/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by cnh, Fri Apr 24 02:05:40 1998 UTC revision 1.135 by baylor, Tue Jun 20 20:57:37 2006 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6        SUBROUTINE DYNAMICS(myThid)  #ifdef ALLOW_OBCS
7  C     /==========================================================\  # include "OBCS_OPTIONS.h"
8  C     | SUBROUTINE DYNAMICS                                      |  #endif
9  C     | o Controlling routine for the explicit part of the model |  
10  C     |   dynamics.                                              |  #undef DYNAMICS_GUGV_EXCH_CHECK
11  C     |==========================================================|  
12  C     | This routine evaluates the "dynamics" terms for each     |  CBOP
13  C     | block of ocean in turn. Because the blocks of ocean have |  C     !ROUTINE: DYNAMICS
14  C     | overlap regions they are independent of one another.     |  C     !INTERFACE:
15  C     | If terms involving lateral integrals are needed in this  |        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16  C     | routine care will be needed. Similarly finite-difference |  C     !DESCRIPTION: \bv
17  C     | operations with stencils wider than the overlap region   |  C     *==========================================================*
18  C     | require special consideration.                           |  C     | SUBROUTINE DYNAMICS                                      
19  C     | Notes                                                    |  C     | o Controlling routine for the explicit part of the model  
20  C     | =====                                                    |  C     |   dynamics.                                              
21  C     | C*P* comments indicating place holders for which code is |  C     *==========================================================*
22  C     |      presently being developed.                          |  C     | This routine evaluates the "dynamics" terms for each      
23  C     \==========================================================/  C     | block of ocean in turn. Because the blocks of ocean have  
24    C     | overlap regions they are independent of one another.      
25    C     | If terms involving lateral integrals are needed in this  
26    C     | routine care will be needed. Similarly finite-difference  
27    C     | operations with stencils wider than the overlap region    
28    C     | require special consideration.                            
29    C     | The algorithm...
30    C     |
31    C     | "Correction Step"
32    C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76          IMPLICIT NONE
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
80  #include "CG2D.h"  #include "PARAMS.h"
81    #include "DYNVARS.h"
82    #ifdef ALLOW_CD_CODE
83    #include "CD_CODE_VARS.h"
84    #endif
85    #include "GRID.h"
86    #ifdef ALLOW_AUTODIFF_TAMC
87    # include "tamc.h"
88    # include "tamc_keys.h"
89    # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #  include "OBCS.h"
100    #  ifdef ALLOW_PTRACERS
101    #   include "OBCS_PTRACERS.h"
102    #  endif
103    # endif
104    # ifdef ALLOW_MOM_FLUXFORM
105    #  include "MOM_FLUXFORM.h"
106    # endif
107    #endif /* ALLOW_AUTODIFF_TAMC */
108    
109    C     !CALLING SEQUENCE:
110    C     DYNAMICS()
111    C      |
112    C      |-- CALC_EP_FORCING
113    C      |
114    C      |-- CALC_GRAD_PHI_SURF
115    C      |
116    C      |-- CALC_VISCOSITY
117    C      |
118    C      |-- CALC_PHI_HYD  
119    C      |
120    C      |-- MOM_FLUXFORM  
121    C      |
122    C      |-- MOM_VECINV    
123    C      |
124    C      |-- TIMESTEP      
125    C      |
126    C      |-- OBCS_APPLY_UV
127    C      |
128    C      |-- MOM_U_IMPLICIT_R      
129    C      |-- MOM_V_IMPLICIT_R      
130    C      |
131    C      |-- IMPLDIFF      
132    C      |
133    C      |-- OBCS_APPLY_UV
134    C      |
135    C      |-- CALC_GW
136    C      |
137    C      |-- DIAGNOSTICS_FILL
138    C      |-- DEBUG_STATS_RL
139    
140    C     !INPUT/OUTPUT PARAMETERS:
141  C     == Routine arguments ==  C     == Routine arguments ==
142    C     myTime - Current time in simulation
143    C     myIter - Current iteration number in simulation
144  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
145          _RL myTime
146          INTEGER myIter
147        INTEGER myThid        INTEGER myThid
148    
149    C     !LOCAL VARIABLES:
150  C     == Local variables  C     == Local variables
151  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
152  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
153  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
154  C                              o vTrans: Meridional transport  C                                    variable.
155  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
156  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
157  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
158  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
159  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
160  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
161  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
162  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
163  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
164  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
165  C                              o fZon: Zonal flux term  C     KappaRU:: vertical viscosity
166  C                              o fMer: Meridional flux term  C     KappaRV:: vertical viscosity
167  C                              o fVer: Vertical flux term - note fVer  C     iMin, iMax     - Ranges and sub-block indices on which calculations
168  C                                      is "pipelined" in the vertical  C     jMin, jMax       are applied.
 C                                      so we need an fVer for each  
 C                                      variable.  
 C     iMin, iMax - Ranges and sub-block indices on which calculations  
 C     jMin, jMax   are applied.  
169  C     bi, bj  C     bi, bj
170  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
171  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
172  C                          into fVerTerm  C                      index into fVerTerm.
173        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
174        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
175        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
176        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
177        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
178        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
179        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
180        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
181        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
184        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
185        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
186        INTEGER iMin, iMax        INTEGER iMin, iMax
187        INTEGER jMin, jMax        INTEGER jMin, jMax
188        INTEGER bi, bj        INTEGER bi, bj
189        INTEGER i, j        INTEGER i, j
190        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
191    
192    #ifdef ALLOW_DIAGNOSTICS
193          _RL tmpFac
194    #endif /* ALLOW_DIAGNOSTICS */
195    
196    
197    C---    The algorithm...
198    C
199    C       "Correction Step"
200    C       =================
201    C       Here we update the horizontal velocities with the surface
202    C       pressure such that the resulting flow is either consistent
203    C       with the free-surface evolution or the rigid-lid:
204    C         U[n] = U* + dt x d/dx P
205    C         V[n] = V* + dt x d/dy P
206    C
207    C       "Calculation of Gs"
208    C       ===================
209    C       This is where all the accelerations and tendencies (ie.
210    C       physics, parameterizations etc...) are calculated
211    C         rho = rho ( theta[n], salt[n] )
212    C         b   = b(rho, theta)
213    C         K31 = K31 ( rho )
214    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
215    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
216    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
217    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
218    C
219    C       "Time-stepping" or "Prediction"
220    C       ================================
221    C       The models variables are stepped forward with the appropriate
222    C       time-stepping scheme (currently we use Adams-Bashforth II)
223    C       - For momentum, the result is always *only* a "prediction"
224    C       in that the flow may be divergent and will be "corrected"
225    C       later with a surface pressure gradient.
226    C       - Normally for tracers the result is the new field at time
227    C       level [n+1} *BUT* in the case of implicit diffusion the result
228    C       is also *only* a prediction.
229    C       - We denote "predictors" with an asterisk (*).
230    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
231    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
232    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
233    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
234    C       With implicit diffusion:
235    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
236    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
237    C         (1 + dt * K * d_zz) theta[n] = theta*
238    C         (1 + dt * K * d_zz) salt[n] = salt*
239    C---
240    CEOP
241    
242    #ifdef ALLOW_DEBUG
243          IF ( debugLevel .GE. debLevB )
244         &   CALL DEBUG_ENTER( 'DYNAMICS', myThid )
245    #endif
246    
247    C-- Call to routine for calculation of
248    C   Eliassen-Palm-flux-forced U-tendency,
249    C   if desired:
250    #ifdef INCLUDE_EP_FORCING_CODE
251          CALL CALC_EP_FORCING(myThid)
252    #endif
253    
254    #ifdef ALLOW_AUTODIFF_TAMC
255    C--   HPF directive to help TAMC
256    CHPF$ INDEPENDENT
257    #endif /* ALLOW_AUTODIFF_TAMC */
258    
259          DO bj=myByLo(myThid),myByHi(myThid)
260    
261    #ifdef ALLOW_AUTODIFF_TAMC
262    C--    HPF directive to help TAMC
263    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
264    CHPF$&                  ,phiHydF
265    CHPF$&                  ,KappaRU,KappaRV
266    CHPF$&                  )
267    #endif /* ALLOW_AUTODIFF_TAMC */
268    
269           DO bi=myBxLo(myThid),myBxHi(myThid)
270    
271    #ifdef ALLOW_AUTODIFF_TAMC
272              act1 = bi - myBxLo(myThid)
273              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
274              act2 = bj - myByLo(myThid)
275              max2 = myByHi(myThid) - myByLo(myThid) + 1
276              act3 = myThid - 1
277              max3 = nTx*nTy
278              act4 = ikey_dynamics - 1
279              idynkey = (act1 + 1) + act2*max1
280         &                      + act3*max1*max2
281         &                      + act4*max1*max2*max3
282    #endif /* ALLOW_AUTODIFF_TAMC */
283    
284  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
285  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
286  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
287  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
288  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0.*1. _d 37  
         yA(i,j)      = 0.*1. _d 37  
         uTrans(i,j)  = 0.*1. _d 37  
         vTrans(i,j)  = 0.*1. _d 37  
         aTerm(i,j)   = 0.*1. _d 37  
         xTerm(i,j)   = 0.*1. _d 37  
         cTerm(i,j)   = 0.*1. _d 37  
         mTerm(i,j)   = 0.*1. _d 37  
         pTerm(i,j)   = 0.*1. _d 37  
         fZon(i,j)    = 0.*1. _d 37  
         fMer(i,j)    = 0.*1. _d 37  
         DO K=1,nZ  
          pH (i,j,k)  = 0.*1. _d 37  
         ENDDO  
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
        ENDDO  
       ENDDO  
289    
290        DO bj=myByLo(myThid),myByHi(myThid)          DO k=1,Nr
291         DO bi=myBxLo(myThid),myBxHi(myThid)           DO j=1-OLy,sNy+OLy
292              DO i=1-OLx,sNx+OLx
293               KappaRU(i,j,k) = 0. _d 0
294               KappaRV(i,j,k) = 0. _d 0
295    #ifdef ALLOW_AUTODIFF_TAMC
296    cph(
297    c--   need some re-initialisation here to break dependencies
298    cph)
299               gU(i,j,k,bi,bj) = 0. _d 0
300               gV(i,j,k,bi,bj) = 0. _d 0
301    #endif
302              ENDDO
303             ENDDO
304            ENDDO
305            DO j=1-OLy,sNy+OLy
306             DO i=1-OLx,sNx+OLx
307              fVerU  (i,j,1) = 0. _d 0
308              fVerU  (i,j,2) = 0. _d 0
309              fVerV  (i,j,1) = 0. _d 0
310              fVerV  (i,j,2) = 0. _d 0
311              phiHydF (i,j)  = 0. _d 0
312              phiHydC (i,j)  = 0. _d 0
313              dPhiHydX(i,j)  = 0. _d 0
314              dPhiHydY(i,j)  = 0. _d 0
315              phiSurfX(i,j)  = 0. _d 0
316              phiSurfY(i,j)  = 0. _d 0
317              guDissip(i,j)  = 0. _d 0
318              gvDissip(i,j)  = 0. _d 0
319    #ifdef ALLOW_AUTODIFF_TAMC
320    cph(
321    c--   need some re-initialisation here to break dependencies
322    cph)
323    # ifdef NONLIN_FRSURF
324    #  ifndef DISABLE_RSTAR_CODE
325              dWtransC(i,j,bi,bj)  = 0. _d 0
326              dWtransU(i,j,bi,bj)  = 0. _d 0
327              dWtransV(i,j,bi,bj)  = 0. _d 0
328    #  endif
329    # endif /* NONLIN_FRSURF */
330    #endif /* ALLOW_AUTODIFF_TAMC */
331             ENDDO
332            ENDDO
333    
334          iMin = 1-OLx+1  C--     Start computation of dynamics
335          iMax = sNx+OLx          iMin = 0
336          jMin = 1-OLy+1          iMax = sNx+1
337          jMax = sNy+OLy          jMin = 0
338            jMax = sNy+1
339  C--     Update fields according to tendency terms  
340          CALL TIMESTEP(  #ifdef ALLOW_AUTODIFF_TAMC
341       I       bi,bj,iMin,iMax,jMin,jMax,myThid)  CADJ STORE wvel (:,:,:,bi,bj) =
342    CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
343  C--     Calculate rho with the appropriate equation of state  #endif /* ALLOW_AUTODIFF_TAMC */
344          CALL FIND_RHO(  
345       I       bi,bj,iMin,iMax,jMin,jMax,myThid)  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
346    C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
347  C--     Calculate static stability and mix where convectively unstable          IF (implicSurfPress.NE.1.) THEN
348          CALL CONVECT(            CALL CALC_GRAD_PHI_SURF(
349       I       bi,bj,iMin,iMax,jMin,jMax,myThid)       I         bi,bj,iMin,iMax,jMin,jMax,
350         I         etaN,
351  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0       O         phiSurfX,phiSurfY,
352          CALL CALC_PH(       I         myThid )                        
353       I       bi,bj,iMin,iMax,jMin,jMax,          ENDIF
354       O       pH,  
355       I       myThid )  #ifdef ALLOW_AUTODIFF_TAMC
356    CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
357          DO K = Nz, 1, -1  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
358           kM1  =max(1,k-1)   ! Points to level above k (=k-1)  #ifdef ALLOW_KPP
359           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  CADJ STORE KPPviscAz (:,:,:,bi,bj)
360           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
361           iMin = 1-OLx+2  #endif /* ALLOW_KPP */
362           iMax = sNx+OLx-1  #endif /* ALLOW_AUTODIFF_TAMC */
363           jMin = 1-OLy+2  
364           jMax = sNy+OLy-1  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
365    C--      Calculate the total vertical diffusivity
366  C--      Get temporary terms used by tendency routines          DO k=1,Nr
367           CALL CALC_COMMON_FACTORS (           CALL CALC_VISCOSITY(
368       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,       I        bi,bj,iMin,iMax,jMin,jMax,k,
369       O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,       O        KappaRU,KappaRV,
370       I        myThid)       I        myThid)
371           ENDDO
372    #endif
373    
374  C--      Calculate accelerations in the momentum equations  #ifdef ALLOW_AUTODIFF_TAMC
375           CALL CALC_MOM_RHS(  CADJ STORE KappaRU(:,:,:)
376       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
377       I        xA,yA,uTrans,vTrans,wTrans,maskC,  CADJ STORE KappaRV(:,:,:)
378       I        pH,  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
379       U        aTerm,xTerm,cTerm,mTerm,pTerm,  #endif /* ALLOW_AUTODIFF_TAMC */
380       U        fZon, fMer, fVerU, fVerV,  
381       I        myThid)  C--     Start of dynamics loop
382            DO k=1,Nr
383    
384    C--       km1    Points to level above k (=k-1)
385    C--       kup    Cycles through 1,2 to point to layer above
386    C--       kDown  Cycles through 2,1 to point to current layer
387    
388              km1  = MAX(1,k-1)
389              kp1  = MIN(k+1,Nr)
390              kup  = 1+MOD(k+1,2)
391              kDown= 1+MOD(k,2)
392    
393    #ifdef ALLOW_AUTODIFF_TAMC
394             kkey = (idynkey-1)*Nr + k
395    c
396    CADJ STORE totphihyd (:,:,k,bi,bj)
397    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
398    CADJ STORE theta (:,:,k,bi,bj)
399    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
400    CADJ STORE salt  (:,:,k,bi,bj)
401    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
402    CADJ STORE gt(:,:,k,bi,bj)
403    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
404    CADJ STORE gs(:,:,k,bi,bj)
405    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
406    # ifdef NONLIN_FRSURF
407    cph-test
408    CADJ STORE  phiHydC (:,:)
409    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
410    CADJ STORE  phiHydF (:,:)
411    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
412    CADJ STORE  gudissip (:,:)
413    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
414    CADJ STORE  gvdissip (:,:)
415    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
416    CADJ STORE  fVerU (:,:,:)
417    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
418    CADJ STORE  fVerV (:,:,:)
419    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
420    CADJ STORE gu(:,:,k,bi,bj)
421    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
422    CADJ STORE gv(:,:,k,bi,bj)
423    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
424    CADJ STORE gunm1(:,:,k,bi,bj)
425    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
426    CADJ STORE gvnm1(:,:,k,bi,bj)
427    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
428    #  ifndef DISABLE_RSTAR_CODE
429    CADJ STORE dwtransc(:,:,bi,bj)
430    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
431    CADJ STORE dwtransu(:,:,bi,bj)
432    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
433    CADJ STORE dwtransv(:,:,bi,bj)
434    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
435    #  endif
436    #  ifdef ALLOW_CD_CODE
437    CADJ STORE unm1(:,:,k,bi,bj)
438    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
439    CADJ STORE vnm1(:,:,k,bi,bj)
440    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
441    CADJ STORE uVelD(:,:,k,bi,bj)
442    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
443    CADJ STORE vVelD(:,:,k,bi,bj)
444    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
445    #  endif
446    # endif
447    # ifdef ALLOW_DEPTH_CONTROL
448    CADJ STORE  fVerU (:,:,:)
449    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
450    CADJ STORE  fVerV (:,:,:)
451    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
452    # endif
453    #endif /* ALLOW_AUTODIFF_TAMC */
454    
455    C--      Integrate hydrostatic balance for phiHyd with BC of
456    C        phiHyd(z=0)=0
457             IF ( implicitIntGravWave ) THEN
458               CALL CALC_PHI_HYD(
459         I        bi,bj,iMin,iMax,jMin,jMax,k,
460         I        gT, gS,
461         U        phiHydF,
462         O        phiHydC, dPhiHydX, dPhiHydY,
463         I        myTime, myIter, myThid )
464             ELSE
465               CALL CALC_PHI_HYD(
466         I        bi,bj,iMin,iMax,jMin,jMax,k,
467         I        theta, salt,
468         U        phiHydF,
469         O        phiHydC, dPhiHydX, dPhiHydY,
470         I        myTime, myIter, myThid )
471             ENDIF
472    
473    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
474    C        and step forward storing the result in gU, gV, etc...
475             IF ( momStepping ) THEN
476               IF (.NOT. vectorInvariantMomentum) THEN
477    #ifdef ALLOW_MOM_FLUXFORM
478    C
479    # ifdef ALLOW_AUTODIFF_TAMC
480    #  ifdef NONLIN_FRSURF
481    #   ifndef DISABLE_RSTAR_CODE
482    CADJ STORE dwtransc(:,:,bi,bj)
483    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
484    CADJ STORE dwtransu(:,:,bi,bj)
485    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
486    CADJ STORE dwtransv(:,:,bi,bj)
487    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
488    #   endif
489    #  endif
490    # endif /* ALLOW_AUTODIFF_TAMC */
491    C
492                  CALL MOM_FLUXFORM(
493         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
494         I         KappaRU, KappaRV,
495         U         fVerU, fVerV,
496         O         guDissip, gvDissip,
497         I         myTime, myIter, myThid)
498    #endif
499               ELSE
500    #ifdef ALLOW_MOM_VECINV
501    C
502    # ifdef ALLOW_AUTODIFF_TAMC
503    #  ifdef NONLIN_FRSURF
504    CADJ STORE fVerU(:,:,:)
505    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
506    CADJ STORE fVerV(:,:,:)
507    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
508    #  endif
509    # endif /* ALLOW_AUTODIFF_TAMC */
510    C
511                 CALL MOM_VECINV(
512         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
513         I         KappaRU, KappaRV,
514         U         fVerU, fVerV,
515         O         guDissip, gvDissip,
516         I         myTime, myIter, myThid)
517    #endif
518               ENDIF
519    C
520               CALL TIMESTEP(
521         I         bi,bj,iMin,iMax,jMin,jMax,k,
522         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
523         I         guDissip, gvDissip,
524         I         myTime, myIter, myThid)
525    
526    #ifdef   ALLOW_OBCS
527    C--      Apply open boundary conditions
528               IF (useOBCS) THEN
529                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
530               ENDIF
531    #endif   /* ALLOW_OBCS */
532    
533  C--      Calculate active tracer tendencies           ENDIF
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
534    
535    
536    C--     end of dynamics k loop (1:Nr)
537          ENDDO          ENDDO
538    
539    C--     Implicit Vertical advection & viscosity
540    #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON))
541            IF ( momImplVertAdv ) THEN
542              CALL MOM_U_IMPLICIT_R( kappaRU,
543         I                           bi, bj, myTime, myIter, myThid )
544              CALL MOM_V_IMPLICIT_R( kappaRV,
545         I                           bi, bj, myTime, myIter, myThid )
546            ELSEIF ( implicitViscosity ) THEN
547    #else /* INCLUDE_IMPLVERTADV_CODE */
548            IF     ( implicitViscosity ) THEN
549    #endif /* INCLUDE_IMPLVERTADV_CODE */
550    #ifdef    ALLOW_AUTODIFF_TAMC
551    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
552    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
553    #endif    /* ALLOW_AUTODIFF_TAMC */
554              CALL IMPLDIFF(
555         I         bi, bj, iMin, iMax, jMin, jMax,
556         I         -1, KappaRU,recip_HFacW,
557         U         gU,
558         I         myThid )
559    #ifdef    ALLOW_AUTODIFF_TAMC
560    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
561    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
562    #endif    /* ALLOW_AUTODIFF_TAMC */
563              CALL IMPLDIFF(
564         I         bi, bj, iMin, iMax, jMin, jMax,
565         I         -2, KappaRV,recip_HFacS,
566         U         gV,
567         I         myThid )
568            ENDIF
569    
570    #ifdef   ALLOW_OBCS
571    C--      Apply open boundary conditions
572            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
573               DO K=1,Nr
574                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
575               ENDDO
576            ENDIF
577    #endif   /* ALLOW_OBCS */
578    
579    #ifdef    ALLOW_CD_CODE
580            IF (implicitViscosity.AND.useCDscheme) THEN
581    #ifdef    ALLOW_AUTODIFF_TAMC
582    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
583    #endif    /* ALLOW_AUTODIFF_TAMC */
584              CALL IMPLDIFF(
585         I         bi, bj, iMin, iMax, jMin, jMax,
586         I         0, KappaRU,recip_HFacW,
587         U         vVelD,
588         I         myThid )
589    #ifdef    ALLOW_AUTODIFF_TAMC
590    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
591    #endif    /* ALLOW_AUTODIFF_TAMC */
592              CALL IMPLDIFF(
593         I         bi, bj, iMin, iMax, jMin, jMax,
594         I         0, KappaRV,recip_HFacS,
595         U         uVelD,
596         I         myThid )
597            ENDIF
598    #endif    /* ALLOW_CD_CODE */
599    C--     End implicit Vertical advection & viscosity
600    
601         ENDDO         ENDDO
602        ENDDO        ENDDO
603    
604    #ifdef ALLOW_OBCS
605          IF (useOBCS) THEN
606           CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
607          ENDIF
608    #endif
609    
610    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
611    
612    #ifdef ALLOW_NONHYDROSTATIC
613    C--   Step forward W field in N-H algorithm
614          IF ( nonHydrostatic ) THEN
615    #ifdef ALLOW_DEBUG
616             IF ( debugLevel .GE. debLevB )
617         &     CALL DEBUG_CALL('CALC_GW', myThid )
618    #endif
619             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
620             CALL CALC_GW(
621         I         KappaRU, KappaRV,
622         I         myTime, myIter, myThid )
623          ENDIF
624          IF ( nonHydrostatic.OR.implicitIntGravWave )
625         &   CALL TIMESTEP_WVEL( myTime, myIter, myThid )
626          IF ( nonHydrostatic )
627         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
628    #endif
629    
630    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
631    
632    Cml(
633    C     In order to compare the variance of phiHydLow of a p/z-coordinate
634    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
635    C     has to be removed by something like the following subroutine:
636    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
637    C     &                'phiHydLow', myThid )
638    Cml)
639    
640    #ifdef ALLOW_DIAGNOSTICS
641          IF ( useDiagnostics ) THEN
642    
643           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
644           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
645    
646           tmpFac = 1. _d 0
647           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
648         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
649    
650           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
651         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
652    
653          ENDIF
654    #endif /* ALLOW_DIAGNOSTICS */
655          
656    #ifdef ALLOW_DEBUG
657          If ( debugLevel .GE. debLevB ) THEN
658           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
659           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
660           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
661           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
662           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
663           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
664           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
665           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
666           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
667           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
668    #ifndef ALLOW_ADAMSBASHFORTH_3
669           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
670           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
671           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
672           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
673    #endif
674          ENDIF
675    #endif
676    
677    #ifdef DYNAMICS_GUGV_EXCH_CHECK
678    C- jmc: For safety checking only: This Exchange here should not change
679    C       the solution. If solution changes, it means something is wrong,
680    C       but it does not mean that it is less wrong with this exchange.
681          IF ( debugLevel .GT. debLevB ) THEN
682           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
683          ENDIF
684    #endif
685    
686    #ifdef ALLOW_DEBUG
687          IF ( debugLevel .GE. debLevB )
688         &   CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
689    #endif
690    
691        RETURN        RETURN
692        END        END

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.135

  ViewVC Help
Powered by ViewVC 1.1.22