENDIF
370    
371    #ifdef ALLOW_AUTODIFF_TAMC
372    CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
373    CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
374    #ifdef ALLOW_KPP
375    CADJ STORE KPPviscAz (:,:,:,bi,bj)
376    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
377    #endif /* ALLOW_KPP */
378    #endif /* ALLOW_AUTODIFF_TAMC */
379    
380    #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
381    C--     Calculate the total vertical viscosity
382            CALL CALC_VISCOSITY(
383         I            bi,bj, iMin,iMax,jMin,jMax,
384         O            KappaRU, KappaRV,
385         I            myThid )
386    #else
387            DO k=1,Nr
388             DO j=1-OLy,sNy+OLy
389              DO i=1-OLx,sNx+OLx
390               KappaRU(i,j,k) = 0. _d 0
391               KappaRV(i,j,k) = 0. _d 0
392              ENDDO
393             ENDDO
394            ENDDO
395    #endif
396    
397    #ifdef ALLOW_AUTODIFF_TAMC
398    CADJ STORE KappaRU(:,:,:)
399    CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
400    CADJ STORE KappaRV(:,:,:)
401    CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
402    #endif /* ALLOW_AUTODIFF_TAMC */
403    
404    #ifdef ALLOW_OBCS
405    C--   For Stevens boundary conditions velocities need to be extrapolated
406    C     (copied) to a narrow strip outside the domain
407             IF ( useOBCS ) THEN
408              CALL OBCS_COPY_UV_N(
409         U         uVel(1-OLx,1-OLy,1,bi,bj),
410         U         vVel(1-OLx,1-OLy,1,bi,bj),
411         I         Nr, bi, bj, myThid )
412             ENDIF
413    #endif /* ALLOW_OBCS */
414    
415    C--     Start of dynamics loop
416            DO k=1,Nr
417    
418    C--       km1    Points to level above k (=k-1)
419    C--       kup    Cycles through 1,2 to point to layer above
420    C--       kDown  Cycles through 2,1 to point to current layer
421    
422              km1  = MAX(1,k-1)
423              kp1  = MIN(k+1,Nr)
424              kup  = 1+MOD(k+1,2)
425              kDown= 1+MOD(k,2)
426    
427    #ifdef ALLOW_AUTODIFF_TAMC
428             kkey = (idynkey-1)*Nr + k
429    c
430    CADJ STORE totPhiHyd (:,:,k,bi,bj)
431    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
432    CADJ STORE phiHydLow (:,:,bi,bj)
433    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
434    CADJ STORE theta (:,:,k,bi,bj)
435    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
436    CADJ STORE salt  (:,:,k,bi,bj)
437    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
438    CADJ STORE gT(:,:,k,bi,bj)
439    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
440    CADJ STORE gS(:,:,k,bi,bj)
441    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
442    # ifdef NONLIN_FRSURF
443    cph-test
444    CADJ STORE  phiHydC (:,:)
445    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
446    CADJ STORE  phiHydF (:,:)
447    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
448    CADJ STORE  guDissip (:,:)
449    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
450    CADJ STORE  gvDissip (:,:)
451    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
452    CADJ STORE  fVerU (:,:,:)
453    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
454    CADJ STORE  fVerV (:,:,:)
455    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
456    CADJ STORE gU(:,:,k,bi,bj)
457    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
458    CADJ STORE gV(:,:,k,bi,bj)
459    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
460    #  ifndef ALLOW_ADAMSBASHFORTH_3
461    CADJ STORE guNm1(:,:,k,bi,bj)
462    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
463    CADJ STORE gvNm1(:,:,k,bi,bj)
464    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
465    #  else
466    CADJ STORE guNm(:,:,k,bi,bj,1)
467    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
468    CADJ STORE guNm(:,:,k,bi,bj,2)
469    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
470    CADJ STORE gvNm(:,:,k,bi,bj,1)
471    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
472    CADJ STORE gvNm(:,:,k,bi,bj,2)
473    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
474    #  endif
475    #  ifdef ALLOW_CD_CODE
476    CADJ STORE uNM1(:,:,k,bi,bj)
477    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
478    CADJ STORE vNM1(:,:,k,bi,bj)
479    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
480    CADJ STORE uVelD(:,:,k,bi,bj)
481    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
482    CADJ STORE vVelD(:,:,k,bi,bj)
483    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
484    #  endif
485    # endif
486    # ifdef ALLOW_DEPTH_CONTROL
487    CADJ STORE  fVerU (:,:,:)
488    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
489    CADJ STORE  fVerV (:,:,:)
490    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
491    # endif
492    #endif /* ALLOW_AUTODIFF_TAMC */
493    
494    C--      Integrate hydrostatic balance for phiHyd with BC of
495    C        phiHyd(z=0)=0
496             IF ( implicitIntGravWave ) THEN
497               CALL CALC_PHI_HYD(
498         I        bi,bj,iMin,iMax,jMin,jMax,k,
499         I        gT, gS,
500         U        phiHydF,
501         O        phiHydC, dPhiHydX, dPhiHydY,
502         I        myTime, myIter, myThid )
503             ELSE
504               CALL CALC_PHI_HYD(
505         I        bi,bj,iMin,iMax,jMin,jMax,k,
506         I        theta, salt,
507         U        phiHydF,
508         O        phiHydC, dPhiHydX, dPhiHydY,
509         I        myTime, myIter, myThid )
510             ENDIF
511    #ifdef ALLOW_DIAGNOSTICS
512             IF ( dPhiHydDiagIsOn ) THEN
513               tmpFac = -1. _d 0
514               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
515         &                           'Um_dPHdx', k, 1, 2, bi, bj, myThid )
516               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
517         &                           'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
518             ENDIF
519    #endif /* ALLOW_DIAGNOSTICS */
520    
521    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
522    C        and step forward storing the result in gU, gV, etc...
523             IF ( momStepping ) THEN
524    #ifdef ALLOW_AUTODIFF_TAMC
525    # ifdef NONLIN_FRSURF
526    #  if (defined ALLOW_MOM_FLUXFORM) && !(defined DISABLE_RSTAR_CODE)
527    CADJ STORE dWtransC(:,:,bi,bj)
528    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
529    CADJ STORE dWtransU(:,:,bi,bj)
530    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
531    CADJ STORE dWtransV(:,:,bi,bj)
532    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
533    #  endif
534    CADJ STORE fVerU(:,:,:)
535    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
536    CADJ STORE fVerV(:,:,:)
537    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
538    # endif /* NONLIN_FRSURF */
539    #endif /* ALLOW_AUTODIFF_TAMC */
540               IF (.NOT. vectorInvariantMomentum) THEN
541    #ifdef ALLOW_MOM_FLUXFORM
542                  CALL MOM_FLUXFORM(
543         I         bi,bj,k,iMin,iMax,jMin,jMax,
544         I         KappaRU, KappaRV,
545         U         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
546         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
547         O         guDissip, gvDissip,
548         I         myTime, myIter, myThid)
549    #endif
550               ELSE
551    #ifdef ALLOW_MOM_VECINV
552                 CALL MOM_VECINV(
553         I         bi,bj,k,iMin,iMax,jMin,jMax,
554         I         KappaRU, KappaRV,
555         I         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
556         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
557         O         guDissip, gvDissip,
558         I         myTime, myIter, myThid)
559    #endif
560               ENDIF
561    C
562               CALL TIMESTEP(
563         I         bi,bj,iMin,iMax,jMin,jMax,k,
564         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
565         I         guDissip, gvDissip,
566         I         myTime, myIter, myThid)
567    
568          iMin = 1-OLx+1           ENDIF
         iMax = sNx+OLx  
         jMin = 1-OLy+1  
         jMax = sNy+OLy  
   
 C--     Update fields according to tendency terms  
         CALL TIMESTEP(  
      I       bi,bj,iMin,iMax,jMin,jMax,myThid)  
   
 C--     Calculate rho with the appropriate equation of state  
         CALL FIND_RHO(  
      I       bi,bj,iMin,iMax,jMin,jMax,myThid)  
   
 C--     Calculate static stability and mix where convectively unstable  
         CALL CONVECT(  
      I       bi,bj,iMin,iMax,jMin,jMax,myThid)  
   
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I       bi,bj,iMin,iMax,jMin,jMax,  
      O       pH,  
      I       myThid )  
   
         DO K = Nz, 1, -1  
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
      I        myThid)  
   
 C--      Calculate accelerations in the momentum equations  
          CALL CALC_MOM_RHS(  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskC,  
      I        pH,  
      U        aTerm,xTerm,cTerm,mTerm,pTerm,  
      U        fZon, fMer, fVerU, fVerV,  
      I        myThid)  
   
 C--      Calculate active tracer tendencies  
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
569    
570    C--     end of dynamics k loop (1:Nr)
571          ENDDO          ENDDO
572    
573    C--     Implicit Vertical advection & viscosity
574    #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
575         defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
576            IF ( momImplVertAdv ) THEN
577              CALL MOM_U_IMPLICIT_R( kappaRU,
578         I                           bi, bj, myTime, myIter, myThid )
579              CALL MOM_V_IMPLICIT_R( kappaRV,
580         I                           bi, bj, myTime, myIter, myThid )
581            ELSEIF ( implicitViscosity ) THEN
582    #else /* INCLUDE_IMPLVERTADV_CODE */
583            IF     ( implicitViscosity ) THEN
584    #endif /* INCLUDE_IMPLVERTADV_CODE */
585    #ifdef    ALLOW_AUTODIFF_TAMC
586    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
587    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
588    #endif    /* ALLOW_AUTODIFF_TAMC */
589              CALL IMPLDIFF(
590         I         bi, bj, iMin, iMax, jMin, jMax,
591         I         -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
592         U         gU,
593         I         myThid )
594    #ifdef    ALLOW_AUTODIFF_TAMC
595    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
596    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
597    #endif    /* ALLOW_AUTODIFF_TAMC */
598              CALL IMPLDIFF(
599         I         bi, bj, iMin, iMax, jMin, jMax,
600         I         -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
601         U         gV,
602         I         myThid )
603            ENDIF
604    
605    #ifdef ALLOW_OBCS
606    C--      Apply open boundary conditions
607            IF ( useOBCS ) THEN
608    C--      but first save intermediate velocities to be used in the
609    C        next time step for the Stevens boundary conditions
610              CALL OBCS_SAVE_UV_N(
611         I        bi, bj, iMin, iMax, jMin, jMax, 0,
612         I        gU, gV, myThid )
613              CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
614            ENDIF
615    #endif /* ALLOW_OBCS */
616    
617    #ifdef    ALLOW_CD_CODE
618            IF (implicitViscosity.AND.useCDscheme) THEN
619    #ifdef    ALLOW_AUTODIFF_TAMC
620    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
621    #endif    /* ALLOW_AUTODIFF_TAMC */
622              CALL IMPLDIFF(
623         I         bi, bj, iMin, iMax, jMin, jMax,
624         I         0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
625         U         vVelD,
626         I         myThid )
627    #ifdef    ALLOW_AUTODIFF_TAMC
628    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
629    #endif    /* ALLOW_AUTODIFF_TAMC */
630              CALL IMPLDIFF(
631         I         bi, bj, iMin, iMax, jMin, jMax,
632         I         0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
633         U         uVelD,
634         I         myThid )
635            ENDIF
636    #endif    /* ALLOW_CD_CODE */
637    C--     End implicit Vertical advection & viscosity
638    
639    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
640    
641    #ifdef ALLOW_NONHYDROSTATIC
642    C--   Step forward W field in N-H algorithm
643            IF ( nonHydrostatic ) THEN
644    #ifdef ALLOW_DEBUG
645             IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
646    #endif
647             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
648             CALL CALC_GW(
649         I                 bi,bj, KappaRU, KappaRV,
650         I                 myTime, myIter, myThid )
651            ENDIF
652            IF ( nonHydrostatic.OR.implicitIntGravWave )
653         &   CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
654            IF ( nonHydrostatic )
655         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
656    #endif
657    
658    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
659    
660    C-    end of bi,bj loops
661         ENDDO         ENDDO
662        ENDDO        ENDDO
663    
664    #ifdef ALLOW_OBCS
665          IF (useOBCS) THEN
666            CALL OBCS_EXCHANGES( myThid )
667          ENDIF
668    #endif
669    
670    Cml(
671    C     In order to compare the variance of phiHydLow of a p/z-coordinate
672    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
673    C     has to be removed by something like the following subroutine:
674    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
675    C     &                     'phiHydLow', myTime, myThid )
676    Cml)
677    
678    #ifdef ALLOW_DIAGNOSTICS
679          IF ( useDiagnostics ) THEN
680    
681           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
682           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
683    
684           tmpFac = 1. _d 0
685           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
686         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
687    
688           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
689         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
690    
691          ENDIF
692    #endif /* ALLOW_DIAGNOSTICS */
693    
694    #ifdef ALLOW_DEBUG
695          IF ( debugLevel .GE. debLevD ) THEN
696           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
697           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
698           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
699           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
700           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
701           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
702           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
703           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
704           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
705           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
706    #ifndef ALLOW_ADAMSBASHFORTH_3
707           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
708           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
709           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
710           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
711    #endif
712          ENDIF
713    #endif
714    
715    #ifdef DYNAMICS_GUGV_EXCH_CHECK
716    C- jmc: For safety checking only: This Exchange here should not change
717    C       the solution. If solution changes, it means something is wrong,
718    C       but it does not mean that it is less wrong with this exchange.
719          IF ( debugLevel .GE. debLevE ) THEN
720           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
721          ENDIF
722    #endif
723    
724    #ifdef ALLOW_DEBUG
725          IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
726    #endif
727    
728        RETURN        RETURN
729        END        END

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.162

  ViewVC Help
Powered by ViewVC 1.1.22