/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.78 by heimbach, Tue Aug 14 00:19:42 2001 UTC revision 1.89 by mlosch, Wed Aug 7 16:55:52 2002 UTC
# Line 3  C $Name$ Line 3  C $Name$
3    
4  #include "CPP_OPTIONS.h"  #include "CPP_OPTIONS.h"
5    
6    CBOP
7    C     !ROUTINE: DYNAMICS
8    C     !INTERFACE:
9        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
10  C     /==========================================================\  C     !DESCRIPTION: \bv
11  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
12  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS                                      
13  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model  
14  C     |==========================================================|  C     |   dynamics.                                              
15  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
16  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each      
17  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have  
18  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.      
19  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this  
20  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference  
21  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region    
22  C     | Notes                                                    |  C     | require special consideration.                            
23  C     | =====                                                    |  C     | The algorithm...
24  C     | C*P* comments indicating place holders for which code is |  C     |
25  C     |      presently being developed.                          |  C     | "Correction Step"
26  C     \==========================================================/  C     | =================
27    C     | Here we update the horizontal velocities with the surface
28    C     | pressure such that the resulting flow is either consistent
29    C     | with the free-surface evolution or the rigid-lid:
30    C     |   U[n] = U* + dt x d/dx P
31    C     |   V[n] = V* + dt x d/dy P
32    C     |
33    C     | "Calculation of Gs"
34    C     | ===================
35    C     | This is where all the accelerations and tendencies (ie.
36    C     | physics, parameterizations etc...) are calculated
37    C     |   rho = rho ( theta[n], salt[n] )
38    C     |   b   = b(rho, theta)
39    C     |   K31 = K31 ( rho )
40    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
41    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
42    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
43    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
44    C     |
45    C     | "Time-stepping" or "Prediction"
46    C     | ================================
47    C     | The models variables are stepped forward with the appropriate
48    C     | time-stepping scheme (currently we use Adams-Bashforth II)
49    C     | - For momentum, the result is always *only* a "prediction"
50    C     | in that the flow may be divergent and will be "corrected"
51    C     | later with a surface pressure gradient.
52    C     | - Normally for tracers the result is the new field at time
53    C     | level [n+1} *BUT* in the case of implicit diffusion the result
54    C     | is also *only* a prediction.
55    C     | - We denote "predictors" with an asterisk (*).
56    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
57    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
58    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
59    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60    C     | With implicit diffusion:
61    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     |   (1 + dt * K * d_zz) theta[n] = theta*
64    C     |   (1 + dt * K * d_zz) salt[n] = salt*
65    C     |
66    C     *==========================================================*
67    C     \ev
68    C     !USES:
69        IMPLICIT NONE        IMPLICIT NONE
   
70  C     == Global variables ===  C     == Global variables ===
71  #include "SIZE.h"  #include "SIZE.h"
72  #include "EEPARAMS.h"  #include "EEPARAMS.h"
# Line 32  C     == Global variables === Line 76  C     == Global variables ===
76  #ifdef ALLOW_PASSIVE_TRACER  #ifdef ALLOW_PASSIVE_TRACER
77  #include "TR1.h"  #include "TR1.h"
78  #endif  #endif
   
79  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
80  # include "tamc.h"  # include "tamc.h"
81  # include "tamc_keys.h"  # include "tamc_keys.h"
# Line 40  C     == Global variables === Line 83  C     == Global variables ===
83  # ifdef ALLOW_KPP  # ifdef ALLOW_KPP
84  #  include "KPP.h"  #  include "KPP.h"
85  # endif  # endif
 # ifdef ALLOW_GMREDI  
 #  include "GMREDI.h"  
 # endif  
86  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
   
87  #ifdef ALLOW_TIMEAVE  #ifdef ALLOW_TIMEAVE
88  #include "TIMEAVE_STATV.h"  #include "TIMEAVE_STATV.h"
89  #endif  #endif
90    
91    C     !CALLING SEQUENCE:
92    C     DYNAMICS()
93    C      |
94    C      |-- CALC_GRAD_PHI_SURF
95    C      |
96    C      |-- CALC_VISCOSITY
97    C      |
98    C      |-- CALC_PHI_HYD  
99    C      |
100    C      |-- STORE_PRESSURE
101    C      |
102    C      |-- MOM_FLUXFORM  
103    C      |
104    C      |-- MOM_VECINV    
105    C      |
106    C      |-- TIMESTEP      
107    C      |
108    C      |-- OBCS_APPLY_UV
109    C      |
110    C      |-- IMPLDIFF      
111    C      |
112    C      |-- OBCS_APPLY_UV
113    C      |
114    C      |-- CALL TIMEAVE_CUMUL_1T
115    C      |-- CALL DEBUG_STATS_RL
116    
117    C     !INPUT/OUTPUT PARAMETERS:
118  C     == Routine arguments ==  C     == Routine arguments ==
119  C     myTime - Current time in simulation  C     myTime - Current time in simulation
120  C     myIter - Current iteration number in simulation  C     myIter - Current iteration number in simulation
# Line 57  C     myThid - Thread number for this in Line 123  C     myThid - Thread number for this in
123        INTEGER myIter        INTEGER myIter
124        INTEGER myThid        INTEGER myThid
125    
126    C     !LOCAL VARIABLES:
127  C     == Local variables  C     == Local variables
128  C     fVer[STUV]               o fVer: Vertical flux term - note fVer  C     fVer[STUV]               o fVer: Vertical flux term - note fVer
129  C                                      is "pipelined" in the vertical  C                                      is "pipelined" in the vertical
# Line 76  C     bi, bj Line 143  C     bi, bj
143  C     k, kup,        - Index for layer above and below. kup and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
144  C     kDown, km1       are switched with layer to be the appropriate  C     kDown, km1       are switched with layer to be the appropriate
145  C                      index into fVerTerm.  C                      index into fVerTerm.
 C     tauAB - Adams-Bashforth timestepping weight: 0=forward ; 1/2=Adams-Bashf.  
146        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
147        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
148        _RL phiHyd  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL phiHyd  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
# Line 86  C     tauAB - Adams-Bashforth timesteppi Line 152  C     tauAB - Adams-Bashforth timesteppi
152        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
153        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
154        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
       _RL sigmaX  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL sigmaY  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL sigmaR  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
       _RL tauAB  
   
 C This is currently used by IVDC and Diagnostics  
       _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)  
155    
156        INTEGER iMin, iMax        INTEGER iMin, iMax
157        INTEGER jMin, jMax        INTEGER jMin, jMax
# Line 149  C         salt* = salt[n] + dt x ( 3/2 G Line 208  C         salt* = salt[n] + dt x ( 3/2 G
208  C         (1 + dt * K * d_zz) theta[n] = theta*  C         (1 + dt * K * d_zz) theta[n] = theta*
209  C         (1 + dt * K * d_zz) salt[n] = salt*  C         (1 + dt * K * d_zz) salt[n] = salt*
210  C---  C---
211    CEOP
212    
213  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
214  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
# Line 157  C     point numbers. This prevents spuri Line 217  C     point numbers. This prevents spuri
217  C     uninitialised but inert locations.  C     uninitialised but inert locations.
218        DO j=1-OLy,sNy+OLy        DO j=1-OLy,sNy+OLy
219         DO i=1-OLx,sNx+OLx         DO i=1-OLx,sNx+OLx
         DO k=1,Nr  
          phiHyd(i,j,k)  = 0. _d 0  
          KappaRU(i,j,k) = 0. _d 0  
          KappaRV(i,j,k) = 0. _d 0  
          sigmaX(i,j,k) = 0. _d 0  
          sigmaY(i,j,k) = 0. _d 0  
          sigmaR(i,j,k) = 0. _d 0  
         ENDDO  
220          rhoKM1 (i,j) = 0. _d 0          rhoKM1 (i,j) = 0. _d 0
221          rhok   (i,j) = 0. _d 0          rhok   (i,j) = 0. _d 0
222          phiSurfX(i,j) = 0. _d 0          phiSurfX(i,j) = 0. _d 0
# Line 172  C     uninitialised but inert locations. Line 224  C     uninitialised but inert locations.
224         ENDDO         ENDDO
225        ENDDO        ENDDO
226    
227    C-- Call to routine for calculation of
228    C   Eliassen-Palm-flux-forced U-tendency,
229    C   if desired:
230    #ifdef INCLUDE_EP_FORCING_CODE
231          CALL CALC_EP_FORCING(myThid)
232    #endif
233    
234  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
235  C--   HPF directive to help TAMC  C--   HPF directive to help TAMC
236  CHPF$ INDEPENDENT  CHPF$ INDEPENDENT
# Line 192  CHPF$&                  ) Line 251  CHPF$&                  )
251  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
252            act1 = bi - myBxLo(myThid)            act1 = bi - myBxLo(myThid)
253            max1 = myBxHi(myThid) - myBxLo(myThid) + 1            max1 = myBxHi(myThid) - myBxLo(myThid) + 1
   
254            act2 = bj - myByLo(myThid)            act2 = bj - myByLo(myThid)
255            max2 = myByHi(myThid) - myByLo(myThid) + 1            max2 = myByHi(myThid) - myByLo(myThid) + 1
   
256            act3 = myThid - 1            act3 = myThid - 1
257            max3 = nTx*nTy            max3 = nTx*nTy
   
258            act4 = ikey_dynamics - 1            act4 = ikey_dynamics - 1
   
259            ikey = (act1 + 1) + act2*max1            ikey = (act1 + 1) + act2*max1
260       &                      + act3*max1*max2       &                      + act3*max1*max2
261       &                      + act4*max1*max2*max3       &                      + act4*max1*max2*max3
# Line 209  CHPF$&                  ) Line 264  CHPF$&                  )
264  C--     Set up work arrays that need valid initial values  C--     Set up work arrays that need valid initial values
265          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
266           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
267              DO k=1,Nr
268               phiHyd(i,j,k)  = 0. _d 0
269               KappaRU(i,j,k) = 0. _d 0
270               KappaRV(i,j,k) = 0. _d 0
271              ENDDO
272            fVerU  (i,j,1) = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
273            fVerU  (i,j,2) = 0. _d 0            fVerU  (i,j,2) = 0. _d 0
274            fVerV  (i,j,1) = 0. _d 0            fVerV  (i,j,1) = 0. _d 0
# Line 223  C--     Start computation of dynamics Line 283  C--     Start computation of dynamics
283          jMax = sNy+OLy-1          jMax = sNy+OLy-1
284    
285  #ifdef ALLOW_AUTODIFF_TAMC  #ifdef ALLOW_AUTODIFF_TAMC
 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte  
 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte  
286  CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte  CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
287  #endif /* ALLOW_AUTODIFF_TAMC */  #endif /* ALLOW_AUTODIFF_TAMC */
288    
# Line 238  C       (note: this loop will be replace Line 296  C       (note: this loop will be replace
296       I         myThid )                               I         myThid )                        
297          ENDIF          ENDIF
298    
299    #ifdef ALLOW_AUTODIFF_TAMC
300    CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
301    CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
302    #ifdef ALLOW_KPP
303    CADJ STORE KPPviscAz (:,:,:,bi,bj)
304    CADJ &                 = comlev1_bibj, key=ikey, byte=isbyte
305    #endif /* ALLOW_KPP */
306    #endif /* ALLOW_AUTODIFF_TAMC */
307    
308  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
309  C--      Calculate the total vertical diffusivity  C--      Calculate the total vertical diffusivity
310          DO k=1,Nr          DO k=1,Nr
# Line 270  C        distinguishe between Stagger an Line 337  C        distinguishe between Stagger an
337           IF (staggerTimeStep) THEN           IF (staggerTimeStep) THEN
338             CALL CALC_PHI_HYD(             CALL CALC_PHI_HYD(
339       I        bi,bj,iMin,iMax,jMin,jMax,k,       I        bi,bj,iMin,iMax,jMin,jMax,k,
340       I        gTnm1, gSnm1,       I        gT, gS,
341       U        phiHyd,       U        phiHyd,
342       I        myThid )       I        myThid )
343           ELSE           ELSE
# Line 281  C        distinguishe between Stagger an Line 348  C        distinguishe between Stagger an
348       I        myThid )       I        myThid )
349           ENDIF           ENDIF
350    
351    C        calculate pressure from phiHyd and store it on common block
352    C        variable pressure
353             CALL STORE_PRESSURE( bi, bj, k, phiHyd, myThid )
354    
355    
356  C--      Calculate accelerations in the momentum equations (gU, gV, ...)  C--      Calculate accelerations in the momentum equations (gU, gV, ...)
357  C        and step forward storing the result in gUnm1, gVnm1, etc...  C        and step forward storing the result in gUnm1, gVnm1, etc...
358           IF ( momStepping ) THEN           IF ( momStepping ) THEN
359             CALL CALC_MOM_RHS(  #ifndef DISABLE_MOM_FLUXFORM
360               IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
361       I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,       I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
362       I         phiHyd,KappaRU,KappaRV,       I         phiHyd,KappaRU,KappaRV,
363       U         fVerU, fVerV,       U         fVerU, fVerV,
364       I         myTime, myThid)       I         myTime, myIter, myThid)
365    #endif
366    #ifndef DISABLE_MOM_VECINV
367               IF (vectorInvariantMomentum) CALL MOM_VECINV(
368         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
369         I         phiHyd,KappaRU,KappaRV,
370         U         fVerU, fVerV,
371         I         myTime, myIter, myThid)
372    #endif
373             CALL TIMESTEP(             CALL TIMESTEP(
374       I         bi,bj,iMin,iMax,jMin,jMax,k,       I         bi,bj,iMin,iMax,jMin,jMax,k,
375       I         phiHyd, phiSurfX, phiSurfY,       I         phiHyd, phiSurfX, phiSurfY,
# Line 318  C--      Apply open boundary conditions Line 399  C--      Apply open boundary conditions
399  C--     end of dynamics k loop (1:Nr)  C--     end of dynamics k loop (1:Nr)
400          ENDDO          ENDDO
401    
   
   
402  C--     Implicit viscosity  C--     Implicit viscosity
403          IF (implicitViscosity.AND.momStepping) THEN          IF (implicitViscosity.AND.momStepping) THEN
404  #ifdef    ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
           idkey = iikey + 3  
405  CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
406  #endif    /* ALLOW_AUTODIFF_TAMC */  #endif    /* ALLOW_AUTODIFF_TAMC */
407            CALL IMPLDIFF(            CALL IMPLDIFF(
# Line 332  CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_ Line 410  CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_
410       U         gUNm1,       U         gUNm1,
411       I         myThid )       I         myThid )
412  #ifdef    ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
           idkey = iikey + 4  
413  CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
414  #endif    /* ALLOW_AUTODIFF_TAMC */  #endif    /* ALLOW_AUTODIFF_TAMC */
415            CALL IMPLDIFF(            CALL IMPLDIFF(
# Line 352  C--      Apply open boundary conditions Line 429  C--      Apply open boundary conditions
429    
430  #ifdef    INCLUDE_CD_CODE  #ifdef    INCLUDE_CD_CODE
431  #ifdef    ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
           idkey = iikey + 5  
432  CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
433  #endif    /* ALLOW_AUTODIFF_TAMC */  #endif    /* ALLOW_AUTODIFF_TAMC */
434            CALL IMPLDIFF(            CALL IMPLDIFF(
# Line 361  CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_ Line 437  CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_
437       U         vVelD,       U         vVelD,
438       I         myThid )       I         myThid )
439  #ifdef    ALLOW_AUTODIFF_TAMC  #ifdef    ALLOW_AUTODIFF_TAMC
           idkey = iikey + 6  
440  CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte  CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
441  #endif    /* ALLOW_AUTODIFF_TAMC */  #endif    /* ALLOW_AUTODIFF_TAMC */
442            CALL IMPLDIFF(            CALL IMPLDIFF(
# Line 385  Cjmc(end) Line 460  Cjmc(end)
460          IF (taveFreq.GT.0.) THEN          IF (taveFreq.GT.0.) THEN
461            CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr,            CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr,
462       I                              deltaTclock, bi, bj, myThid)       I                              deltaTclock, bi, bj, myThid)
           IF (ivdc_kappa.NE.0.) THEN  
             CALL TIMEAVE_CUMULATE(ConvectCountTave, ConvectCount, Nr,  
      I                              deltaTclock, bi, bj, myThid)  
           ENDIF  
463          ENDIF          ENDIF
464  #endif /* ALLOW_TIMEAVE */  #endif /* ALLOW_TIMEAVE */
465    
466         ENDDO         ENDDO
467        ENDDO        ENDDO
468    
469  #ifndef EXCLUDE_DEBUGMODE  #ifndef DISABLE_DEBUGMODE
470        If (debugMode) THEN        If (debugMode) THEN
471         CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)         CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
472         CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)         CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)

Legend:
Removed from v.1.78  
changed lines
  Added in v.1.89

  ViewVC Help
Powered by ViewVC 1.1.22