/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.161 - (show annotations) (download)
Mon Mar 5 18:21:12 2012 UTC (12 years, 3 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint63k
Changes since 1.160: +29 -31 lines
update comments (calling tree)

1 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.160 2011/12/01 14:22:27 jmc Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6 #ifdef ALLOW_OBCS
7 # include "OBCS_OPTIONS.h"
8 #endif
9
10 #undef DYNAMICS_GUGV_EXCH_CHECK
11
12 CBOP
13 C !ROUTINE: DYNAMICS
14 C !INTERFACE:
15 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16 C !DESCRIPTION: \bv
17 C *==========================================================*
18 C | SUBROUTINE DYNAMICS
19 C | o Controlling routine for the explicit part of the model
20 C | dynamics.
21 C *==========================================================*
22 C | This routine evaluates the "dynamics" terms for each
23 C | block of ocean in turn. Because the blocks of ocean have
24 C | overlap regions they are independent of one another.
25 C | If terms involving lateral integrals are needed in this
26 C | routine care will be needed. Similarly finite-difference
27 C | operations with stencils wider than the overlap region
28 C | require special consideration.
29 C | The algorithm...
30 C |
31 C | "Correction Step"
32 C | =================
33 C | Here we update the horizontal velocities with the surface
34 C | pressure such that the resulting flow is either consistent
35 C | with the free-surface evolution or the rigid-lid:
36 C | U[n] = U* + dt x d/dx P
37 C | V[n] = V* + dt x d/dy P
38 C | W[n] = W* + dt x d/dz P (NH mode)
39 C |
40 C | "Calculation of Gs"
41 C | ===================
42 C | This is where all the accelerations and tendencies (ie.
43 C | physics, parameterizations etc...) are calculated
44 C | rho = rho ( theta[n], salt[n] )
45 C | b = b(rho, theta)
46 C | K31 = K31 ( rho )
47 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51 C |
52 C | "Time-stepping" or "Prediction"
53 C | ================================
54 C | The models variables are stepped forward with the appropriate
55 C | time-stepping scheme (currently we use Adams-Bashforth II)
56 C | - For momentum, the result is always *only* a "prediction"
57 C | in that the flow may be divergent and will be "corrected"
58 C | later with a surface pressure gradient.
59 C | - Normally for tracers the result is the new field at time
60 C | level [n+1} *BUT* in the case of implicit diffusion the result
61 C | is also *only* a prediction.
62 C | - We denote "predictors" with an asterisk (*).
63 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67 C | With implicit diffusion:
68 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70 C | (1 + dt * K * d_zz) theta[n] = theta*
71 C | (1 + dt * K * d_zz) salt[n] = salt*
72 C |
73 C *==========================================================*
74 C \ev
75 C !USES:
76 IMPLICIT NONE
77 C == Global variables ===
78 #include "SIZE.h"
79 #include "EEPARAMS.h"
80 #include "PARAMS.h"
81 #include "DYNVARS.h"
82 #ifdef ALLOW_CD_CODE
83 #include "CD_CODE_VARS.h"
84 #endif
85 #include "GRID.h"
86 #ifdef ALLOW_AUTODIFF_TAMC
87 # include "tamc.h"
88 # include "tamc_keys.h"
89 # include "FFIELDS.h"
90 # include "EOS.h"
91 # ifdef ALLOW_KPP
92 # include "KPP.h"
93 # endif
94 # ifdef ALLOW_PTRACERS
95 # include "PTRACERS_SIZE.h"
96 # include "PTRACERS_FIELDS.h"
97 # endif
98 # ifdef ALLOW_OBCS
99 # include "OBCS_FIELDS.h"
100 # ifdef ALLOW_PTRACERS
101 # include "OBCS_PTRACERS.h"
102 # endif
103 # endif
104 # ifdef ALLOW_MOM_FLUXFORM
105 # include "MOM_FLUXFORM.h"
106 # endif
107 #endif /* ALLOW_AUTODIFF_TAMC */
108
109 C !CALLING SEQUENCE:
110 C DYNAMICS()
111 C |
112 C |-- CALC_EP_FORCING
113 C |
114 C |-- CALC_GRAD_PHI_SURF
115 C |
116 C |-- CALC_VISCOSITY
117 C |
118 C |-- CALC_PHI_HYD
119 C |
120 C |-- MOM_FLUXFORM
121 C |
122 C |-- MOM_VECINV
123 C |
124 C |-- TIMESTEP
125 C |
126 C |-- MOM_U_IMPLICIT_R
127 C |-- MOM_V_IMPLICIT_R
128 C |
129 C |-- IMPLDIFF
130 C |
131 C |-- OBCS_APPLY_UV
132 C |
133 C |-- CALC_GW
134 C |
135 C |-- DIAGNOSTICS_FILL
136 C |-- DEBUG_STATS_RL
137
138 C !INPUT/OUTPUT PARAMETERS:
139 C == Routine arguments ==
140 C myTime :: Current time in simulation
141 C myIter :: Current iteration number in simulation
142 C myThid :: Thread number for this instance of the routine.
143 _RL myTime
144 INTEGER myIter
145 INTEGER myThid
146
147 C !FUNCTIONS:
148 #ifdef ALLOW_DIAGNOSTICS
149 LOGICAL DIAGNOSTICS_IS_ON
150 EXTERNAL DIAGNOSTICS_IS_ON
151 #endif
152
153 C !LOCAL VARIABLES:
154 C == Local variables
155 C fVer[UV] o fVer: Vertical flux term - note fVer
156 C is "pipelined" in the vertical
157 C so we need an fVer for each
158 C variable.
159 C phiHydC :: hydrostatic potential anomaly at cell center
160 C In z coords phiHyd is the hydrostatic potential
161 C (=pressure/rho0) anomaly
162 C In p coords phiHyd is the geopotential height anomaly.
163 C phiHydF :: hydrostatic potential anomaly at middle between 2 centers
164 C dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
165 C phiSurfX, :: gradient of Surface potential (Pressure/rho, ocean)
166 C phiSurfY or geopotential (atmos) in X and Y direction
167 C guDissip :: dissipation tendency (all explicit terms), u component
168 C gvDissip :: dissipation tendency (all explicit terms), v component
169 C KappaRU :: vertical viscosity
170 C KappaRV :: vertical viscosity
171 C iMin, iMax - Ranges and sub-block indices on which calculations
172 C jMin, jMax are applied.
173 C bi, bj
174 C k, kup, - Index for layer above and below. kup and kDown
175 C kDown, km1 are switched with layer to be the appropriate
176 C index into fVerTerm.
177 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
178 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
179 _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
180 _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
181 _RL dPhiHydX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
182 _RL dPhiHydY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
183 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184 _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
185 _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
186 _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
187 _RL KappaRU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
188 _RL KappaRV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
189
190 INTEGER iMin, iMax
191 INTEGER jMin, jMax
192 INTEGER bi, bj
193 INTEGER i, j
194 INTEGER k, km1, kp1, kup, kDown
195
196 #ifdef ALLOW_DIAGNOSTICS
197 LOGICAL dPhiHydDiagIsOn
198 _RL tmpFac
199 #endif /* ALLOW_DIAGNOSTICS */
200
201
202 C--- The algorithm...
203 C
204 C "Correction Step"
205 C =================
206 C Here we update the horizontal velocities with the surface
207 C pressure such that the resulting flow is either consistent
208 C with the free-surface evolution or the rigid-lid:
209 C U[n] = U* + dt x d/dx P
210 C V[n] = V* + dt x d/dy P
211 C
212 C "Calculation of Gs"
213 C ===================
214 C This is where all the accelerations and tendencies (ie.
215 C physics, parameterizations etc...) are calculated
216 C rho = rho ( theta[n], salt[n] )
217 C b = b(rho, theta)
218 C K31 = K31 ( rho )
219 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
220 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
221 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
222 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
223 C
224 C "Time-stepping" or "Prediction"
225 C ================================
226 C The models variables are stepped forward with the appropriate
227 C time-stepping scheme (currently we use Adams-Bashforth II)
228 C - For momentum, the result is always *only* a "prediction"
229 C in that the flow may be divergent and will be "corrected"
230 C later with a surface pressure gradient.
231 C - Normally for tracers the result is the new field at time
232 C level [n+1} *BUT* in the case of implicit diffusion the result
233 C is also *only* a prediction.
234 C - We denote "predictors" with an asterisk (*).
235 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
236 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
237 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
238 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
239 C With implicit diffusion:
240 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
241 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
242 C (1 + dt * K * d_zz) theta[n] = theta*
243 C (1 + dt * K * d_zz) salt[n] = salt*
244 C---
245 CEOP
246
247 #ifdef ALLOW_DEBUG
248 IF (debugMode) CALL DEBUG_ENTER( 'DYNAMICS', myThid )
249 #endif
250
251 #ifdef ALLOW_DIAGNOSTICS
252 dPhiHydDiagIsOn = .FALSE.
253 IF ( useDiagnostics )
254 & dPhiHydDiagIsOn = DIAGNOSTICS_IS_ON( 'Um_dPHdx', myThid )
255 & .OR. DIAGNOSTICS_IS_ON( 'Vm_dPHdy', myThid )
256 #endif
257
258 C-- Call to routine for calculation of
259 C Eliassen-Palm-flux-forced U-tendency,
260 C if desired:
261 #ifdef INCLUDE_EP_FORCING_CODE
262 CALL CALC_EP_FORCING(myThid)
263 #endif
264
265 #ifdef ALLOW_AUTODIFF_MONITOR_DIAG
266 CALL DUMMY_IN_DYNAMICS( myTime, myIter, myThid )
267 #endif
268
269 #ifdef ALLOW_AUTODIFF_TAMC
270 C-- HPF directive to help TAMC
271 CHPF$ INDEPENDENT
272 #endif /* ALLOW_AUTODIFF_TAMC */
273
274 DO bj=myByLo(myThid),myByHi(myThid)
275
276 #ifdef ALLOW_AUTODIFF_TAMC
277 C-- HPF directive to help TAMC
278 CHPF$ INDEPENDENT, NEW (fVerU,fVerV
279 CHPF$& ,phiHydF
280 CHPF$& ,KappaRU,KappaRV
281 CHPF$& )
282 #endif /* ALLOW_AUTODIFF_TAMC */
283
284 DO bi=myBxLo(myThid),myBxHi(myThid)
285
286 #ifdef ALLOW_AUTODIFF_TAMC
287 act1 = bi - myBxLo(myThid)
288 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
289 act2 = bj - myByLo(myThid)
290 max2 = myByHi(myThid) - myByLo(myThid) + 1
291 act3 = myThid - 1
292 max3 = nTx*nTy
293 act4 = ikey_dynamics - 1
294 idynkey = (act1 + 1) + act2*max1
295 & + act3*max1*max2
296 & + act4*max1*max2*max3
297 #endif /* ALLOW_AUTODIFF_TAMC */
298
299 C-- Set up work arrays with valid (i.e. not NaN) values
300 C These initial values do not alter the numerical results. They
301 C just ensure that all memory references are to valid floating
302 C point numbers. This prevents spurious hardware signals due to
303 C uninitialised but inert locations.
304
305 #ifdef ALLOW_AUTODIFF_TAMC
306 DO k=1,Nr
307 DO j=1-OLy,sNy+OLy
308 DO i=1-OLx,sNx+OLx
309 KappaRU(i,j,k) = 0. _d 0
310 KappaRV(i,j,k) = 0. _d 0
311 cph(
312 c-- need some re-initialisation here to break dependencies
313 cph)
314 gU(i,j,k,bi,bj) = 0. _d 0
315 gV(i,j,k,bi,bj) = 0. _d 0
316 ENDDO
317 ENDDO
318 ENDDO
319 #endif /* ALLOW_AUTODIFF_TAMC */
320 DO j=1-OLy,sNy+OLy
321 DO i=1-OLx,sNx+OLx
322 fVerU (i,j,1) = 0. _d 0
323 fVerU (i,j,2) = 0. _d 0
324 fVerV (i,j,1) = 0. _d 0
325 fVerV (i,j,2) = 0. _d 0
326 phiHydF (i,j) = 0. _d 0
327 phiHydC (i,j) = 0. _d 0
328 #ifndef INCLUDE_PHIHYD_CALCULATION_CODE
329 dPhiHydX(i,j) = 0. _d 0
330 dPhiHydY(i,j) = 0. _d 0
331 #endif
332 phiSurfX(i,j) = 0. _d 0
333 phiSurfY(i,j) = 0. _d 0
334 guDissip(i,j) = 0. _d 0
335 gvDissip(i,j) = 0. _d 0
336 #ifdef ALLOW_AUTODIFF_TAMC
337 phiHydLow(i,j,bi,bj) = 0. _d 0
338 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
339 # ifndef DISABLE_RSTAR_CODE
340 dWtransC(i,j,bi,bj) = 0. _d 0
341 dWtransU(i,j,bi,bj) = 0. _d 0
342 dWtransV(i,j,bi,bj) = 0. _d 0
343 # endif
344 # endif
345 #endif
346 ENDDO
347 ENDDO
348
349 C-- Start computation of dynamics
350 iMin = 0
351 iMax = sNx+1
352 jMin = 0
353 jMax = sNy+1
354
355 #ifdef ALLOW_AUTODIFF_TAMC
356 CADJ STORE wVel (:,:,:,bi,bj) =
357 CADJ & comlev1_bibj, key=idynkey, byte=isbyte
358 #endif /* ALLOW_AUTODIFF_TAMC */
359
360 C-- Explicit part of the Surface Potential Gradient (add in TIMESTEP)
361 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
362 IF (implicSurfPress.NE.1.) THEN
363 CALL CALC_GRAD_PHI_SURF(
364 I bi,bj,iMin,iMax,jMin,jMax,
365 I etaN,
366 O phiSurfX,phiSurfY,
367 I myThid )
368 ENDIF
369
370 #ifdef ALLOW_AUTODIFF_TAMC
371 CADJ STORE uVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
372 CADJ STORE vVel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
373 #ifdef ALLOW_KPP
374 CADJ STORE KPPviscAz (:,:,:,bi,bj)
375 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
376 #endif /* ALLOW_KPP */
377 #endif /* ALLOW_AUTODIFF_TAMC */
378
379 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
380 C-- Calculate the total vertical viscosity
381 CALL CALC_VISCOSITY(
382 I bi,bj, iMin,iMax,jMin,jMax,
383 O KappaRU, KappaRV,
384 I myThid )
385 #else
386 DO k=1,Nr
387 DO j=1-OLy,sNy+OLy
388 DO i=1-OLx,sNx+OLx
389 KappaRU(i,j,k) = 0. _d 0
390 KappaRV(i,j,k) = 0. _d 0
391 ENDDO
392 ENDDO
393 ENDDO
394 #endif
395
396 #ifdef ALLOW_AUTODIFF_TAMC
397 CADJ STORE KappaRU(:,:,:)
398 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
399 CADJ STORE KappaRV(:,:,:)
400 CADJ & = comlev1_bibj, key=idynkey, byte=isbyte
401 #endif /* ALLOW_AUTODIFF_TAMC */
402
403 #ifdef ALLOW_OBCS
404 C-- For Stevens boundary conditions velocities need to be extrapolated
405 C (copied) to a narrow strip outside the domain
406 IF ( useOBCS ) THEN
407 CALL OBCS_COPY_UV_N(
408 U uVel(1-OLx,1-OLy,1,bi,bj),
409 U vVel(1-OLx,1-OLy,1,bi,bj),
410 I Nr, bi, bj, myThid )
411 ENDIF
412 #endif /* ALLOW_OBCS */
413
414 C-- Start of dynamics loop
415 DO k=1,Nr
416
417 C-- km1 Points to level above k (=k-1)
418 C-- kup Cycles through 1,2 to point to layer above
419 C-- kDown Cycles through 2,1 to point to current layer
420
421 km1 = MAX(1,k-1)
422 kp1 = MIN(k+1,Nr)
423 kup = 1+MOD(k+1,2)
424 kDown= 1+MOD(k,2)
425
426 #ifdef ALLOW_AUTODIFF_TAMC
427 kkey = (idynkey-1)*Nr + k
428 c
429 CADJ STORE totPhiHyd (:,:,k,bi,bj)
430 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
431 CADJ STORE phiHydLow (:,:,bi,bj)
432 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
433 CADJ STORE theta (:,:,k,bi,bj)
434 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
435 CADJ STORE salt (:,:,k,bi,bj)
436 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
437 CADJ STORE gT(:,:,k,bi,bj)
438 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
439 CADJ STORE gS(:,:,k,bi,bj)
440 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
441 # ifdef NONLIN_FRSURF
442 cph-test
443 CADJ STORE phiHydC (:,:)
444 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
445 CADJ STORE phiHydF (:,:)
446 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
447 CADJ STORE guDissip (:,:)
448 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
449 CADJ STORE gvDissip (:,:)
450 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
451 CADJ STORE fVerU (:,:,:)
452 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
453 CADJ STORE fVerV (:,:,:)
454 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
455 CADJ STORE gU(:,:,k,bi,bj)
456 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
457 CADJ STORE gV(:,:,k,bi,bj)
458 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
459 # ifndef ALLOW_ADAMSBASHFORTH_3
460 CADJ STORE guNm1(:,:,k,bi,bj)
461 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
462 CADJ STORE gvNm1(:,:,k,bi,bj)
463 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
464 # else
465 CADJ STORE guNm(:,:,k,bi,bj,1)
466 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
467 CADJ STORE guNm(:,:,k,bi,bj,2)
468 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
469 CADJ STORE gvNm(:,:,k,bi,bj,1)
470 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
471 CADJ STORE gvNm(:,:,k,bi,bj,2)
472 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
473 # endif
474 # ifdef ALLOW_CD_CODE
475 CADJ STORE uNM1(:,:,k,bi,bj)
476 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
477 CADJ STORE vNM1(:,:,k,bi,bj)
478 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
479 CADJ STORE uVelD(:,:,k,bi,bj)
480 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
481 CADJ STORE vVelD(:,:,k,bi,bj)
482 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
483 # endif
484 # endif
485 # ifdef ALLOW_DEPTH_CONTROL
486 CADJ STORE fVerU (:,:,:)
487 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
488 CADJ STORE fVerV (:,:,:)
489 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
490 # endif
491 #endif /* ALLOW_AUTODIFF_TAMC */
492
493 C-- Integrate hydrostatic balance for phiHyd with BC of
494 C phiHyd(z=0)=0
495 IF ( implicitIntGravWave ) THEN
496 CALL CALC_PHI_HYD(
497 I bi,bj,iMin,iMax,jMin,jMax,k,
498 I gT, gS,
499 U phiHydF,
500 O phiHydC, dPhiHydX, dPhiHydY,
501 I myTime, myIter, myThid )
502 ELSE
503 CALL CALC_PHI_HYD(
504 I bi,bj,iMin,iMax,jMin,jMax,k,
505 I theta, salt,
506 U phiHydF,
507 O phiHydC, dPhiHydX, dPhiHydY,
508 I myTime, myIter, myThid )
509 ENDIF
510 #ifdef ALLOW_DIAGNOSTICS
511 IF ( dPhiHydDiagIsOn ) THEN
512 tmpFac = -1. _d 0
513 CALL DIAGNOSTICS_SCALE_FILL( dPhiHydX, tmpFac, 1,
514 & 'Um_dPHdx', k, 1, 2, bi, bj, myThid )
515 CALL DIAGNOSTICS_SCALE_FILL( dPhiHydY, tmpFac, 1,
516 & 'Vm_dPHdy', k, 1, 2, bi, bj, myThid )
517 ENDIF
518 #endif /* ALLOW_DIAGNOSTICS */
519
520 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
521 C and step forward storing the result in gU, gV, etc...
522 IF ( momStepping ) THEN
523 #ifdef ALLOW_AUTODIFF_TAMC
524 # if (defined NONLIN_FRSURF) && (defined ALLOW_MOM_FLUXFORM)
525 # ifndef DISABLE_RSTAR_CODE
526 CADJ STORE dWtransC(:,:,bi,bj)
527 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
528 CADJ STORE dWtransU(:,:,bi,bj)
529 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
530 CADJ STORE dWtransV(:,:,bi,bj)
531 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
532 # endif
533 # endif
534 #endif
535 IF (.NOT. vectorInvariantMomentum) THEN
536 #ifdef ALLOW_MOM_FLUXFORM
537 C
538 CALL MOM_FLUXFORM(
539 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
540 I KappaRU, KappaRV,
541 U fVerU, fVerV,
542 O guDissip, gvDissip,
543 I myTime, myIter, myThid)
544 #endif
545 ELSE
546 #ifdef ALLOW_MOM_VECINV
547 C
548 # ifdef ALLOW_AUTODIFF_TAMC
549 # ifdef NONLIN_FRSURF
550 CADJ STORE fVerU(:,:,:)
551 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
552 CADJ STORE fVerV(:,:,:)
553 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
554 # endif
555 # endif /* ALLOW_AUTODIFF_TAMC */
556 C
557 CALL MOM_VECINV(
558 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
559 I KappaRU, KappaRV,
560 U fVerU, fVerV,
561 O guDissip, gvDissip,
562 I myTime, myIter, myThid)
563 #endif
564 ENDIF
565 C
566 CALL TIMESTEP(
567 I bi,bj,iMin,iMax,jMin,jMax,k,
568 I dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
569 I guDissip, gvDissip,
570 I myTime, myIter, myThid)
571
572 ENDIF
573
574 C-- end of dynamics k loop (1:Nr)
575 ENDDO
576
577 C-- Implicit Vertical advection & viscosity
578 #if (defined (INCLUDE_IMPLVERTADV_CODE) && \
579 defined (ALLOW_MOM_COMMON) && !(defined ALLOW_AUTODIFF_TAMC))
580 IF ( momImplVertAdv ) THEN
581 CALL MOM_U_IMPLICIT_R( kappaRU,
582 I bi, bj, myTime, myIter, myThid )
583 CALL MOM_V_IMPLICIT_R( kappaRV,
584 I bi, bj, myTime, myIter, myThid )
585 ELSEIF ( implicitViscosity ) THEN
586 #else /* INCLUDE_IMPLVERTADV_CODE */
587 IF ( implicitViscosity ) THEN
588 #endif /* INCLUDE_IMPLVERTADV_CODE */
589 #ifdef ALLOW_AUTODIFF_TAMC
590 CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
591 CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
592 #endif /* ALLOW_AUTODIFF_TAMC */
593 CALL IMPLDIFF(
594 I bi, bj, iMin, iMax, jMin, jMax,
595 I -1, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
596 U gU,
597 I myThid )
598 #ifdef ALLOW_AUTODIFF_TAMC
599 CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
600 CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
601 #endif /* ALLOW_AUTODIFF_TAMC */
602 CALL IMPLDIFF(
603 I bi, bj, iMin, iMax, jMin, jMax,
604 I -2, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
605 U gV,
606 I myThid )
607 ENDIF
608
609 #ifdef ALLOW_OBCS
610 C-- Apply open boundary conditions
611 IF ( useOBCS ) THEN
612 C-- but first save intermediate velocities to be used in the
613 C next time step for the Stevens boundary conditions
614 CALL OBCS_SAVE_UV_N(
615 I bi, bj, iMin, iMax, jMin, jMax, 0,
616 I gU, gV, myThid )
617 CALL OBCS_APPLY_UV( bi, bj, 0, gU, gV, myThid )
618 ENDIF
619 #endif /* ALLOW_OBCS */
620
621 #ifdef ALLOW_CD_CODE
622 IF (implicitViscosity.AND.useCDscheme) THEN
623 #ifdef ALLOW_AUTODIFF_TAMC
624 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
625 #endif /* ALLOW_AUTODIFF_TAMC */
626 CALL IMPLDIFF(
627 I bi, bj, iMin, iMax, jMin, jMax,
628 I 0, KappaRU, recip_hFacW(1-OLx,1-OLy,1,bi,bj),
629 U vVelD,
630 I myThid )
631 #ifdef ALLOW_AUTODIFF_TAMC
632 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
633 #endif /* ALLOW_AUTODIFF_TAMC */
634 CALL IMPLDIFF(
635 I bi, bj, iMin, iMax, jMin, jMax,
636 I 0, KappaRV, recip_hFacS(1-OLx,1-OLy,1,bi,bj),
637 U uVelD,
638 I myThid )
639 ENDIF
640 #endif /* ALLOW_CD_CODE */
641 C-- End implicit Vertical advection & viscosity
642
643 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
644
645 #ifdef ALLOW_NONHYDROSTATIC
646 C-- Step forward W field in N-H algorithm
647 IF ( nonHydrostatic ) THEN
648 #ifdef ALLOW_DEBUG
649 IF (debugMode) CALL DEBUG_CALL('CALC_GW', myThid )
650 #endif
651 CALL TIMER_START('CALC_GW [DYNAMICS]',myThid)
652 CALL CALC_GW(
653 I bi,bj, KappaRU, KappaRV,
654 I myTime, myIter, myThid )
655 ENDIF
656 IF ( nonHydrostatic.OR.implicitIntGravWave )
657 & CALL TIMESTEP_WVEL( bi,bj, myTime, myIter, myThid )
658 IF ( nonHydrostatic )
659 & CALL TIMER_STOP ('CALC_GW [DYNAMICS]',myThid)
660 #endif
661
662 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
663
664 C- end of bi,bj loops
665 ENDDO
666 ENDDO
667
668 #ifdef ALLOW_OBCS
669 IF (useOBCS) THEN
670 CALL OBCS_EXCHANGES( myThid )
671 ENDIF
672 #endif
673
674 Cml(
675 C In order to compare the variance of phiHydLow of a p/z-coordinate
676 C run with etaH of a z/p-coordinate run the drift of phiHydLow
677 C has to be removed by something like the following subroutine:
678 C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskInC, maskInC, rA, drF,
679 C & 'phiHydLow', myTime, myThid )
680 Cml)
681
682 #ifdef ALLOW_DIAGNOSTICS
683 IF ( useDiagnostics ) THEN
684
685 CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD ',0,Nr,0,1,1,myThid)
686 CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT ',0, 1,0,1,1,myThid)
687
688 tmpFac = 1. _d 0
689 CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
690 & 'PHIHYDSQ',0,Nr,0,1,1,myThid)
691
692 CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
693 & 'PHIBOTSQ',0, 1,0,1,1,myThid)
694
695 ENDIF
696 #endif /* ALLOW_DIAGNOSTICS */
697
698 #ifdef ALLOW_DEBUG
699 IF ( debugLevel .GE. debLevD ) THEN
700 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
701 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
702 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
703 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
704 CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
705 CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
706 CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
707 CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
708 CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
709 CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
710 #ifndef ALLOW_ADAMSBASHFORTH_3
711 CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
712 CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
713 CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
714 CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
715 #endif
716 ENDIF
717 #endif
718
719 #ifdef DYNAMICS_GUGV_EXCH_CHECK
720 C- jmc: For safety checking only: This Exchange here should not change
721 C the solution. If solution changes, it means something is wrong,
722 C but it does not mean that it is less wrong with this exchange.
723 IF ( debugLevel .GE. debLevE ) THEN
724 CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
725 ENDIF
726 #endif
727
728 #ifdef ALLOW_DEBUG
729 IF (debugMode) CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
730 #endif
731
732 RETURN
733 END

  ViewVC Help
Powered by ViewVC 1.1.22