/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by adcroft, Wed Apr 29 21:31:09 1998 UTC revision 1.121 by jmc, Sat Jul 30 22:09:38 2005 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
       SUBROUTINE DYNAMICS(myThid)  
 C     /==========================================================\  
 C     | SUBROUTINE DYNAMICS                                      |  
 C     | o Controlling routine for the explicit part of the model |  
 C     |   dynamics.                                              |  
 C     |==========================================================|  
 C     | This routine evaluates the "dynamics" terms for each     |  
 C     | block of ocean in turn. Because the blocks of ocean have |  
 C     | overlap regions they are independent of one another.     |  
 C     | If terms involving lateral integrals are needed in this  |  
 C     | routine care will be needed. Similarly finite-difference |  
 C     | operations with stencils wider than the overlap region   |  
 C     | require special consideration.                           |  
 C     | Notes                                                    |  
 C     | =====                                                    |  
 C     | C*P* comments indicating place holders for which code is |  
 C     |      presently being developed.                          |  
 C     \==========================================================/  
6    
7    CBOP
8    C     !ROUTINE: DYNAMICS
9    C     !INTERFACE:
10          SUBROUTINE DYNAMICS(myTime, myIter, myThid)
11    C     !DESCRIPTION: \bv
12    C     *==========================================================*
13    C     | SUBROUTINE DYNAMICS                                      
14    C     | o Controlling routine for the explicit part of the model  
15    C     |   dynamics.                                              
16    C     *==========================================================*
17    C     | This routine evaluates the "dynamics" terms for each      
18    C     | block of ocean in turn. Because the blocks of ocean have  
19    C     | overlap regions they are independent of one another.      
20    C     | If terms involving lateral integrals are needed in this  
21    C     | routine care will be needed. Similarly finite-difference  
22    C     | operations with stencils wider than the overlap region    
23    C     | require special consideration.                            
24    C     | The algorithm...
25    C     |
26    C     | "Correction Step"
27    C     | =================
28    C     | Here we update the horizontal velocities with the surface
29    C     | pressure such that the resulting flow is either consistent
30    C     | with the free-surface evolution or the rigid-lid:
31    C     |   U[n] = U* + dt x d/dx P
32    C     |   V[n] = V* + dt x d/dy P
33    C     |
34    C     | "Calculation of Gs"
35    C     | ===================
36    C     | This is where all the accelerations and tendencies (ie.
37    C     | physics, parameterizations etc...) are calculated
38    C     |   rho = rho ( theta[n], salt[n] )
39    C     |   b   = b(rho, theta)
40    C     |   K31 = K31 ( rho )
41    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
42    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
43    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
44    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
45    C     |
46    C     | "Time-stepping" or "Prediction"
47    C     | ================================
48    C     | The models variables are stepped forward with the appropriate
49    C     | time-stepping scheme (currently we use Adams-Bashforth II)
50    C     | - For momentum, the result is always *only* a "prediction"
51    C     | in that the flow may be divergent and will be "corrected"
52    C     | later with a surface pressure gradient.
53    C     | - Normally for tracers the result is the new field at time
54    C     | level [n+1} *BUT* in the case of implicit diffusion the result
55    C     | is also *only* a prediction.
56    C     | - We denote "predictors" with an asterisk (*).
57    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
58    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
59    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
61    C     | With implicit diffusion:
62    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
64    C     |   (1 + dt * K * d_zz) theta[n] = theta*
65    C     |   (1 + dt * K * d_zz) salt[n] = salt*
66    C     |
67    C     *==========================================================*
68    C     \ev
69    C     !USES:
70          IMPLICIT NONE
71  C     == Global variables ===  C     == Global variables ===
72  #include "SIZE.h"  #include "SIZE.h"
73  #include "EEPARAMS.h"  #include "EEPARAMS.h"
74  #include "CG2D.h"  #include "PARAMS.h"
75  #include "DYNVARS.h"  #include "DYNVARS.h"
76    #ifdef ALLOW_CD_CODE
77    #include "CD_CODE_VARS.h"
78    #endif
79    #include "GRID.h"
80    #ifdef ALLOW_AUTODIFF_TAMC
81    # include "tamc.h"
82    # include "tamc_keys.h"
83    # include "FFIELDS.h"
84    # include "EOS.h"
85    # ifdef ALLOW_KPP
86    #  include "KPP.h"
87    # endif
88    #endif /* ALLOW_AUTODIFF_TAMC */
89    
90    C     !CALLING SEQUENCE:
91    C     DYNAMICS()
92    C      |
93    C      |-- CALC_GRAD_PHI_SURF
94    C      |
95    C      |-- CALC_VISCOSITY
96    C      |
97    C      |-- CALC_PHI_HYD  
98    C      |
99    C      |-- MOM_FLUXFORM  
100    C      |
101    C      |-- MOM_VECINV    
102    C      |
103    C      |-- TIMESTEP      
104    C      |
105    C      |-- OBCS_APPLY_UV
106    C      |
107    C      |-- IMPLDIFF      
108    C      |
109    C      |-- OBCS_APPLY_UV
110    C      |
111    C      |-- CALL DEBUG_STATS_RL
112    
113    C     !INPUT/OUTPUT PARAMETERS:
114  C     == Routine arguments ==  C     == Routine arguments ==
115    C     myTime - Current time in simulation
116    C     myIter - Current iteration number in simulation
117  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
118          _RL myTime
119          INTEGER myIter
120        INTEGER myThid        INTEGER myThid
121    
122    C     !LOCAL VARIABLES:
123  C     == Local variables  C     == Local variables
124  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
125  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
126  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
127  C                              o vTrans: Meridional transport  C                                    variable.
128  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
129  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
130  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
131  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
132  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
133  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
134  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
135  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
136  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
137  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
138  C                              o fZon: Zonal flux term  C     iMin, iMax     - Ranges and sub-block indices on which calculations
139  C                              o fMer: Meridional flux term  C     jMin, jMax       are applied.
 C                              o fVer: Vertical flux term - note fVer  
 C                                      is "pipelined" in the vertical  
 C                                      so we need an fVer for each  
 C                                      variable.  
 C     iMin, iMax - Ranges and sub-block indices on which calculations  
 C     jMin, jMax   are applied.  
140  C     bi, bj  C     bi, bj
141  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
142  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
143  C                          into fVerTerm  C                      index into fVerTerm.
144        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
145        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
146        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
147        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
148        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
149        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
150        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
151        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
152        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
153        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
154        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
155        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
156        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
157        INTEGER iMin, iMax        INTEGER iMin, iMax
158        INTEGER jMin, jMax        INTEGER jMin, jMax
159        INTEGER bi, bj        INTEGER bi, bj
160        INTEGER i, j        INTEGER i, j
161        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
162    
163    #ifdef ALLOW_DIAGNOSTICS
164          _RL tmpFac
165    #endif /* ALLOW_DIAGNOSTICS */
166    
167    
168    C---    The algorithm...
169    C
170    C       "Correction Step"
171    C       =================
172    C       Here we update the horizontal velocities with the surface
173    C       pressure such that the resulting flow is either consistent
174    C       with the free-surface evolution or the rigid-lid:
175    C         U[n] = U* + dt x d/dx P
176    C         V[n] = V* + dt x d/dy P
177    C
178    C       "Calculation of Gs"
179    C       ===================
180    C       This is where all the accelerations and tendencies (ie.
181    C       physics, parameterizations etc...) are calculated
182    C         rho = rho ( theta[n], salt[n] )
183    C         b   = b(rho, theta)
184    C         K31 = K31 ( rho )
185    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
186    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
187    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
188    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
189    C
190    C       "Time-stepping" or "Prediction"
191    C       ================================
192    C       The models variables are stepped forward with the appropriate
193    C       time-stepping scheme (currently we use Adams-Bashforth II)
194    C       - For momentum, the result is always *only* a "prediction"
195    C       in that the flow may be divergent and will be "corrected"
196    C       later with a surface pressure gradient.
197    C       - Normally for tracers the result is the new field at time
198    C       level [n+1} *BUT* in the case of implicit diffusion the result
199    C       is also *only* a prediction.
200    C       - We denote "predictors" with an asterisk (*).
201    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
202    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
203    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
204    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
205    C       With implicit diffusion:
206    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
207    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
208    C         (1 + dt * K * d_zz) theta[n] = theta*
209    C         (1 + dt * K * d_zz) salt[n] = salt*
210    C---
211    CEOP
212    
213    C-- Call to routine for calculation of
214    C   Eliassen-Palm-flux-forced U-tendency,
215    C   if desired:
216    #ifdef INCLUDE_EP_FORCING_CODE
217          CALL CALC_EP_FORCING(myThid)
218    #endif
219    
220    #ifdef ALLOW_AUTODIFF_TAMC
221    C--   HPF directive to help TAMC
222    CHPF$ INDEPENDENT
223    #endif /* ALLOW_AUTODIFF_TAMC */
224    
225          DO bj=myByLo(myThid),myByHi(myThid)
226    
227    #ifdef ALLOW_AUTODIFF_TAMC
228    C--    HPF directive to help TAMC
229    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
230    CHPF$&                  ,phiHydF
231    CHPF$&                  ,KappaRU,KappaRV
232    CHPF$&                  )
233    #endif /* ALLOW_AUTODIFF_TAMC */
234    
235           DO bi=myBxLo(myThid),myBxHi(myThid)
236    
237    #ifdef ALLOW_AUTODIFF_TAMC
238              act1 = bi - myBxLo(myThid)
239              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
240              act2 = bj - myByLo(myThid)
241              max2 = myByHi(myThid) - myByLo(myThid) + 1
242              act3 = myThid - 1
243              max3 = nTx*nTy
244              act4 = ikey_dynamics - 1
245              idynkey = (act1 + 1) + act2*max1
246         &                      + act3*max1*max2
247         &                      + act4*max1*max2*max3
248    #endif /* ALLOW_AUTODIFF_TAMC */
249    
250  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
251  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
252  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
253  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
254  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0.*1. _d 37  
         yA(i,j)      = 0.*1. _d 37  
         uTrans(i,j)  = 0.*1. _d 37  
         vTrans(i,j)  = 0.*1. _d 37  
         aTerm(i,j)   = 0.*1. _d 37  
         xTerm(i,j)   = 0.*1. _d 37  
         cTerm(i,j)   = 0.*1. _d 37  
         mTerm(i,j)   = 0.*1. _d 37  
         pTerm(i,j)   = 0.*1. _d 37  
         fZon(i,j)    = 0.*1. _d 37  
         fMer(i,j)    = 0.*1. _d 37  
         DO K=1,nZ  
          pH (i,j,k)  = 0.*1. _d 37  
         ENDDO  
         rhokm1(i,j)    = 0. _d 0  
         rhokp1(i,j)    = 0. _d 0  
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
        ENDDO  
       ENDDO  
255    
256        DO bj=myByLo(myThid),myByHi(myThid)          DO k=1,Nr
257         DO bi=myBxLo(myThid),myBxHi(myThid)           DO j=1-OLy,sNy+OLy
258              DO i=1-OLx,sNx+OLx
259  C--   Boundary condition on hydrostatic pressure is pH(z=0)=0             KappaRU(i,j,k) = 0. _d 0
260               KappaRV(i,j,k) = 0. _d 0
261    #ifdef ALLOW_AUTODIFF_TAMC
262    cph(
263    c--   need some re-initialisation here to break dependencies
264    cph)
265               gu(i,j,k,bi,bj) = 0. _d 0
266               gv(i,j,k,bi,bj) = 0. _d 0
267    #endif
268              ENDDO
269             ENDDO
270            ENDDO
271          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
272           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
273            pH(i,j,1) = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
274              fVerU  (i,j,2) = 0. _d 0
275              fVerV  (i,j,1) = 0. _d 0
276              fVerV  (i,j,2) = 0. _d 0
277              phiHydF (i,j)  = 0. _d 0
278              phiHydC (i,j)  = 0. _d 0
279              dPhiHydX(i,j)  = 0. _d 0
280              dPhiHydY(i,j)  = 0. _d 0
281              phiSurfX(i,j)  = 0. _d 0
282              phiSurfY(i,j)  = 0. _d 0
283              guDissip(i,j)  = 0. _d 0
284              gvDissip(i,j)  = 0. _d 0
285           ENDDO           ENDDO
286          ENDDO          ENDDO
287    
288          iMin = 1-OLx+1  C--     Start computation of dynamics
289          iMax = sNx+OLx          iMin = 0
290          jMin = 1-OLy+1          iMax = sNx+1
291          jMax = sNy+OLy          jMin = 0
292            jMax = sNy+1
293  C--     Update fields according to tendency terms  
294          CALL TIMESTEP(  #ifdef ALLOW_AUTODIFF_TAMC
295       I       bi,bj,iMin,iMax,jMin,jMax,myThid)  CADJ STORE wvel (:,:,:,bi,bj) =
296    CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
297          DO K=2,Nz  #endif /* ALLOW_AUTODIFF_TAMC */
298  C Density of K-1 level (above W(K)) reference to K level  
299           CALL FIND_RHO(  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
300       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
301       O      rhoKm1,          IF (implicSurfPress.NE.1.) THEN
302       I      myThid )            CALL CALC_GRAD_PHI_SURF(
303  C Density of K level (below W(K)) reference to K level       I         bi,bj,iMin,iMax,jMin,jMax,
304           CALL FIND_RHO(       I         etaN,
305       I      bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',       O         phiSurfX,phiSurfY,
306       O      rhoKp1,       I         myThid )                        
307       I      myThid )          ENDIF
308  C--     Calculate static stability and mix where convectively unstable  
309           CALL CONVECT(  #ifdef ALLOW_AUTODIFF_TAMC
310       I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,myThid)  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
311  C Density of K-1 level (above W(K)) reference to K-1 level  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
312           CALL FIND_RHO(  #ifdef ALLOW_KPP
313       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',  CADJ STORE KPPviscAz (:,:,:,bi,bj)
314       O      rhoKm1,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
315       I      myThid )  #endif /* ALLOW_KPP */
316  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  #endif /* ALLOW_AUTODIFF_TAMC */
317           CALL CALC_PH(  
318       I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
319       U       pH,  C--      Calculate the total vertical diffusivity
320       I       myThid )          DO k=1,Nr
321          ENDDO ! K           CALL CALC_VISCOSITY(
322         I        bi,bj,iMin,iMax,jMin,jMax,k,
323  C Density of Nz level (bottom level) reference to Nz level       O        KappaRU,KappaRV,
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax,  Nz, Nz, 'LINEAR',  
      O      rhoKm1,  
      I      myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
          CALL CALC_PH(  
      I       bi,bj,iMin,iMax,jMin,jMax,Nz+1,rhoKm1,  
      U       pH,  
      I       myThid )  
   
         DO K = Nz, 1, -1  
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
324       I        myThid)       I        myThid)
325           ENDDO
326    #endif
327    
328  C--      Calculate accelerations in the momentum equations  #ifdef ALLOW_AUTODIFF_TAMC
329           CALL CALC_MOM_RHS(  CADJ STORE KappaRU(:,:,:)
330       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
331       I        xA,yA,uTrans,vTrans,wTrans,maskC,  CADJ STORE KappaRV(:,:,:)
332       I        pH,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
333       U        aTerm,xTerm,cTerm,mTerm,pTerm,  #endif /* ALLOW_AUTODIFF_TAMC */
334       U        fZon, fMer, fVerU, fVerV,  
335       I        myThid)  C--     Start of dynamics loop
336            DO k=1,Nr
337    
338    C--       km1    Points to level above k (=k-1)
339    C--       kup    Cycles through 1,2 to point to layer above
340    C--       kDown  Cycles through 2,1 to point to current layer
341    
342              km1  = MAX(1,k-1)
343              kp1  = MIN(k+1,Nr)
344              kup  = 1+MOD(k+1,2)
345              kDown= 1+MOD(k,2)
346    
347    #ifdef ALLOW_AUTODIFF_TAMC
348             kkey = (idynkey-1)*Nr + k
349    c
350    CADJ STORE totphihyd (:,:,k,bi,bj)
351    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
352    CADJ STORE theta (:,:,k,bi,bj)
353    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
354    CADJ STORE salt  (:,:,k,bi,bj)
355    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
356    #endif /* ALLOW_AUTODIFF_TAMC */
357    
358    C--      Integrate hydrostatic balance for phiHyd with BC of
359    C        phiHyd(z=0)=0
360             CALL CALC_PHI_HYD(
361         I        bi,bj,iMin,iMax,jMin,jMax,k,
362         I        theta, salt,
363         U        phiHydF,
364         O        phiHydC, dPhiHydX, dPhiHydY,
365         I        myTime, myIter, myThid )
366    
367    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
368    C        and step forward storing the result in gU, gV, etc...
369             IF ( momStepping ) THEN
370    #ifdef ALLOW_MOM_FLUXFORM
371               IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
372         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
373         I         KappaRU, KappaRV,
374         U         fVerU, fVerV,
375         O         guDissip, gvDissip,
376         I         myTime, myIter, myThid)
377    #endif
378    #ifdef ALLOW_MOM_VECINV
379               IF (vectorInvariantMomentum) CALL MOM_VECINV(
380         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
381         I         KappaRU, KappaRV,
382         U         fVerU, fVerV,
383         O         guDissip, gvDissip,
384         I         myTime, myIter, myThid)
385    #endif
386               CALL TIMESTEP(
387         I         bi,bj,iMin,iMax,jMin,jMax,k,
388         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
389         I         guDissip, gvDissip,
390         I         myTime, myIter, myThid)
391    
392    #ifdef   ALLOW_OBCS
393    C--      Apply open boundary conditions
394               IF (useOBCS) THEN
395                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
396               ENDIF
397    #endif   /* ALLOW_OBCS */
398    
399  C--      Calculate active tracer tendencies           ENDIF
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
400    
401    
402    C--     end of dynamics k loop (1:Nr)
403          ENDDO          ENDDO
404    
405    C--     Implicit Vertical advection & viscosity
406    #ifdef INCLUDE_IMPLVERTADV_CODE
407            IF ( momImplVertAdv ) THEN
408              CALL MOM_U_IMPLICIT_R( kappaRU,
409         I                           bi, bj, myTime, myIter, myThid )
410              CALL MOM_V_IMPLICIT_R( kappaRV,
411         I                           bi, bj, myTime, myIter, myThid )
412            ELSEIF ( implicitViscosity ) THEN
413    #else /* INCLUDE_IMPLVERTADV_CODE */
414            IF     ( implicitViscosity ) THEN
415    #endif /* INCLUDE_IMPLVERTADV_CODE */
416    #ifdef    ALLOW_AUTODIFF_TAMC
417    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
418    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
419    #endif    /* ALLOW_AUTODIFF_TAMC */
420              CALL IMPLDIFF(
421         I         bi, bj, iMin, iMax, jMin, jMax,
422         I         0, KappaRU,recip_HFacW,
423         U         gU,
424         I         myThid )
425    #ifdef    ALLOW_AUTODIFF_TAMC
426    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
427    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
428    #endif    /* ALLOW_AUTODIFF_TAMC */
429              CALL IMPLDIFF(
430         I         bi, bj, iMin, iMax, jMin, jMax,
431         I         0, KappaRV,recip_HFacS,
432         U         gV,
433         I         myThid )
434            ENDIF
435    
436    #ifdef   ALLOW_OBCS
437    C--      Apply open boundary conditions
438            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
439               DO K=1,Nr
440                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
441               ENDDO
442            ENDIF
443    #endif   /* ALLOW_OBCS */
444    
445    #ifdef    ALLOW_CD_CODE
446            IF (implicitViscosity.AND.useCDscheme) THEN
447    #ifdef    ALLOW_AUTODIFF_TAMC
448    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
449    #endif    /* ALLOW_AUTODIFF_TAMC */
450              CALL IMPLDIFF(
451         I         bi, bj, iMin, iMax, jMin, jMax,
452         I         0, KappaRU,recip_HFacW,
453         U         vVelD,
454         I         myThid )
455    #ifdef    ALLOW_AUTODIFF_TAMC
456    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
457    #endif    /* ALLOW_AUTODIFF_TAMC */
458              CALL IMPLDIFF(
459         I         bi, bj, iMin, iMax, jMin, jMax,
460         I         0, KappaRV,recip_HFacS,
461         U         uVelD,
462         I         myThid )
463            ENDIF
464    #endif    /* ALLOW_CD_CODE */
465    C--     End implicit Vertical advection & viscosity
466    
467         ENDDO         ENDDO
468        ENDDO        ENDDO
469    
470    #ifdef ALLOW_OBCS
471          IF (useOBCS) THEN
472           CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
473          ENDIF
474    #endif
475    
476    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
477    
478    Cml(
479    C     In order to compare the variance of phiHydLow of a p/z-coordinate
480    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
481    C     has to be removed by something like the following subroutine:
482    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
483    C     &                'phiHydLow', myThid )
484    Cml)
485    
486    #ifdef ALLOW_DIAGNOSTICS
487          IF ( usediagnostics ) THEN
488    
489           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
490           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
491    
492           tmpFac = 1. _d 0
493           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
494         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
495    
496           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
497         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
498    
499          ENDIF
500    #endif /* ALLOW_DIAGNOSTICS */
501          
502    #ifdef ALLOW_DEBUG
503          If ( debugLevel .GE. debLevB ) THEN
504           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
505           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
506           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
507           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
508           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
509           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
510           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
511           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
512           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
513           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
514    #ifndef ALLOW_ADAMSBASHFORTH_3
515           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
516           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
517           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
518           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
519    #endif
520          ENDIF
521    #endif
522    
523        RETURN        RETURN
524        END        END

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.121

  ViewVC Help
Powered by ViewVC 1.1.22