/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.15 by adcroft, Tue Jun 9 15:58:36 1998 UTC revision 1.108 by heimbach, Fri Sep 17 23:02:00 2004 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6    
7    CBOP
8    C     !ROUTINE: DYNAMICS
9    C     !INTERFACE:
10        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
11  C     /==========================================================\  C     !DESCRIPTION: \bv
12  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
13  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS                                      
14  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model  
15  C     |==========================================================|  C     |   dynamics.                                              
16  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
17  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each      
18  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have  
19  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.      
20  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this  
21  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference  
22  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region    
23  C     | Notes                                                    |  C     | require special consideration.                            
24  C     | =====                                                    |  C     | The algorithm...
25  C     | C*P* comments indicating place holders for which code is |  C     |
26  C     |      presently being developed.                          |  C     | "Correction Step"
27  C     \==========================================================/  C     | =================
28    C     | Here we update the horizontal velocities with the surface
29    C     | pressure such that the resulting flow is either consistent
30    C     | with the free-surface evolution or the rigid-lid:
31    C     |   U[n] = U* + dt x d/dx P
32    C     |   V[n] = V* + dt x d/dy P
33    C     |
34    C     | "Calculation of Gs"
35    C     | ===================
36    C     | This is where all the accelerations and tendencies (ie.
37    C     | physics, parameterizations etc...) are calculated
38    C     |   rho = rho ( theta[n], salt[n] )
39    C     |   b   = b(rho, theta)
40    C     |   K31 = K31 ( rho )
41    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
42    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
43    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
44    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
45    C     |
46    C     | "Time-stepping" or "Prediction"
47    C     | ================================
48    C     | The models variables are stepped forward with the appropriate
49    C     | time-stepping scheme (currently we use Adams-Bashforth II)
50    C     | - For momentum, the result is always *only* a "prediction"
51    C     | in that the flow may be divergent and will be "corrected"
52    C     | later with a surface pressure gradient.
53    C     | - Normally for tracers the result is the new field at time
54    C     | level [n+1} *BUT* in the case of implicit diffusion the result
55    C     | is also *only* a prediction.
56    C     | - We denote "predictors" with an asterisk (*).
57    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
58    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
59    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
61    C     | With implicit diffusion:
62    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
64    C     |   (1 + dt * K * d_zz) theta[n] = theta*
65    C     |   (1 + dt * K * d_zz) salt[n] = salt*
66    C     |
67    C     *==========================================================*
68    C     \ev
69    C     !USES:
70          IMPLICIT NONE
71  C     == Global variables ===  C     == Global variables ===
72  #include "SIZE.h"  #include "SIZE.h"
73  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
74  #include "PARAMS.h"  #include "PARAMS.h"
75  #include "DYNVARS.h"  #include "DYNVARS.h"
76    #ifdef ALLOW_CD_CODE
77    #include "CD_CODE_VARS.h"
78    #endif
79    #include "GRID.h"
80    #ifdef ALLOW_AUTODIFF_TAMC
81    # include "tamc.h"
82    # include "tamc_keys.h"
83    # include "FFIELDS.h"
84    # include "EOS.h"
85    # ifdef ALLOW_KPP
86    #  include "KPP.h"
87    # endif
88    #endif /* ALLOW_AUTODIFF_TAMC */
89    
90    C     !CALLING SEQUENCE:
91    C     DYNAMICS()
92    C      |
93    C      |-- CALC_GRAD_PHI_SURF
94    C      |
95    C      |-- CALC_VISCOSITY
96    C      |
97    C      |-- CALC_PHI_HYD  
98    C      |
99    C      |-- MOM_FLUXFORM  
100    C      |
101    C      |-- MOM_VECINV    
102    C      |
103    C      |-- TIMESTEP      
104    C      |
105    C      |-- OBCS_APPLY_UV
106    C      |
107    C      |-- IMPLDIFF      
108    C      |
109    C      |-- OBCS_APPLY_UV
110    C      |
111    C      |-- CALL TIMEAVE_CUMUL_1T
112    C      |-- CALL DEBUG_STATS_RL
113    
114    C     !INPUT/OUTPUT PARAMETERS:
115  C     == Routine arguments ==  C     == Routine arguments ==
116  C     myTime - Current time in simulation  C     myTime - Current time in simulation
117  C     myIter - Current iteration number in simulation  C     myIter - Current iteration number in simulation
118  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
       INTEGER myThid  
119        _RL myTime        _RL myTime
120        INTEGER myIter        INTEGER myIter
121          INTEGER myThid
122    
123    C     !LOCAL VARIABLES:
124  C     == Local variables  C     == Local variables
125  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[STUV]               o fVer: Vertical flux term - note fVer
 C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  
 C     wVel                     o uTrans: Zonal transport  
 C                              o vTrans: Meridional transport  
 C                              o wTrans: Vertical transport  
 C                              o wVel:   Vertical velocity at upper and lower  
 C                                        cell faces.  
 C     maskC,maskUp             o maskC: land/water mask for tracer cells  
 C                              o maskUp: land/water mask for W points  
 C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  
 C     mTerm, pTerm,            tendency equations.  
 C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  
 C                              o xTerm: Mixing term  
 C                              o cTerm: Coriolis term  
 C                              o mTerm: Metric term  
 C                              o pTerm: Pressure term  
 C                              o fZon: Zonal flux term  
 C                              o fMer: Meridional flux term  
 C                              o fVer: Vertical flux term - note fVer  
126  C                                      is "pipelined" in the vertical  C                                      is "pipelined" in the vertical
127  C                                      so we need an fVer for each  C                                      so we need an fVer for each
128  C                                      variable.  C                                      variable.
129  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     phiHydC    :: hydrostatic potential anomaly at cell center
130  C     jMin, jMax   are applied.  C                   In z coords phiHyd is the hydrostatic potential
131    C                      (=pressure/rho0) anomaly
132    C                   In p coords phiHyd is the geopotential height anomaly.
133    C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
134    C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
135    C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
136    C     phiSurfY             or geopotential (atmos) in X and Y direction
137    C     iMin, iMax     - Ranges and sub-block indices on which calculations
138    C     jMin, jMax       are applied.
139  C     bi, bj  C     bi, bj
140  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
141  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
142  C                          into fVerTerm  C                      index into fVerTerm.
143        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
144        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
145        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
146        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
147        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
148        _RL wVel  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
149        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
150        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
151        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
152        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
       _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)  
153    
154        INTEGER iMin, iMax        INTEGER iMin, iMax
155        INTEGER jMin, jMax        INTEGER jMin, jMax
156        INTEGER bi, bj        INTEGER bi, bj
157        INTEGER i, j        INTEGER i, j
158        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
159    
160          LOGICAL  DIFFERENT_MULTIPLE
161          EXTERNAL DIFFERENT_MULTIPLE
162    
163  C---    The algorithm...  C---    The algorithm...
164  C  C
165  C       "Correction Step"  C       "Correction Step"
# Line 116  C       "Calculation of Gs" Line 174  C       "Calculation of Gs"
174  C       ===================  C       ===================
175  C       This is where all the accelerations and tendencies (ie.  C       This is where all the accelerations and tendencies (ie.
176  C       physics, parameterizations etc...) are calculated  C       physics, parameterizations etc...) are calculated
 C         w = sum_z ( div. u[n] )  
177  C         rho = rho ( theta[n], salt[n] )  C         rho = rho ( theta[n], salt[n] )
178    C         b   = b(rho, theta)
179  C         K31 = K31 ( rho )  C         K31 = K31 ( rho )
180  C         Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )  C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
181  C         Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )  C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
182  C         Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )  C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
183  C         Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )  C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
184  C  C
185  C       "Time-stepping" or "Prediction"  C       "Time-stepping" or "Prediction"
186  C       ================================  C       ================================
# Line 145  C         salt* = salt[n] + dt x ( 3/2 G Line 203  C         salt* = salt[n] + dt x ( 3/2 G
203  C         (1 + dt * K * d_zz) theta[n] = theta*  C         (1 + dt * K * d_zz) theta[n] = theta*
204  C         (1 + dt * K * d_zz) salt[n] = salt*  C         (1 + dt * K * d_zz) salt[n] = salt*
205  C---  C---
206    CEOP
207    
208  C--   Set up work arrays with valid (i.e. not NaN) values  C-- Call to routine for calculation of
209  C     These inital values do not alter the numerical results. They  C   Eliassen-Palm-flux-forced U-tendency,
210  C     just ensure that all memory references are to valid floating  C   if desired:
211  C     point numbers. This prevents spurious hardware signals due to  #ifdef INCLUDE_EP_FORCING_CODE
212  C     uninitialised but inert locations.        CALL CALC_EP_FORCING(myThid)
213        DO j=1-OLy,sNy+OLy  #endif
214         DO i=1-OLx,sNx+OLx  
215          xA(i,j)      = 0. _d 0  #ifdef ALLOW_AUTODIFF_TAMC
216          yA(i,j)      = 0. _d 0  C--   HPF directive to help TAMC
217          uTrans(i,j)  = 0. _d 0  CHPF$ INDEPENDENT
218          vTrans(i,j)  = 0. _d 0  #endif /* ALLOW_AUTODIFF_TAMC */
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
          KappaZT(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
         rhotmp(i,j)  = 0. _d 0  
        ENDDO  
       ENDDO  
219    
220        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
221    
222    #ifdef ALLOW_AUTODIFF_TAMC
223    C--    HPF directive to help TAMC
224    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
225    CHPF$&                  ,phiHydF
226    CHPF$&                  ,KappaRU,KappaRV
227    CHPF$&                  )
228    #endif /* ALLOW_AUTODIFF_TAMC */
229    
230         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
231    
232  C--     Set up work arrays that need valid initial values  #ifdef ALLOW_AUTODIFF_TAMC
233          DO j=1-OLy,sNy+OLy            act1 = bi - myBxLo(myThid)
234           DO i=1-OLx,sNx+OLx            max1 = myBxHi(myThid) - myBxLo(myThid) + 1
235            wTrans(i,j)  = 0. _d 0            act2 = bj - myByLo(myThid)
236            wVel  (i,j,1) = 0. _d 0            max2 = myByHi(myThid) - myByLo(myThid) + 1
237            wVel  (i,j,2) = 0. _d 0            act3 = myThid - 1
238            fVerT(i,j,1) = 0. _d 0            max3 = nTx*nTy
239            fVerT(i,j,2) = 0. _d 0            act4 = ikey_dynamics - 1
240            fVerS(i,j,1) = 0. _d 0            idynkey = (act1 + 1) + act2*max1
241            fVerS(i,j,2) = 0. _d 0       &                      + act3*max1*max2
242            fVerU(i,j,1) = 0. _d 0       &                      + act4*max1*max2*max3
243            fVerU(i,j,2) = 0. _d 0  #endif /* ALLOW_AUTODIFF_TAMC */
           fVerV(i,j,1) = 0. _d 0  
           fVerV(i,j,2) = 0. _d 0  
           pH(i,j,1) = 0. _d 0  
           K13(i,j,1) = 0. _d 0  
           K23(i,j,1) = 0. _d 0  
           K33(i,j,1) = 0. _d 0  
           KapGM(i,j) = 0. _d 0  
          ENDDO  
         ENDDO  
244    
245          iMin = 1-OLx+1  C--   Set up work arrays with valid (i.e. not NaN) values
246          iMax = sNx+OLx  C     These inital values do not alter the numerical results. They
247          jMin = 1-OLy+1  C     just ensure that all memory references are to valid floating
248          jMax = sNy+OLy  C     point numbers. This prevents spurious hardware signals due to
249    C     uninitialised but inert locations.
 C--     Calculate gradient of surface pressure  
         CALL GRAD_PSURF(  
      I       bi,bj,iMin,iMax,jMin,jMax,  
      O       pSurfX,pSurfY,  
      I       myThid)  
   
 C--     Update fields in top level according to tendency terms  
         CALL CORRECTION_STEP(  
      I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)  
   
 C--     Density of 1st level (below W(1)) reference to level 1  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax, 1, 1, eosType,  
      O     rhoKm1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,  
      U      pH,  
      I      myThid )  
         DO J=jMin,jMax  
          DO I=iMin,iMax  
           rhoKp1(I,J)=rhoKm1(I,J)  
          ENDDO  
         ENDDO  
250    
251          DO K=2,Nz          DO k=1,Nr
252  C--     Update fields in Kth level according to tendency terms           DO j=1-OLy,sNy+OLy
253          CALL CORRECTION_STEP(            DO i=1-OLx,sNx+OLx
254       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)             KappaRU(i,j,k) = 0. _d 0
255  C--     Density of K-1 level (above W(K)) reference to K-1 level             KappaRV(i,j,k) = 0. _d 0
256  copt    CALL FIND_RHO(  #ifdef ALLOW_AUTODIFF_TAMC
257  copt I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, eosType,  cph(
258  copt O     rhoKm1,  c--   need some re-initialisation here to break dependencies
259  copt I     myThid )  c--   totphihyd is assumed zero from ini_pressure, i.e.
260  C       rhoKm1=rhoKp1  c--   avoiding iterate pressure p = integral of (g*rho(p)*dz)
261          DO J=jMin,jMax  cph)
262           DO I=iMin,iMax             totPhiHyd(i,j,k,bi,bj) = 0. _d 0
263            rhoKm1(I,J)=rhoKp1(I,J)             gu(i,j,k,bi,bj) = 0. _d 0
264               gv(i,j,k,bi,bj) = 0. _d 0
265    #endif
266              ENDDO
267           ENDDO           ENDDO
268          ENDDO          ENDDO
 C--     Density of K level (below W(K)) reference to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, eosType,  
      O     rhoKp1,  
      I     myThid )  
 C--     Density of K-1 level (above W(K)) reference to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K, eosType,  
      O     rhotmp,  
      I     myThid )  
 C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  
         CALL CALC_ISOSLOPES(  
      I            bi, bj, iMin, iMax, jMin, jMax, K,  
      I            rhoKm1, rhoKp1, rhotmp,  
      O            K13, K23, K33, KapGM,  
      I            myThid )  
 C--     Calculate static stability and mix where convectively unstable  
         CALL CONVECT(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhotmp,rhoKp1,  
      I      myTime,myIter,myThid)  
 C--     Density of K-1 level (above W(K)) reference to K-1 level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, eosType,  
      O     rhoKm1,  
      I     myThid )  
 C--     Density of K level (below W(K)) referenced to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, eosType,  
      O     rhoKp1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      U      pH,  
      I      myThid )  
   
         ENDDO ! K  
   
 C--     Initial boundary condition on barotropic divergence integral  
269          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
270           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
271            cg2d_b(i,j,bi,bj) = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
272              fVerU  (i,j,2) = 0. _d 0
273              fVerV  (i,j,1) = 0. _d 0
274              fVerV  (i,j,2) = 0. _d 0
275              phiHydF (i,j)  = 0. _d 0
276              phiHydC (i,j)  = 0. _d 0
277              dPhiHydX(i,j)  = 0. _d 0
278              dPhiHydY(i,j)  = 0. _d 0
279              phiSurfX(i,j)  = 0. _d 0
280              phiSurfY(i,j)  = 0. _d 0
281           ENDDO           ENDDO
282          ENDDO          ENDDO
283    
284          DO K = Nz, 1, -1  C--     Start computation of dynamics
285           kM1  =max(1,k-1)   ! Points to level above k (=k-1)          iMin = 0
286           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above          iMax = sNx+1
287           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer          jMin = 0
288           iMin = 1-OLx+2          jMax = sNy+1
289           iMax = sNx+OLx-1  
290           jMin = 1-OLy+2  #ifdef ALLOW_AUTODIFF_TAMC
291           jMax = sNy+OLy-1  CADJ STORE wvel (:,:,:,bi,bj) =
292    CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
293  C--      Get temporary terms used by tendency routines  #endif /* ALLOW_AUTODIFF_TAMC */
294           CALL CALC_COMMON_FACTORS (  
295       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
296       O        xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp,  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
297       I        myThid)          IF (implicSurfPress.NE.1.) THEN
298              CALL CALC_GRAD_PHI_SURF(
299         I         bi,bj,iMin,iMax,jMin,jMax,
300         I         etaN,
301         O         phiSurfX,phiSurfY,
302         I         myThid )                        
303            ENDIF
304    
305    #ifdef ALLOW_AUTODIFF_TAMC
306    CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
307    CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
308    #ifdef ALLOW_KPP
309    CADJ STORE KPPviscAz (:,:,:,bi,bj)
310    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
311    #endif /* ALLOW_KPP */
312    #endif /* ALLOW_AUTODIFF_TAMC */
313    
314    #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
315  C--      Calculate the total vertical diffusivity  C--      Calculate the total vertical diffusivity
316           CALL CALC_DIFFUSIVITY(          DO k=1,Nr
317       I        bi,bj,iMin,iMax,jMin,jMax,K,           CALL CALC_VISCOSITY(
318       I        maskC,maskUp,KapGM,K33,       I        bi,bj,iMin,iMax,jMin,jMax,k,
319       O        KappaZT,       O        KappaRU,KappaRV,
320       I        myThid)       I        myThid)
321           ENDDO
322    #endif
323    
324  C--      Calculate accelerations in the momentum equations  #ifdef ALLOW_AUTODIFF_TAMC
325    CADJ STORE KappaRU(:,:,:)
326    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
327    CADJ STORE KappaRV(:,:,:)
328    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
329    #endif /* ALLOW_AUTODIFF_TAMC */
330    
331    C--     Start of dynamics loop
332            DO k=1,Nr
333    
334    C--       km1    Points to level above k (=k-1)
335    C--       kup    Cycles through 1,2 to point to layer above
336    C--       kDown  Cycles through 2,1 to point to current layer
337    
338              km1  = MAX(1,k-1)
339              kp1  = MIN(k+1,Nr)
340              kup  = 1+MOD(k+1,2)
341              kDown= 1+MOD(k,2)
342    
343    #ifdef ALLOW_AUTODIFF_TAMC
344             kkey = (idynkey-1)*Nr + k
345    c
346    CADJ STORE totphihyd (:,:,k,bi,bj)
347    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
348    CADJ STORE theta (:,:,k,bi,bj)
349    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
350    CADJ STORE salt  (:,:,k,bi,bj)
351    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
352    #endif /* ALLOW_AUTODIFF_TAMC */
353    
354    C--      Integrate hydrostatic balance for phiHyd with BC of
355    C        phiHyd(z=0)=0
356             CALL CALC_PHI_HYD(
357         I        bi,bj,iMin,iMax,jMin,jMax,k,
358         I        theta, salt,
359         U        phiHydF,
360         O        phiHydC, dPhiHydX, dPhiHydY,
361         I        myTime, myIter, myThid )
362    
363    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
364    C        and step forward storing the result in gU, gV, etc...
365           IF ( momStepping ) THEN           IF ( momStepping ) THEN
366            CALL CALC_MOM_RHS(  #ifdef ALLOW_MOM_FLUXFORM
367       I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,             IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
368       I         xA,yA,uTrans,vTrans,wTrans,wVel,maskC,       I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
369       I         pH,       I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
370       U         aTerm,xTerm,cTerm,mTerm,pTerm,       U         fVerU, fVerV,
371       U         fZon, fMer, fVerU, fVerV,       I         myTime, myIter, myThid)
372       I         myThid)  #endif
373           ENDIF  #ifdef ALLOW_MOM_VECINV
374               IF (vectorInvariantMomentum) CALL MOM_VECINV(
375         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
376         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
377         U         fVerU, fVerV,
378         I         myTime, myIter, myThid)
379    #endif
380               CALL TIMESTEP(
381         I         bi,bj,iMin,iMax,jMin,jMax,k,
382         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
383         I         myTime, myIter, myThid)
384    
385    #ifdef   ALLOW_OBCS
386    C--      Apply open boundary conditions
387               IF (useOBCS) THEN
388                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
389               ENDIF
390    #endif   /* ALLOW_OBCS */
391    
 C--      Calculate active tracer tendencies  
          IF ( tempStepping ) THEN  
           CALL CALC_GT(  
      I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I         xA,yA,uTrans,vTrans,wTrans,maskUp,  
      I         K13,K23,KappaZT,KapGM,  
      U         aTerm,xTerm,fZon,fMer,fVerT,  
      I         myThid)  
392           ENDIF           ENDIF
393  Cdbg     CALL CALC_GS(  
394  Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
395  Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  C--     end of dynamics k loop (1:Nr)
396  Cdbg I        K13,K23,K33,KapGM,          ENDDO
397  Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
398  Cdbg I        myThid)  C--     Implicit Vertical advection & viscosity
399    #ifdef INCLUDE_IMPLVERTADV_CODE
400  C--      Prediction step (step forward all model variables)          IF ( momImplVertAdv ) THEN
401           CALL TIMESTEP(            CALL MOM_U_IMPLICIT_R( kappaRU,
402       I       bi,bj,iMin,iMax,jMin,jMax,K,       I                           bi, bj, myTime, myIter, myThid )
403       I       myThid)            CALL MOM_V_IMPLICIT_R( kappaRV,
404         I                           bi, bj, myTime, myIter, myThid )
405  C--      Diagnose barotropic divergence of predicted fields          ELSEIF ( implicitViscosity ) THEN
406           CALL DIV_G(  #else /* INCLUDE_IMPLVERTADV_CODE */
407       I       bi,bj,iMin,iMax,jMin,jMax,K,          IF     ( implicitViscosity ) THEN
408       I       xA,yA,  #endif /* INCLUDE_IMPLVERTADV_CODE */
409       I       myThid)  #ifdef    ALLOW_AUTODIFF_TAMC
410    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
411          ENDDO ! K  CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
412    #endif    /* ALLOW_AUTODIFF_TAMC */
413  C--     Implicit diffusion            CALL IMPLDIFF(
414          IF (implicitDiffusion) THEN       I         bi, bj, iMin, iMax, jMin, jMax,
415           CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,       I         deltaTmom, KappaRU,recip_HFacW,
416       I                  KappaZT,       U         gU,
417       I                  myThid )       I         myThid )
418    #ifdef    ALLOW_AUTODIFF_TAMC
419    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
420    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
421    #endif    /* ALLOW_AUTODIFF_TAMC */
422              CALL IMPLDIFF(
423         I         bi, bj, iMin, iMax, jMin, jMax,
424         I         deltaTmom, KappaRV,recip_HFacS,
425         U         gV,
426         I         myThid )
427            ENDIF
428    
429    #ifdef   ALLOW_OBCS
430    C--      Apply open boundary conditions
431            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
432               DO K=1,Nr
433                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
434               ENDDO
435            ENDIF
436    #endif   /* ALLOW_OBCS */
437    
438    #ifdef    ALLOW_CD_CODE
439            IF (implicitViscosity.AND.useCDscheme) THEN
440    #ifdef    ALLOW_AUTODIFF_TAMC
441    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
442    #endif    /* ALLOW_AUTODIFF_TAMC */
443              CALL IMPLDIFF(
444         I         bi, bj, iMin, iMax, jMin, jMax,
445         I         deltaTmom, KappaRU,recip_HFacW,
446         U         vVelD,
447         I         myThid )
448    #ifdef    ALLOW_AUTODIFF_TAMC
449    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
450    #endif    /* ALLOW_AUTODIFF_TAMC */
451              CALL IMPLDIFF(
452         I         bi, bj, iMin, iMax, jMin, jMax,
453         I         deltaTmom, KappaRV,recip_HFacS,
454         U         uVelD,
455         I         myThid )
456          ENDIF          ENDIF
457    #endif    /* ALLOW_CD_CODE */
458    C--     End implicit Vertical advection & viscosity
459    
460         ENDDO         ENDDO
461        ENDDO        ENDDO
462    
463        write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),  Cml(
464       &                           maxval(cg2d_x(1:sNx,1:sNy,:,:))  C     In order to compare the variance of phiHydLow of a p/z-coordinate
465        write(0,*) 'dynamics: U  ',minval(uVel(1:sNx,1:sNy,:,:,:)),  C     run with etaH of a z/p-coordinate run the drift of phiHydLow
466       &                           maxval(uVel(1:sNx,1:sNy,:,:,:))  C     has to be removed by something like the following subroutine:
467        write(0,*) 'dynamics: V  ',minval(vVel(1:sNx,1:sNy,:,:,:)),  C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
468       &                           maxval(vVel(1:sNx,1:sNy,:,:,:))  C     &                'phiHydLow', myThid )
469  cblk  write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),  Cml)
470  cblk &                           maxval(K13(1:sNx,1:sNy,:))  
471  cblk  write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),  #ifdef ALLOW_DEBUG
472  cblk &                           maxval(K23(1:sNx,1:sNy,:))        If ( debugLevel .GE. debLevB ) THEN
473  cblk  write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),         CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
474  cblk &                           maxval(K33(1:sNx,1:sNy,:))         CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
475        write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),         CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
476       &                           maxval(gT(1:sNx,1:sNy,:,:,:))         CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
477        write(0,*) 'dynamics: T  ',minval(Theta(1:sNx,1:sNy,:,:,:)),         CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
478       &                           maxval(Theta(1:sNx,1:sNy,:,:,:))         CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
479  cblk  write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil)),         CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
480  cblk &                           maxval(pH/(Gravity*Rhonil))         CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
481           CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
482           CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
483           CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
484           CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
485           CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
486           CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
487          ENDIF
488    #endif
489    
490        RETURN        RETURN
491        END        END

Legend:
Removed from v.1.15  
changed lines
  Added in v.1.108

  ViewVC Help
Powered by ViewVC 1.1.22