C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.56 2001/01/29 20:05:46 heimbach Exp $ #include "CPP_OPTIONS.h" SUBROUTINE DYNAMICS(myTime, myIter, myThid) C /==========================================================\ C | SUBROUTINE DYNAMICS | C | o Controlling routine for the explicit part of the model | C | dynamics. | C |==========================================================| C | This routine evaluates the "dynamics" terms for each | C | block of ocean in turn. Because the blocks of ocean have | C | overlap regions they are independent of one another. | C | If terms involving lateral integrals are needed in this | C | routine care will be needed. Similarly finite-difference | C | operations with stencils wider than the overlap region | C | require special consideration. | C | Notes | C | ===== | C | C*P* comments indicating place holders for which code is | C | presently being developed. | C \==========================================================/ IMPLICIT NONE C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "CG2D.h" #include "PARAMS.h" #include "DYNVARS.h" #include "GRID.h" #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" # include "tamc_keys.h" # include "FFIELDS.h" # ifdef ALLOW_KPP # include "KPP.h" # endif # ifdef ALLOW_GMREDI # include "GMREDI.h" # endif #endif /* ALLOW_AUTODIFF_TAMC */ C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of the routine. _RL myTime INTEGER myIter INTEGER myThid C == Local variables C xA, yA - Per block temporaries holding face areas C uTrans, vTrans, rTrans - Per block temporaries holding flow C transport C rVel o uTrans: Zonal transport C o vTrans: Meridional transport C o rTrans: Vertical transport C o rVel: Vertical velocity at upper and C lower cell faces. C maskC,maskUp o maskC: land/water mask for tracer cells C o maskUp: land/water mask for W points C aTerm, xTerm, cTerm - Work arrays for holding separate terms in C mTerm, pTerm, tendency equations. C fZon, fMer, fVer[STUV] o aTerm: Advection term C o xTerm: Mixing term C o cTerm: Coriolis term C o mTerm: Metric term C o pTerm: Pressure term C o fZon: Zonal flux term C o fMer: Meridional flux term C o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. C rhoK, rhoKM1 - Density at current level, level above and level C below. C rhoKP1 C buoyK, buoyKM1 - Buoyancy at current level and level above. C phiHyd - Hydrostatic part of the potential phiHydi. C In z coords phiHydiHyd is the hydrostatic C pressure anomaly C In p coords phiHydiHyd is the geopotential C surface height C anomaly. C etaSurfX, - Holds surface elevation gradient in X and Y. C etaSurfY C KappaRT, - Total diffusion in vertical for T and S. C KappaRS (background + spatially varying, isopycnal term). C iMin, iMax - Ranges and sub-block indices on which calculations C jMin, jMax are applied. C bi, bj C k, kup, - Index for layer above and below. kup and kDown C kDown, km1 are switched with layer to be the appropriate C index into fVerTerm. _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhotmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) C This is currently also used by IVDC and Diagnostics C #ifdef INCLUDE_CONVECT_CALL _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) C #endif INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j INTEGER k, km1, kup, kDown LOGICAL BOTTOM_LAYER #ifdef ALLOW_AUTODIFF_TAMC INTEGER isbyte PARAMETER( isbyte = 4 ) INTEGER act1, act2, act3, act4 INTEGER max1, max2, max3 INTEGER iikey, kkey INTEGER maximpl #endif /* ALLOW_AUTODIFF_TAMC */ C--- The algorithm... C C "Correction Step" C ================= C Here we update the horizontal velocities with the surface C pressure such that the resulting flow is either consistent C with the free-surface evolution or the rigid-lid: C U[n] = U* + dt x d/dx P C V[n] = V* + dt x d/dy P C C "Calculation of Gs" C =================== C This is where all the accelerations and tendencies (ie. C physics, parameterizations etc...) are calculated C rVel = sum_r ( div. u[n] ) C rho = rho ( theta[n], salt[n] ) C b = b(rho, theta) C K31 = K31 ( rho ) C Gu[n] = Gu( u[n], v[n], rVel, b, ... ) C Gv[n] = Gv( u[n], v[n], rVel, b, ... ) C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... ) C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... ) C C "Time-stepping" or "Prediction" C ================================ C The models variables are stepped forward with the appropriate C time-stepping scheme (currently we use Adams-Bashforth II) C - For momentum, the result is always *only* a "prediction" C in that the flow may be divergent and will be "corrected" C later with a surface pressure gradient. C - Normally for tracers the result is the new field at time C level [n+1} *BUT* in the case of implicit diffusion the result C is also *only* a prediction. C - We denote "predictors" with an asterisk (*). C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] ) C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] ) C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C With implicit diffusion: C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] ) C (1 + dt * K * d_zz) theta[n] = theta* C (1 + dt * K * d_zz) salt[n] = salt* C--- #ifdef ALLOW_AUTODIFF_TAMC C-- dummy statement to end declaration part ikey = 1 #endif /* ALLOW_AUTODIFF_TAMC */ C-- Set up work arrays with valid (i.e. not NaN) values C These inital values do not alter the numerical results. They C just ensure that all memory references are to valid floating C point numbers. This prevents spurious hardware signals due to C uninitialised but inert locations. DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx xA(i,j) = 0. _d 0 yA(i,j) = 0. _d 0 uTrans(i,j) = 0. _d 0 vTrans(i,j) = 0. _d 0 aTerm(i,j) = 0. _d 0 xTerm(i,j) = 0. _d 0 cTerm(i,j) = 0. _d 0 mTerm(i,j) = 0. _d 0 pTerm(i,j) = 0. _d 0 fZon(i,j) = 0. _d 0 fMer(i,j) = 0. _d 0 DO k=1,Nr phiHyd (i,j,k) = 0. _d 0 KappaRU(i,j,k) = 0. _d 0 KappaRV(i,j,k) = 0. _d 0 sigmaX(i,j,k) = 0. _d 0 sigmaY(i,j,k) = 0. _d 0 sigmaR(i,j,k) = 0. _d 0 ENDDO rhoKM1 (i,j) = 0. _d 0 rhok (i,j) = 0. _d 0 rhoKP1 (i,j) = 0. _d 0 rhoTMP (i,j) = 0. _d 0 buoyKM1(i,j) = 0. _d 0 buoyK (i,j) = 0. _d 0 maskC (i,j) = 0. _d 0 ENDDO ENDDO #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC CHPF$ INDEPENDENT #endif /* ALLOW_AUTODIFF_TAMC */ DO bj=myByLo(myThid),myByHi(myThid) #ifdef ALLOW_AUTODIFF_TAMC C-- HPF directive to help TAMC CHPF$ INDEPENDENT, NEW (rTrans,rVel,fVerT,fVerS,fVerU,fVerV CHPF$& ,phiHyd,utrans,vtrans,maskc,xA,yA CHPF$& ,KappaRT,KappaRS,KappaRU,KappaRV CHPF$& ) #endif /* ALLOW_AUTODIFF_TAMC */ DO bi=myBxLo(myThid),myBxHi(myThid) #ifdef ALLOW_AUTODIFF_TAMC act1 = bi - myBxLo(myThid) max1 = myBxHi(myThid) - myBxLo(myThid) + 1 act2 = bj - myByLo(myThid) max2 = myByHi(myThid) - myByLo(myThid) + 1 act3 = myThid - 1 max3 = nTx*nTy act4 = ikey_dynamics - 1 ikey = (act1 + 1) + act2*max1 & + act3*max1*max2 & + act4*max1*max2*max3 #endif /* ALLOW_AUTODIFF_TAMC */ C-- Set up work arrays that need valid initial values DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx rTrans(i,j) = 0. _d 0 rVel (i,j,1) = 0. _d 0 rVel (i,j,2) = 0. _d 0 fVerT (i,j,1) = 0. _d 0 fVerT (i,j,2) = 0. _d 0 fVerS (i,j,1) = 0. _d 0 fVerS (i,j,2) = 0. _d 0 fVerU (i,j,1) = 0. _d 0 fVerU (i,j,2) = 0. _d 0 fVerV (i,j,1) = 0. _d 0 fVerV (i,j,2) = 0. _d 0 phiHyd(i,j,1) = 0. _d 0 ENDDO ENDDO DO k=1,Nr DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx #ifdef INCLUDE_CONVECT_CALL ConvectCount(i,j,k) = 0. #endif KappaRT(i,j,k) = 0. _d 0 KappaRS(i,j,k) = 0. _d 0 ENDDO ENDDO ENDDO iMin = 1-OLx+1 iMax = sNx+OLx jMin = 1-OLy+1 jMax = sNy+OLy k = 1 BOTTOM_LAYER = k .EQ. Nr #ifdef DO_PIPELINED_CORRECTION_STEP C-- Calculate gradient of surface pressure CALL CALC_GRAD_ETA_SURF( I bi,bj,iMin,iMax,jMin,jMax, O etaSurfX,etaSurfY, I myThid) C-- Update fields in top level according to tendency terms CALL CORRECTION_STEP( I bi,bj,iMin,iMax,jMin,jMax,k, I etaSurfX,etaSurfY,myTime,myThid) #ifdef ALLOW_OBCS IF (openBoundaries) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE uvel (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE vvel (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL APPLY_OBCS1( bi, bj, k, myThid ) END IF #endif IF ( .NOT. BOTTOM_LAYER ) THEN C-- Update fields in layer below according to tendency terms CALL CORRECTION_STEP( I bi,bj,iMin,iMax,jMin,jMax,k+1, I etaSurfX,etaSurfY,myTime,myThid) #ifdef ALLOW_OBCS IF (openBoundaries) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE uvel (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE vvel (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL APPLY_OBCS1( bi, bj, k+1, myThid ) END IF #endif ENDIF #endif C-- Density of 1st level (below W(1)) reference to level 1 #ifdef INCLUDE_FIND_RHO_CALL #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, O rhoKm1, I myThid ) #endif IF (.NOT. BOTTOM_LAYER) THEN C-- Check static stability with layer below C-- and mix as needed. #ifdef INCLUDE_FIND_RHO_CALL #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE theta(:,:,k+1,bi,bj) = comlev1_bibj CADJ & , key = ikey, byte = isbyte CADJ STORE salt (:,:,k+1,bi,bj) = comlev1_bibj CADJ & , key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, k+1, k, eosType, O rhoKp1, I myThid ) #endif #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE rhoKm1(:,:) = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE rhoKp1(:,:) = comlev1_bibj, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ #ifdef INCLUDE_CONVECT_CALL CALL CONVECT( I bi,bj,iMin,iMax,jMin,jMax,k+1,rhoKm1,rhoKp1, U ConvectCount, I myTime,myIter,myThid) #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE theta(:,:,k+1,bi,bj),theta(:,:,k,bi,bj) CADJ & = comlev1_bibj, key = ikey, byte = isbyte CADJ STORE salt (:,:,k+1,bi,bj),salt (:,:,k,bi,bj) CADJ & = comlev1_bibj, key = ikey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ #endif C-- Implicit Vertical Diffusion for Convection IF (ivdc_kappa.NE.0.) THEN CALL CALC_IVDC( I bi,bj,iMin,iMax,jMin,jMax,k+1,rhoKm1,rhoKp1, U ConvectCount, KappaRT, KappaRS, I myTime,myIter,myThid) ENDIF C-- Recompute density after mixing #ifdef INCLUDE_FIND_RHO_CALL CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, O rhoKm1, I myThid ) #endif ENDIF C-- Calculate buoyancy CALL CALC_BUOYANCY( I bi,bj,iMin,iMax,jMin,jMax,k,rhoKm1, O buoyKm1, I myThid ) C-- Integrate hydrostatic balance for phiHyd with BC of C-- phiHyd(z=0)=0 CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,k,buoyKm1,buoyKm1, U phiHyd, I myThid ) #ifdef ALLOW_GMREDI IF ( useGMRedi ) THEN CALL GRAD_SIGMA( I bi, bj, iMin, iMax, jMin, jMax, k, I rhoKm1, rhoKm1, rhoKm1, O sigmaX, sigmaY, sigmaR, I myThid ) ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx sigmaX(i,j,k) = 0. _d 0 sigmaY(i,j,k) = 0. _d 0 sigmaR(i,j,k) = 0. _d 0 ENDDO ENDDO ENDIF #endif C-- Start of downward loop DO k=2,Nr #ifdef ALLOW_AUTODIFF_TAMC kkey = (ikey-1)*(Nr-2+1) + (k-2) + 1 #endif /* ALLOW_AUTODIFF_TAMC */ BOTTOM_LAYER = k .EQ. Nr #ifdef DO_PIPELINED_CORRECTION_STEP IF ( .NOT. BOTTOM_LAYER ) THEN C-- Update fields in layer below according to tendency terms CALL CORRECTION_STEP( I bi,bj,iMin,iMax,jMin,jMax,k+1, I etaSurfX,etaSurfY,myTime,myThid) #ifdef ALLOW_OBCS IF (openBoundaries) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE uvel (:,:,k,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte CADJ STORE vvel (:,:,k,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL APPLY_OBCS1( bi, bj, k+1, myThid ) END IF #endif ENDIF #endif /* DO_PIPELINED_CORRECTION_STEP */ C-- Density of k level (below W(k)) reference to k level #ifdef INCLUDE_FIND_RHO_CALL #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, O rhoK, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC cph( storing not necessary cphCADJ STORE rhoK(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte cph) #endif /* ALLOW_AUTODIFF_TAMC */ #endif IF (.NOT. BOTTOM_LAYER) THEN C-- Check static stability with layer below and mix as needed. C-- Density of k+1 level (below W(k+1)) reference to k level. #ifdef INCLUDE_FIND_RHO_CALL #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE theta(:,:,k+1,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte CADJ STORE salt (:,:,k+1,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, k+1, k, eosType, O rhoKp1, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE rhoKp1(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ #endif #ifdef INCLUDE_CONVECT_CALL CALL CONVECT( I bi,bj,iMin,iMax,jMin,jMax,k+1,rhoK,rhoKp1, U ConvectCount, I myTime,myIter,myThid) #endif C-- Implicit Vertical Diffusion for Convection IF (ivdc_kappa.NE.0.) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE rhoKm1(:,:) = comlev1_bibj_k, key = kkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL CALC_IVDC( I bi,bj,iMin,iMax,jMin,jMax,k+1,rhoKm1,rhoKp1, U ConvectCount, KappaRT, KappaRS, I myTime,myIter,myThid) END IF C-- Recompute density after mixing #ifdef INCLUDE_FIND_RHO_CALL #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, O rhoK, I myThid ) #endif C-- IF (.NOT. BOTTOM_LAYER) ends here ENDIF C-- Calculate buoyancy CALL CALC_BUOYANCY( I bi,bj,iMin,iMax,jMin,jMax,k,rhoK, O buoyK, I myThid ) C-- Integrate hydrostatic balance for phiHyd with BC of C-- phiHyd(z=0)=0 CALL CALC_PHI_HYD( I bi,bj,iMin,iMax,jMin,jMax,k,buoyKm1,buoyK, U phiHyd, I myThid ) #ifdef INCLUDE_FIND_RHO_CALL C-- Calculate iso-neutral slopes for the GM/Redi parameterisation #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE theta(:,:,k-1,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte CADJ STORE salt (:,:,k-1,bi,bj) = comlev1_bibj_k CADJ & , key = kkey, byte = isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType, O rhoTmp, I myThid ) #endif #ifdef ALLOW_GMREDI IF ( useGMRedi ) THEN CALL GRAD_SIGMA( I bi, bj, iMin, iMax, jMin, jMax, k, I rhoK, rhotmp, rhoK, O sigmaX, sigmaY, sigmaR, I myThid ) ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx sigmaX(i,j,k) = 0. _d 0 sigmaY(i,j,k) = 0. _d 0 sigmaR(i,j,k) = 0. _d 0 ENDDO ENDDO ENDIF #endif DO J=jMin,jMax DO I=iMin,iMax #ifdef INCLUDE_FIND_RHO_CALL rhoKm1 (I,J) = rhoK(I,J) #endif buoyKm1(I,J) = buoyK(I,J) ENDDO ENDDO C-- end of k loop ENDDO C Determines forcing terms based on external fields C relaxation terms, etc. CALL EXTERNAL_FORCING_SURF( I bi, bj, iMin, iMax, jMin, jMax, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE surfacetendencyu(:,:,bi,bj) CADJ & , surfacetendencyv(:,:,bi,bj) CADJ & , surfacetendencys(:,:,bi,bj) CADJ & , surfacetendencyt(:,:,bi,bj) CADJ & = comlev1_bibj, key=ikey, byte=isbyte # ifdef ALLOW_GMREDI CADJ STORE sigmaX(:,:,:) = comlev1, key=ikey, byte=isbyte CADJ STORE sigmaY(:,:,:) = comlev1, key=ikey, byte=isbyte CADJ STORE sigmaR(:,:,:) = comlev1, key=ikey, byte=isbyte # endif /* ALLOW_GMREDI */ #endif /* ALLOW_AUTODIFF_TAMC */ #ifdef ALLOW_GMREDI IF (useGMRedi) THEN DO k=1, Nr CALL GMREDI_CALC_TENSOR( I bi, bj, iMin, iMax, jMin, jMax, k, I sigmaX, sigmaY, sigmaR, I myThid ) ENDDO #ifdef ALLOW_AUTODIFF_TAMC ELSE DO k=1, Nr CALL GMREDI_CALC_TENSOR_DUMMY( I bi, bj, iMin, iMax, jMin, jMax, k, I sigmaX, sigmaY, sigmaR, I myThid ) ENDDO #endif /* ALLOW_AUTODIFF_TAMC */ ENDIF #endif #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE KappaRT(:,:,:) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE KappaRS(:,:,:) = comlev1_bibj, key=ikey, byte=isbyte #ifdef ALLOW_GMREDI C-- R.G. We need to define a new tape since Kw use mythid instead of bi,bj CADJ STORE Kwx(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE Kwy(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE Kwz(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte #endif CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte ======= C-- R.G. We need to define a new tape since Kw use mythid instead of bi,bj CADJ STORE Kwx(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE Kwy(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE Kwz(:,:,:,myThid) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte C-- dummy initialization to break data flow because C-- calc_div_ghat has a condition for initialization DO J=jMin,jMax DO I=iMin,iMax cg2d_b(i,j,bi,bj) = 0.0 ENDDO ENDDO #endif /* ALLOW_AUTODIFF_TAMC */ #ifdef ALLOW_KPP C-- Compute KPP mixing coefficients IF (useKPP) THEN CALL TIMER_START('KPP_CALC [DYNAMICS]', myThid) CALL KPP_CALC( I bi, bj, myTime, myThid ) CALL TIMER_STOP ('KPP_CALC [DYNAMICS]', myThid) #ifdef ALLOW_AUTODIFF_TAMC ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx KPPhbl (i,j,bi,bj) = 1.0 KPPfrac(i,j,bi,bj) = 0.0 DO k = 1,Nr KPPghat (i,j,k,bi,bj) = 0.0 KPPviscAz (i,j,k,bi,bj) = viscAz KPPdiffKzT(i,j,k,bi,bj) = diffKzT KPPdiffKzS(i,j,k,bi,bj) = diffKzS ENDDO ENDDO ENDDO #endif /* ALLOW_AUTODIFF_TAMC */ ENDIF #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE KPPghat (:,:,:,bi,bj) CADJ & , KPPviscAz (:,:,:,bi,bj) CADJ & , KPPdiffKzT(:,:,:,bi,bj) CADJ & , KPPdiffKzS(:,:,:,bi,bj) CADJ & , KPPfrac (:,: ,bi,bj) CADJ & = comlev1_bibj, key=ikey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ #endif /* ALLOW_KPP */ C-- Start of upward loop DO k = Nr, 1, -1 C-- km1 Points to level above k (=k-1) C-- kup Cycles through 1,2 to point to layer above C-- kDown Cycles through 2,1 to point to current layer km1 =max(1,k-1) kup =1+MOD(k+1,2) kDown=1+MOD(k,2) iMin = 1-OLx+2 iMax = sNx+OLx-1 jMin = 1-OLy+2 jMax = sNy+OLy-1 #ifdef ALLOW_AUTODIFF_TAMC kkey = (ikey-1)*(Nr-1+1) + (k-1) + 1 CADJ STORE rvel (:,:,kdown) = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE rTrans(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE KappaRT(:,:,k) = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE KappaRS(:,:,k) = comlev1_bibj_k, key=kkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ C-- Get temporary terms used by tendency routines CALL CALC_COMMON_FACTORS ( I bi,bj,iMin,iMax,jMin,jMax,k,km1,kup,kDown, O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp, I myThid) #ifdef ALLOW_OBCS IF (openBoundaries) THEN CALL APPLY_OBCS3( bi, bj, k, kup, rTrans, rVel, myThid ) ENDIF #endif #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL C-- Calculate the total vertical diffusivity CALL CALC_DIFFUSIVITY( I bi,bj,iMin,iMax,jMin,jMax,k, I maskC,maskUp, O KappaRT,KappaRS,KappaRU,KappaRV, I myThid) #endif C-- Calculate accelerations in the momentum equations IF ( momStepping ) THEN CALL CALC_MOM_RHS( I bi,bj,iMin,iMax,jMin,jMax,k,km1,kup,kDown, I xA,yA,uTrans,vTrans,rTrans,rVel,maskC, I phiHyd,KappaRU,KappaRV, U aTerm,xTerm,cTerm,mTerm,pTerm, U fZon, fMer, fVerU, fVerV, I myTime, myThid) #ifdef ALLOW_AUTODIFF_TAMC #ifdef INCLUDE_CD_CODE ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx guCD(i,j,k,bi,bj) = 0.0 gvCD(i,j,k,bi,bj) = 0.0 END DO END DO #endif #endif /* ALLOW_AUTODIFF_TAMC */ ENDIF C-- Calculate active tracer tendencies IF ( tempStepping ) THEN CALL CALC_GT( I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, I KappaRT, U aTerm,xTerm,fZon,fMer,fVerT, I myTime, myThid) ENDIF IF ( saltStepping ) THEN CALL CALC_GS( I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, I KappaRS, U aTerm,xTerm,fZon,fMer,fVerS, I myTime, myThid) ENDIF #ifdef ALLOW_OBCS C-- Calculate future values on open boundaries IF (openBoundaries) THEN Caja CALL CYCLE_OBCS( k, bi, bj, myThid ) CALL SET_OBCS( k, bi, bj, myTime+deltaTclock, myThid ) ENDIF #endif C-- Prediction step (step forward all model variables) CALL TIMESTEP( I bi,bj,iMin,iMax,jMin,jMax,k, I myIter, myThid) #ifdef ALLOW_OBCS C-- Apply open boundary conditions IF (openBoundaries) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE gunm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gvnm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte CADJ STORE gwnm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL APPLY_OBCS2( bi, bj, k, myThid ) END IF #endif C-- Freeze water IF (allowFreezing) THEN #ifdef ALLOW_AUTODIFF_TAMC CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid ) END IF #ifdef DIVG_IN_DYNAMICS C-- Diagnose barotropic divergence of predicted fields CALL CALC_DIV_GHAT( I bi,bj,iMin,iMax,jMin,jMax,k, I xA,yA, I myThid) #endif /* DIVG_IN_DYNAMICS */ C-- Cumulative diagnostic calculations (ie. time-averaging) #ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE IF (taveFreq.GT.0.) THEN CALL DO_TIME_AVERAGES( I myTime, myIter, bi, bj, k, kup, kDown, I rVel, ConvectCount, I myThid ) ENDIF #endif C-- k loop ENDDO #ifdef ALLOW_AUTODIFF_TAMC maximpl = 6 iikey = (ikey-1)*maximpl #endif /* ALLOW_AUTODIFF_TAMC */ C-- Implicit diffusion IF (implicitDiffusion) THEN IF (tempStepping) THEN #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 1 CADJ STORE gTNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTtracer, KappaRT,recip_HFacC, U gTNm1, I myThid ) END IF IF (saltStepping) THEN #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 2 CADJ STORE gSNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTtracer, KappaRS,recip_HFacC, U gSNm1, I myThid ) END IF C-- implicitDiffusion ENDIF C-- Implicit viscosity IF (implicitViscosity) THEN IF (momStepping) THEN #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 3 CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTmom, KappaRU,recip_HFacW, U gUNm1, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 4 CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTmom, KappaRV,recip_HFacS, U gVNm1, I myThid ) #ifdef INCLUDE_CD_CODE #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 5 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTmom, KappaRU,recip_HFacW, U vVelD, I myThid ) #ifdef ALLOW_AUTODIFF_TAMC idkey = iikey + 6 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte #endif /* ALLOW_AUTODIFF_TAMC */ CALL IMPLDIFF( I bi, bj, iMin, iMax, jMin, jMax, I deltaTmom, KappaRV,recip_HFacS, U uVelD, I myThid ) #endif C-- momStepping ENDIF C-- implicitViscosity ENDIF ENDDO ENDDO RETURN END