/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by cnh, Mon May 25 16:17:36 1998 UTC revision 1.169 by gforget, Thu Feb 6 23:16:46 2014 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6        SUBROUTINE DYNAMICS(myThid)  #ifdef ALLOW_MOM_COMMON
7  C     /==========================================================\  # include "MOM_COMMON_OPTIONS.h"
8  C     | SUBROUTINE DYNAMICS                                      |  #endif
9  C     | o Controlling routine for the explicit part of the model |  #ifdef ALLOW_OBCS
10  C     |   dynamics.                                              |  # include "OBCS_OPTIONS.h"
11  C     |==========================================================|  #endif
12  C     | This routine evaluates the "dynamics" terms for each     |  
13  C     | block of ocean in turn. Because the blocks of ocean have |  #undef DYNAMICS_GUGV_EXCH_CHECK
14  C     | overlap regions they are independent of one another.     |  
15  C     | If terms involving lateral integrals are needed in this  |  CBOP
16  C     | routine care will be needed. Similarly finite-difference |  C     !ROUTINE: DYNAMICS
17  C     | operations with stencils wider than the overlap region   |  C     !INTERFACE:
18  C     | require special consideration.                           |        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
19  C     | Notes                                                    |  C     !DESCRIPTION: \bv
20  C     | =====                                                    |  C     *==========================================================*
21  C     | C*P* comments indicating place holders for which code is |  C     | SUBROUTINE DYNAMICS
22  C     |      presently being developed.                          |  C     | o Controlling routine for the explicit part of the model
23  C     \==========================================================/  C     |   dynamics.
24    C     *==========================================================*
25    C     | This routine evaluates the "dynamics" terms for each
26    C     | block of ocean in turn. Because the blocks of ocean have
27    C     | overlap regions they are independent of one another.
28    C     | If terms involving lateral integrals are needed in this
29    C     | routine care will be needed. Similarly finite-difference
30    C     | operations with stencils wider than the overlap region
31    C     | require special consideration.
32    C     | The algorithm...
33    C     |
34    C     | "Correction Step"
35    C     | =================
36    C     | Here we update the horizontal velocities with the surface
37    C     | pressure such that the resulting flow is either consistent
38    C     | with the free-surface evolution or the rigid-lid:
39    C     |   U[n] = U* + dt x d/dx P
40    C     |   V[n] = V* + dt x d/dy P
41    C     |   W[n] = W* + dt x d/dz P  (NH mode)
42    C     |
43    C     | "Calculation of Gs"
44    C     | ===================
45    C     | This is where all the accelerations and tendencies (ie.
46    C     | physics, parameterizations etc...) are calculated
47    C     |   rho = rho ( theta[n], salt[n] )
48    C     |   b   = b(rho, theta)
49    C     |   K31 = K31 ( rho )
50    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
51    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
52    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
53    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
54    C     |
55    C     | "Time-stepping" or "Prediction"
56    C     | ================================
57    C     | The models variables are stepped forward with the appropriate
58    C     | time-stepping scheme (currently we use Adams-Bashforth II)
59    C     | - For momentum, the result is always *only* a "prediction"
60    C     | in that the flow may be divergent and will be "corrected"
61    C     | later with a surface pressure gradient.
62    C     | - Normally for tracers the result is the new field at time
63    C     | level [n+1} *BUT* in the case of implicit diffusion the result
64    C     | is also *only* a prediction.
65    C     | - We denote "predictors" with an asterisk (*).
66    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
67    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
68    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     | With implicit diffusion:
71    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
72    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
73    C     |   (1 + dt * K * d_zz) theta[n] = theta*
74    C     |   (1 + dt * K * d_zz) salt[n] = salt*
75    C     |
76    C     *==========================================================*
77    C     \ev
78    C     !USES:
79          IMPLICIT NONE
80  C     == Global variables ===  C     == Global variables ===
81  #include "SIZE.h"  #include "SIZE.h"
82  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
83  #include "PARAMS.h"  #include "PARAMS.h"
84    #include "GRID.h"
85  #include "DYNVARS.h"  #include "DYNVARS.h"
86    #ifdef ALLOW_MOM_COMMON
87    # include "MOM_VISC.h"
88    #endif
89    #ifdef ALLOW_CD_CODE
90    # include "CD_CODE_VARS.h"
91    #endif
92    #ifdef ALLOW_AUTODIFF_TAMC
93    # include "tamc.h"
94    # include "tamc_keys.h"
95    # include "FFIELDS.h"
96    # include "EOS.h"
97    # ifdef ALLOW_KPP
98    #  include "KPP.h"
99    # endif
100    # ifdef ALLOW_PTRACERS
101    #  include "PTRACERS_SIZE.h"
102    #  include "PTRACERS_FIELDS.h"
103    # endif
104    # ifdef ALLOW_OBCS
105    #  include "OBCS_PARAMS.h"
106    #  include "OBCS_FIELDS.h"
107    #  ifdef ALLOW_PTRACERS
108    #   include "OBCS_PTRACERS.h"
109    #  endif
110    # endif
111    # ifdef ALLOW_MOM_FLUXFORM
112    #  include "MOM_FLUXFORM.h"
113    # endif
114    #endif /* ALLOW_AUTODIFF_TAMC */
115    
116    C     !CALLING SEQUENCE:
117    C     DYNAMICS()
118    C      |
119    C      |-- CALC_EP_FORCING
120    C      |
121    C      |-- CALC_GRAD_PHI_SURF
122    C      |
123    C      |-- CALC_VISCOSITY
124    C      |
125    C      |-- MOM_CALC_3D_STRAIN
126    C      |
127    C      |-- CALC_EDDY_STRESS
128    C      |
129    C      |-- CALC_PHI_HYD
130    C      |
131    C      |-- MOM_FLUXFORM
132    C      |
133    C      |-- MOM_VECINV
134    C      |
135    C      |-- MOM_CALC_SMAG_3D
136    C      |-- MOM_UV_SMAG_3D
137    C      |
138    C      |-- TIMESTEP
139    C      |
140    C      |-- MOM_U_IMPLICIT_R
141    C      |-- MOM_V_IMPLICIT_R
142    C      |
143    C      |-- IMPLDIFF
144    C      |
145    C      |-- OBCS_APPLY_UV
146    C      |
147    C      |-- CALC_GW
148    C      |
149    C      |-- DIAGNOSTICS_FILL
150    C      |-- DEBUG_STATS_RL
151    
152    C     !INPUT/OUTPUT PARAMETERS:
153  C     == Routine arguments ==  C     == Routine arguments ==
154  C     myThid - Thread number for this instance of the routine.  C     myTime :: Current time in simulation
155    C     myIter :: Current iteration number in simulation
156    C     myThid :: Thread number for this instance of the routine.
157          _RL myTime
158          INTEGER myIter
159        INTEGER myThid        INTEGER myThid
160    
161    C     !FUNCTIONS:
162    #ifdef ALLOW_DIAGNOSTICS
163          LOGICAL  DIAGNOSTICS_IS_ON
164          EXTERNAL DIAGNOSTICS_IS_ON
165    #endif
166    
167    C     !LOCAL VARIABLES:
168  C     == Local variables  C     == Local variables
169  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
170  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
171  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
172  C                              o vTrans: Meridional transport  C                                    variable.
173  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
174  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
175  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
176  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
177  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
178  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
179  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
180  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
181  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
182  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
183  C                              o fZon: Zonal flux term  C     KappaRU    :: vertical viscosity for velocity U-component
184  C                              o fMer: Meridional flux term  C     KappaRV    :: vertical viscosity for velocity V-component
185  C                              o fVer: Vertical flux term - note fVer  C     iMin, iMax :: Ranges and sub-block indices on which calculations
186  C                                      is "pipelined" in the vertical  C     jMin, jMax    are applied.
187  C                                      so we need an fVer for each  C     bi, bj     :: tile indices
188  C                                      variable.  C     k          :: current level index
189  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     km1, kp1   :: index of level above (k-1) and below (k+1)
190  C     jMin, jMax   are applied.  C     kUp, kDown :: Index for interface above and below. kUp and kDown are
191  C     bi, bj  C                   are switched with k to be the appropriate index into fVerU,V
192  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
193  C                          are switched with layer to be the appropriate index        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
194  C                          into fVerTerm        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
195        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
196        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
197        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
198        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
199        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
200        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
201        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
202        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
203        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
204        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  #ifdef ALLOW_SMAG_3D
205        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str11       :: strain component Vxx @ grid-cell center
206        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str22       :: strain component Vyy @ grid-cell center
207        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str33       :: strain component Vzz @ grid-cell center
208        _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     str12       :: strain component Vxy @ grid-cell corner
209        _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  C     str13       :: strain component Vxz @ above uVel
210        _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  C     str23       :: strain component Vyz @ above vVel
211        _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  C     viscAh3d_00 :: Smagorinsky viscosity @ grid-cell center
212        _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  C     viscAh3d_12 :: Smagorinsky viscosity @ grid-cell corner
213        _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  C     viscAh3d_13 :: Smagorinsky viscosity @ above uVel
214        _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     viscAh3d_23 :: Smagorinsky viscosity @ above vVel
215        _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     addDissU    :: zonal momentum tendency from 3-D Smag. viscosity
216        _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  C     addDissV    :: merid momentum tendency from 3-D Smag. viscosity
217        _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL str11(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
218        _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)        _RL str22(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
219        _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)        _RL str33(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
220        _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)        _RL str12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
221        _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL str13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
222        INTEGER iMin, iMax        _RL str23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
223        INTEGER jMin, jMax        _RL viscAh3d_00(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
224          _RL viscAh3d_12(1-OLx:sNx+OLx,1-OLy:sNy+OLy, Nr )
225          _RL viscAh3d_13(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
226          _RL viscAh3d_23(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1)
227          _RL addDissU(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
228          _RL addDissV(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
229    #elif ( defined ALLOW_NONHYDROSTATIC )
230          _RL str13(1), str23(1), str33(1)
231          _RL viscAh3d_00(1), viscAh3d_13(1), viscAh3d_23(1)
232    #endif
233    
234        INTEGER bi, bj        INTEGER bi, bj
235        INTEGER i, j        INTEGER i, j
236        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kUp, kDown
237          INTEGER iMin, iMax
238          INTEGER jMin, jMax
239          PARAMETER( iMin = 0 , iMax = sNx+1 )
240          PARAMETER( jMin = 0 , jMax = sNy+1 )
241    
242    #ifdef ALLOW_DIAGNOSTICS
243          LOGICAL dPhiHydDiagIsOn
244          _RL tmpFac
245    #endif /* ALLOW_DIAGNOSTICS */
246    
247    C---    The algorithm...
248    C
249    C       "Correction Step"
250    C       =================
251    C       Here we update the horizontal velocities with the surface
252    C       pressure such that the resulting flow is either consistent
253    C       with the free-surface evolution or the rigid-lid:
254    C         U[n] = U* + dt x d/dx P
255    C         V[n] = V* + dt x d/dy P
256    C
257    C       "Calculation of Gs"
258    C       ===================
259    C       This is where all the accelerations and tendencies (ie.
260    C       physics, parameterizations etc...) are calculated
261    C         rho = rho ( theta[n], salt[n] )
262    C         b   = b(rho, theta)
263    C         K31 = K31 ( rho )
264    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
265    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
266    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
267    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
268    C
269    C       "Time-stepping" or "Prediction"
270    C       ================================
271    C       The models variables are stepped forward with the appropriate
272    C       time-stepping scheme (currently we use Adams-Bashforth II)
273    C       - For momentum, the result is always *only* a "prediction"
274    C       in that the flow may be divergent and will be "corrected"
275    C       later with a surface pressure gradient.
276    C       - Normally for tracers the result is the new field at time
277    C       level [n+1} *BUT* in the case of implicit diffusion the result
278    C       is also *only* a prediction.
279    C       - We denote "predictors" with an asterisk (*).
280    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
281    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
282    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
283    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
284    C       With implicit diffusion:
285    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
286    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
287    C         (1 + dt * K * d_zz) theta[n] = theta*
288    C         (1 + dt * K * d_zz) salt[n] = salt*
289    C---
290    CEOP
291    
292    #ifdef ALLOW_DEBUG
293          IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
294    #endif
295    
296    #ifdef ALLOW_DIAGNOSTICS
297          dPhiHydDiagIsOn = .FALSE.
298          IF ( useDiagnostics )
299         &  dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
300         &               .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
301    #endif
302    
303    C-- Call to routine for calculation of Eliassen-Palm-flux-forced
304    C    U-tendency, if desired:
305    #ifdef INCLUDE_EP_FORCING_CODE
306          CALL CALC_EP_FORCING(myThid)
307    #endif
308    
309    #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
310          CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
311    #endif
312    
313    #ifdef ALLOW_AUTODIFF_TAMC
314    C--   HPF directive to help TAMC
315    CHPF$ INDEPENDENT
316    #endif /* ALLOW_AUTODIFF_TAMC */
317    
318          DO bj=myByLo(myThid),myByHi(myThid)
319    
320    #ifdef ALLOW_AUTODIFF_TAMC
321    C--    HPF directive to help TAMC
322    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
323    CHPF$&                  ,phiHydF
324    CHPF$&                  ,KappaRU,KappaRV
325    CHPF$&                  )
326    #endif /* ALLOW_AUTODIFF_TAMC */
327    
328           DO bi=myBxLo(myThid),myBxHi(myThid)
329    
330    #ifdef ALLOW_AUTODIFF_TAMC
331              act1 = bi - myBxLo(myThid)
332              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
333              act2 = bj - myByLo(myThid)
334              max2 = myByHi(myThid) - myByLo(myThid) + 1
335              act3 = myThid - 1
336              max3 = nTx*nTy
337              act4 = ikey_dynamics - 1
338              idynkey = (act1 + 1) + act2*max1
339         &                      + act3*max1*max2
340         &                      + act4*max1*max2*max3
341    #endif /* ALLOW_AUTODIFF_TAMC */
342    
343  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
344  C     These inital values do not alter the numerical results. They  C     These initial values do not alter the numerical results. They
345  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
346  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
347  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0. _d 0  
         yA(i,j)      = 0. _d 0  
         uTrans(i,j)  = 0. _d 0  
         vTrans(i,j)  = 0. _d 0  
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
        ENDDO  
       ENDDO  
348    
349        DO bj=myByLo(myThid),myByHi(myThid)  #ifdef ALLOW_AUTODIFF
350         DO bi=myBxLo(myThid),myBxHi(myThid)          DO k=1,Nr
351             DO j=1-OLy,sNy+OLy
352  C--     Boundary condition on hydrostatic pressure is pH(z=0)=0            DO i=1-OLx,sNx+OLx
353          DO j=1-OLy,sNy+OLy  c--   need some re-initialisation here to break dependencies
354           DO i=1-OLx,sNx+OLx             gU(i,j,k,bi,bj) = 0. _d 0
355            pH(i,j,1) = 0. _d 0             gV(i,j,k,bi,bj) = 0. _d 0
356            K13(i,j,1) = 0. _d 0            ENDDO
           K23(i,j,1) = 0. _d 0  
           K33(i,j,1) = 0. _d 0  
           KapGM(i,j) = 0. _d 0  
357           ENDDO           ENDDO
358          ENDDO          ENDDO
359    #endif /* ALLOW_AUTODIFF */
 C--     Set up work arrays that need valid initial values  
360          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
361           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
362            wTrans(i,j)  = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
363            fVerT(i,j,1) = 0. _d 0            fVerU  (i,j,2) = 0. _d 0
364            fVerT(i,j,2) = 0. _d 0            fVerV  (i,j,1) = 0. _d 0
365            fVerS(i,j,1) = 0. _d 0            fVerV  (i,j,2) = 0. _d 0
366            fVerS(i,j,2) = 0. _d 0            phiHydF (i,j)  = 0. _d 0
367            fVerU(i,j,1) = 0. _d 0            phiHydC (i,j)  = 0. _d 0
368            fVerU(i,j,2) = 0. _d 0  #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
369            fVerV(i,j,1) = 0. _d 0            dPhiHydX(i,j)  = 0. _d 0
370            fVerV(i,j,2) = 0. _d 0            dPhiHydY(i,j)  = 0. _d 0
371    #endif
372              phiSurfX(i,j)  = 0. _d 0
373              phiSurfY(i,j)  = 0. _d 0
374              guDissip(i,j)  = 0. _d 0
375              gvDissip(i,j)  = 0. _d 0
376    #ifdef ALLOW_AUTODIFF
377              phiHydLow(i,j,bi,bj) = 0. _d 0
378    # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
379    #  ifndef DISABLE_RSTAR_CODE
380              dWtransC(i,j,bi,bj) = 0. _d 0
381              dWtransU(i,j,bi,bj) = 0. _d 0
382              dWtransV(i,j,bi,bj) = 0. _d 0
383    #  endif
384    # endif
385    #endif /* ALLOW_AUTODIFF */
386           ENDDO           ENDDO
387          ENDDO          ENDDO
388    
389          iMin = 1-OLx+1  C--     Start computation of dynamics
390          iMax = sNx+OLx  
391          jMin = 1-OLy+1  #ifdef ALLOW_AUTODIFF_TAMC
392          jMax = sNy+OLy  CADJ STORE wVel (:,:,:,bi,bj) =
393    CADJ &     comlev1_bibj, key=idynkey, byte=isbyte
394  C--     Calculate gradient of surface pressure  #endif /* ALLOW_AUTODIFF_TAMC */
395          CALL GRAD_PSURF(  
396       I       bi,bj,iMin,iMax,jMin,jMax,  C--     Explicit part of the Surface Potential Gradient (add in TIMESTEP)
397       O       pSurfX,pSurfY,  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
398       I       myThid)          IF (implicSurfPress.NE.1.) THEN
399              CALL CALC_GRAD_PHI_SURF(
400  C--     Update fields in top level according to tendency terms       I         bi,bj,iMin,iMax,jMin,jMax,
401          CALL TIMESTEP(       I         etaN,
402       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)       O         phiSurfX,phiSurfY,
403         I         myThid )
404  C--     Density of 1st level (below W(1)) reference to level 1          ENDIF
405          CALL FIND_RHO(  
406       I     bi, bj, iMin, iMax, jMin, jMax, 1, 1, 'LINEAR',  #ifdef ALLOW_AUTODIFF_TAMC
407       O     rhoKm1,  CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
408       I     myThid )  CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
409  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  #ifdef ALLOW_KPP
410          CALL CALC_PH(  CADJ STORE KPPviscAz (:,:,:,bi,bj)
411       I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
412       U      pH,  #endif /* ALLOW_KPP */
413       I      myThid )  #endif /* ALLOW_AUTODIFF_TAMC */
414    
415          DO K=2,Nz  #ifndef ALLOW_AUTODIFF
416  C--     Update fields in Kth level according to tendency terms          IF ( .NOT.momViscosity ) THEN
417          CALL TIMESTEP(  #endif
418       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)            DO k=1,Nr
419  C--     Density of K-1 level (above W(K)) reference to K level             DO j=1-OLy,sNy+OLy
420          CALL FIND_RHO(              DO i=1-OLx,sNx+OLx
421       I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',               KappaRU(i,j,k) = 0. _d 0
422       O     rhoKm1,               KappaRV(i,j,k) = 0. _d 0
423       I     myThid )              ENDDO
424  C--     Density of K level (below W(K)) reference to K level             ENDDO
425          CALL FIND_RHO(            ENDDO
426       I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  #ifndef ALLOW_AUTODIFF
427       O     rhoKp1,          ENDIF
428       I     myThid )  #endif
429  C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
430          CALL CALC_ISOSLOPES(  C--     Calculate the total vertical viscosity
431       I            bi, bj, iMin, iMax, jMin, jMax, K,          IF ( momViscosity ) THEN
432       I            rhoKm1, rhoKp1,            CALL CALC_VISCOSITY(
433       O            K13, K23, K33, KapGM,       I            bi,bj, iMin,iMax,jMin,jMax,
434         O            KappaRU, KappaRV,
435       I            myThid )       I            myThid )
436  C--     Calculate static stability and mix where convectively unstable          ENDIF
437          CALL CONVECT(  #endif /* INCLUDE_CALC_DIFFUSIVITY_CALL */
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,myThid)  
 C--     Density of K-1 level (above W(K)) reference to K-1 level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',  
      O     rhoKm1,  
      I     myThid )  
 C--     Density of K level (below W(K)) referenced to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O     rhoKp1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      U      pH,  
      I      myThid )  
438    
439          ENDDO  #ifdef ALLOW_SMAG_3D
440            IF ( useSmag3D ) THEN
441              CALL MOM_CALC_3D_STRAIN(
442         O         str11, str22, str33, str12, str13, str23,
443         I         bi, bj, myThid )
444            ENDIF
445    #endif /* ALLOW_SMAG_3D */
446    
447    #ifdef ALLOW_AUTODIFF_TAMC
448    CADJ STORE KappaRU(:,:,:)
449    CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
450    CADJ STORE KappaRV(:,:,:)
451    CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
452    #endif /* ALLOW_AUTODIFF_TAMC */
453    
454    #ifdef ALLOW_OBCS
455    C--   For Stevens boundary conditions velocities need to be extrapolated
456    C     (copied) to a narrow strip outside the domain
457            IF ( useOBCS ) THEN
458              CALL OBCS_COPY_UV_N(
459         U         uVel(1-OLx,1-OLy,1,bi,bj),
460         U         vVel(1-OLx,1-OLy,1,bi,bj),
461         I         Nr, bi, bj, myThid )
462            ENDIF
463    #endif /* ALLOW_OBCS */
464    
465    #ifdef ALLOW_EDDYPSI
466            CALL CALC_EDDY_STRESS(bi,bj,myThid)
467    #endif
468    
469    C--     Start of dynamics loop
470            DO k=1,Nr
471    
472    C--       km1    Points to level above k (=k-1)
473    C--       kup    Cycles through 1,2 to point to layer above
474    C--       kDown  Cycles through 2,1 to point to current layer
475    
476              km1  = MAX(1,k-1)
477              kp1  = MIN(k+1,Nr)
478              kup  = 1+MOD(k+1,2)
479              kDown= 1+MOD(k,2)
480    
481    #ifdef ALLOW_AUTODIFF_TAMC
482             kkey = (idynkey-1)*Nr + k
483    CADJ STORE totPhiHyd (:,:,k,bi,bj)
484    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
485    CADJ STORE phiHydLow (:,:,bi,bj)
486    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte    
487    CADJ STORE theta (:,:,k,bi,bj)
488    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
489    CADJ STORE salt  (:,:,k,bi,bj)
490    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
491    CADJ STORE gT(:,:,k,bi,bj)
492    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
493    CADJ STORE gS(:,:,k,bi,bj)
494    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
495    # ifdef NONLIN_FRSURF
496    cph-test
497    CADJ STORE  phiHydC (:,:)
498    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
499    CADJ STORE  phiHydF (:,:)
500    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
501    CADJ STORE gU(:,:,k,bi,bj)
502    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
503    CADJ STORE gV(:,:,k,bi,bj)
504    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
505    #  ifndef ALLOW_ADAMSBASHFORTH_3
506    CADJ STORE guNm1(:,:,k,bi,bj)
507    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
508    CADJ STORE gvNm1(:,:,k,bi,bj)
509    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
510    #  else
511    CADJ STORE guNm(:,:,k,bi,bj,1)
512    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
513    CADJ STORE guNm(:,:,k,bi,bj,2)
514    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
515    CADJ STORE gvNm(:,:,k,bi,bj,1)
516    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
517    CADJ STORE gvNm(:,:,k,bi,bj,2)
518    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
519    #  endif
520    #  ifdef ALLOW_CD_CODE
521    CADJ STORE uNM1(:,:,k,bi,bj)
522    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
523    CADJ STORE vNM1(:,:,k,bi,bj)
524    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
525    CADJ STORE uVelD(:,:,k,bi,bj)
526    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
527    CADJ STORE vVelD(:,:,k,bi,bj)
528    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
529    #  endif
530    # endif /* NONLIN_FRSURF */
531    #endif /* ALLOW_AUTODIFF_TAMC */
532    
533    C--      Integrate hydrostatic balance for phiHyd with BC of phiHyd(z=0)=0
534             IF ( implicitIntGravWave ) THEN
535               CALL CALC_PHI_HYD(
536         I        bi,bj,iMin,iMax,jMin,jMax,k,
537         I        gT, gS,
538         U        phiHydF,
539         O        phiHydC, dPhiHydX, dPhiHydY,
540         I        myTime, myIter, myThid )
541             ELSE
542               CALL CALC_PHI_HYD(
543         I        bi,bj,iMin,iMax,jMin,jMax,k,
544         I        theta, salt,
545         U        phiHydF,
546         O        phiHydC, dPhiHydX, dPhiHydY,
547         I        myTime, myIter, myThid )
548             ENDIF
549    #ifdef ALLOW_DIAGNOSTICS
550             IF ( dPhiHydDiagIsOn ) THEN
551               tmpFac = -1. _d 0
552               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
553         &                           'Um_dPHdx', k, 1, 2, bi, bj, myThid )
554               CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
555         &                           'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
556             ENDIF
557    #endif /* ALLOW_DIAGNOSTICS */
558    
559    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
560    C        and step forward storing the result in gU, gV, etc...
561             IF ( momStepping ) THEN
562    #ifdef ALLOW_AUTODIFF
563               DO j=1-OLy,sNy+OLy
564                DO i=1-OLx,sNx+OLx
565                  guDissip(i,j)  = 0. _d 0
566                  gvDissip(i,j)  = 0. _d 0
567                ENDDO
568               ENDDO
569    #endif /* ALLOW_AUTODIFF */
570    #ifdef ALLOW_AUTODIFF_TAMC
571    # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
572    #  ifndef DISABLE_RSTAR_CODE
573    CADJ STORE dWtransC(:,:,bi,bj)
574    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
575    CADJ STORE dWtransU(:,:,bi,bj)
576    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
577    CADJ STORE dWtransV(:,:,bi,bj)
578    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
579    #  endif
580    # endif /* NONLIN_FRSURF and ALLOW_MOM_FLUXFORM */
581    # if (defined NONLIN_FRSURF) || (defined ALLOW_DEPTH_CONTROL)
582    CADJ STORE fVerU(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
583    CADJ STORE fVerV(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
584    # endif
585    #endif /* ALLOW_AUTODIFF_TAMC */
586               IF (.NOT. vectorInvariantMomentum) THEN
587    #ifdef ALLOW_MOM_FLUXFORM
588                  CALL MOM_FLUXFORM(
589         I         bi,bj,k,iMin,iMax,jMin,jMax,
590         I         KappaRU, KappaRV,
591         U         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
592         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
593         O         guDissip, gvDissip,
594         I         myTime, myIter, myThid)
595    #endif
596               ELSE
597    #ifdef ALLOW_MOM_VECINV
598                 CALL MOM_VECINV(
599         I         bi,bj,k,iMin,iMax,jMin,jMax,
600         I         KappaRU, KappaRV,
601         I         fVerU(1-OLx,1-OLy,kUp),   fVerV(1-OLx,1-OLy,kUp),
602         O         fVerU(1-OLx,1-OLy,kDown), fVerV(1-OLx,1-OLy,kDown),
603         O         guDissip, gvDissip,
604         I         myTime, myIter, myThid)
605    #endif
606               ENDIF
607    
608    #ifdef ALLOW_SMAG_3D
609               IF ( useSmag3D ) THEN
610                 CALL MOM_CALC_SMAG_3D(
611         I         str11, str22, str33, str12, str13, str23,
612         O         viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23,
613         I         smag3D_hLsC, smag3D_hLsW, smag3D_hLsS, smag3D_hLsZ,
614         I         k, bi, bj, myThid )
615                 CALL MOM_UV_SMAG_3D(
616         I         str11, str22, str12, str13, str23,
617         I         viscAh3d_00, viscAh3d_12, viscAh3d_13, viscAh3d_23,
618         O         addDissU, addDissV,
619         I         iMin,iMax,jMin,jMax, k, bi, bj, myThid )
620                 DO j= jMin,jMax
621                  DO i= iMin,iMax
622                   guDissip(i,j) = guDissip(i,j) + addDissU(i,j)
623                   gvDissip(i,j) = gvDissip(i,j) + addDissV(i,j)
624                  ENDDO
625                 ENDDO
626               ENDIF
627    #endif /* ALLOW_SMAG_3D */
628    
629               CALL TIMESTEP(
630         I         bi,bj,iMin,iMax,jMin,jMax,k,
631         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
632         I         guDissip, gvDissip,
633         I         myTime, myIter, myThid)
634    
635          DO K = Nz, 1, -1           ENDIF
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
      I        myThid)  
   
 C--      Calculate accelerations in the momentum equations  
          CALL CALC_MOM_RHS(  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskC,  
      I        pH,  
      U        aTerm,xTerm,cTerm,mTerm,pTerm,  
      U        fZon, fMer, fVerU, fVerV,  
      I        myThid)  
   
 C--      Calculate active tracer tendencies  
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      I        K13,K23,K33,KapGM,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg I        K13,K23,K33,KapGM,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
636    
637    C--     end of dynamics k loop (1:Nr)
638          ENDDO          ENDDO
639    
640    C--     Implicit Vertical advection & viscosity
641    #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
642         defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
643            IF ( momImplVertAdv ) THEN
644              CALL MOM_U_IMPLICIT_R( kappaRU,
645         I                           bi, bj, myTime, myIter, myThid )
646              CALL MOM_V_IMPLICIT_R( kappaRV,
647         I                           bi, bj, myTime, myIter, myThid )
648            ELSEIF ( implicitViscosity ) THEN
649    #else /* INCLUDE_IMPLVERTADV_CODE */
650            IF     ( implicitViscosity ) THEN
651    #endif /* INCLUDE_IMPLVERTADV_CODE */
652    #ifdef    ALLOW_AUTODIFF_TAMC
653    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
654    #endif    /* ALLOW_AUTODIFF_TAMC */
655              CALL IMPLDIFF(
656         I         bi, bj, iMin, iMax, jMin, jMax,
657         I         -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
658         U         gU,
659         I         myThid )
660    #ifdef    ALLOW_AUTODIFF_TAMC
661    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
662    #endif    /* ALLOW_AUTODIFF_TAMC */
663              CALL IMPLDIFF(
664         I         bi, bj, iMin, iMax, jMin, jMax,
665         I         -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
666         U         gV,
667         I         myThid )
668            ENDIF
669    
670    #ifdef ALLOW_OBCS
671    C--      Apply open boundary conditions
672            IF ( useOBCS ) THEN
673    C--      but first save intermediate velocities to be used in the
674    C        next time step for the Stevens boundary conditions
675              CALL OBCS_SAVE_UV_N(
676         I        bi, bj, iMin, iMax, jMin, jMax, 0,
677         I        gU, gV, myThid )
678              CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
679            ENDIF
680    #endif /* ALLOW_OBCS */
681    
682    #ifdef    ALLOW_CD_CODE
683            IF (implicitViscosity.AND.useCDscheme) THEN
684    #ifdef    ALLOW_AUTODIFF_TAMC
685    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
686    #endif    /* ALLOW_AUTODIFF_TAMC */
687              CALL IMPLDIFF(
688         I         bi, bj, iMin, iMax, jMin, jMax,
689         I         0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
690         U         vVelD,
691         I         myThid )
692    #ifdef    ALLOW_AUTODIFF_TAMC
693    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
694    #endif    /* ALLOW_AUTODIFF_TAMC */
695              CALL IMPLDIFF(
696         I         bi, bj, iMin, iMax, jMin, jMax,
697         I         0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
698         U         uVelD,
699         I         myThid )
700            ENDIF
701    #endif    /* ALLOW_CD_CODE */
702    C--     End implicit Vertical advection & viscosity
703    
704    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
705    
706    #ifdef ALLOW_NONHYDROSTATIC
707    C--   Step forward W field in N-H algorithm
708            IF ( nonHydrostatic ) THEN
709    #ifdef ALLOW_DEBUG
710             IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
711    #endif
712             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
713             CALL CALC_GW(
714         I                 bi,bj, KappaRU, KappaRV,
715         I                 str13, str23, str33,
716         I                 viscAh3d_00, viscAh3d_13, viscAh3d_23,
717         I                 myTime, myIter, myThid )
718            ENDIF
719            IF ( nonHydrostatic.OR.implicitIntGravWave )
720         &   CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
721            IF ( nonHydrostatic )
722         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
723    #endif
724    
725    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
726    
727    C-    end of bi,bj loops
728         ENDDO         ENDDO
729        ENDDO        ENDDO
730    
731  !dbg  write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x)  #ifdef ALLOW_OBCS
732  !dbg  write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)),        IF (useOBCS) THEN
733  !dbg &                         maxval(uVel(1:sNx,1:sNy,:,:,:))          CALL OBCS_EXCHANGES( myThid )
734  !dbg  write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)),        ENDIF
735  !dbg &                         maxval(vVel(1:sNx,1:sNy,:,:,:))  #endif
736  !dbg  write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)),  
737  !dbg &                         maxval(gT(1:sNx,1:sNy,:,:,:))  Cml(
738  !dbg  write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)),  C     In order to compare the variance of phiHydLow of a p/z-coordinate
739  !dbg &                         maxval(Theta(1:sNx,1:sNy,:,:,:))  C     run with etaH of a z/p-coordinate run the drift of phiHydLow
740  !dbg  write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)),  C     has to be removed by something like the following subroutine:
741  !dbg &                          maxval(pH/(Gravity*Rhonil))  C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
742    C     &                     'phiHydLow', myTime, myThid )
743    Cml)
744    
745    #ifdef ALLOW_DIAGNOSTICS
746          IF ( useDiagnostics ) THEN
747    
748           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
749           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
750    
751           tmpFac = 1. _d 0
752           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
753         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
754    
755           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
756         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
757    
758          ENDIF
759    #endif /* ALLOW_DIAGNOSTICS */
760    
761    #ifdef ALLOW_DEBUG
762          IF ( debugLevel .GE. debLevD ) THEN
763           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
764           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
765           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
766           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
767           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
768           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
769           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
770           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
771           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
772           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
773    #ifndef ALLOW_ADAMSBASHFORTH_3
774           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
775           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
776           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
777           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
778    #endif
779          ENDIF
780    #endif
781    
782    #ifdef DYNAMICS_GUGV_EXCH_CHECK
783    C- jmc: For safety checking only: This Exchange here should not change
784    C       the solution. If solution changes, it means something is wrong,
785    C       but it does not mean that it is less wrong with this exchange.
786          IF ( debugLevel .GE. debLevE ) THEN
787           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
788          ENDIF
789    #endif
790    
791    #ifdef ALLOW_DEBUG
792          IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
793    #endif
794    
795        RETURN        RETURN
796        END        END

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.169

  ViewVC Help
Powered by ViewVC 1.1.22