/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.90 - (show annotations) (download)
Wed Sep 18 16:38:01 2002 UTC (21 years, 8 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint46n_post, checkpoint46l_post, checkpoint46l_pre, checkpoint46j_pre, checkpoint46j_post, checkpoint46k_post, checkpoint46h_pre, checkpoint46m_post, checkpoint46g_post, checkpoint46i_post, checkpoint46h_post
Changes since 1.89: +17 -9 lines
o Include a new diagnostic variable phiHydLow for the ocean model
  - in z-coordinates, it is the bottom pressure anomaly
  - in p-coordinates, it is the sea surface elevation
  - in both cases, these variable have global drift, reflecting the mass
    drift in z-coordinates and the volume drift in p-coordinates
  - included time averaging for phiHydLow, be aware of the drift!
o depth-dependent computation of Bo_surf for pressure coordinates
  in the ocean (buoyancyRelation='OCEANICP')
  - requires a new routine (FIND_RHO_SCALAR) to compute density with only
    Theta, Salinity, and Pressure in the parameter list. This routine is
    presently contained in find_rho.F. This routine does not give the
    correct density for 'POLY3', which would be a z-dependent reference
    density.
o cleaned up find_rho
  - removed obsolete 'eqn' from the parameter list.
o added two new verification experiments: gop and goz
  (4x4 degree global ocean, 15 layers in pressure and height coordinates)

1 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.89 2002/08/07 16:55:52 mlosch Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: DYNAMICS
8 C !INTERFACE:
9 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
10 C !DESCRIPTION: \bv
11 C *==========================================================*
12 C | SUBROUTINE DYNAMICS
13 C | o Controlling routine for the explicit part of the model
14 C | dynamics.
15 C *==========================================================*
16 C | This routine evaluates the "dynamics" terms for each
17 C | block of ocean in turn. Because the blocks of ocean have
18 C | overlap regions they are independent of one another.
19 C | If terms involving lateral integrals are needed in this
20 C | routine care will be needed. Similarly finite-difference
21 C | operations with stencils wider than the overlap region
22 C | require special consideration.
23 C | The algorithm...
24 C |
25 C | "Correction Step"
26 C | =================
27 C | Here we update the horizontal velocities with the surface
28 C | pressure such that the resulting flow is either consistent
29 C | with the free-surface evolution or the rigid-lid:
30 C | U[n] = U* + dt x d/dx P
31 C | V[n] = V* + dt x d/dy P
32 C |
33 C | "Calculation of Gs"
34 C | ===================
35 C | This is where all the accelerations and tendencies (ie.
36 C | physics, parameterizations etc...) are calculated
37 C | rho = rho ( theta[n], salt[n] )
38 C | b = b(rho, theta)
39 C | K31 = K31 ( rho )
40 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
41 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
42 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
43 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
44 C |
45 C | "Time-stepping" or "Prediction"
46 C | ================================
47 C | The models variables are stepped forward with the appropriate
48 C | time-stepping scheme (currently we use Adams-Bashforth II)
49 C | - For momentum, the result is always *only* a "prediction"
50 C | in that the flow may be divergent and will be "corrected"
51 C | later with a surface pressure gradient.
52 C | - Normally for tracers the result is the new field at time
53 C | level [n+1} *BUT* in the case of implicit diffusion the result
54 C | is also *only* a prediction.
55 C | - We denote "predictors" with an asterisk (*).
56 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
57 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
58 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
59 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60 C | With implicit diffusion:
61 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63 C | (1 + dt * K * d_zz) theta[n] = theta*
64 C | (1 + dt * K * d_zz) salt[n] = salt*
65 C |
66 C *==========================================================*
67 C \ev
68 C !USES:
69 IMPLICIT NONE
70 C == Global variables ===
71 #include "SIZE.h"
72 #include "EEPARAMS.h"
73 #include "PARAMS.h"
74 #include "DYNVARS.h"
75 #include "GRID.h"
76 #ifdef ALLOW_PASSIVE_TRACER
77 #include "TR1.h"
78 #endif
79 #ifdef ALLOW_AUTODIFF_TAMC
80 # include "tamc.h"
81 # include "tamc_keys.h"
82 # include "FFIELDS.h"
83 # ifdef ALLOW_KPP
84 # include "KPP.h"
85 # endif
86 #endif /* ALLOW_AUTODIFF_TAMC */
87 #ifdef ALLOW_TIMEAVE
88 #include "TIMEAVE_STATV.h"
89 #endif
90
91 C !CALLING SEQUENCE:
92 C DYNAMICS()
93 C |
94 C |-- CALC_GRAD_PHI_SURF
95 C |
96 C |-- CALC_VISCOSITY
97 C |
98 C |-- CALC_PHI_HYD
99 C |
100 C |-- STORE_PRESSURE
101 C |
102 C |-- MOM_FLUXFORM
103 C |
104 C |-- MOM_VECINV
105 C |
106 C |-- TIMESTEP
107 C |
108 C |-- OBCS_APPLY_UV
109 C |
110 C |-- IMPLDIFF
111 C |
112 C |-- OBCS_APPLY_UV
113 C |
114 C |-- CALL TIMEAVE_CUMUL_1T
115 C |-- CALL DEBUG_STATS_RL
116
117 C !INPUT/OUTPUT PARAMETERS:
118 C == Routine arguments ==
119 C myTime - Current time in simulation
120 C myIter - Current iteration number in simulation
121 C myThid - Thread number for this instance of the routine.
122 _RL myTime
123 INTEGER myIter
124 INTEGER myThid
125
126 C !LOCAL VARIABLES:
127 C == Local variables
128 C fVer[STUV] o fVer: Vertical flux term - note fVer
129 C is "pipelined" in the vertical
130 C so we need an fVer for each
131 C variable.
132 C rhoK, rhoKM1 - Density at current level, and level above
133 C phiHyd - Hydrostatic part of the potential phiHydi.
134 C In z coords phiHydiHyd is the hydrostatic
135 C Potential (=pressure/rho0) anomaly
136 C In p coords phiHydiHyd is the geopotential
137 C surface height anomaly.
138 C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean)
139 C phiSurfY or geopotentiel (atmos) in X and Y direction
140 C iMin, iMax - Ranges and sub-block indices on which calculations
141 C jMin, jMax are applied.
142 C bi, bj
143 C k, kup, - Index for layer above and below. kup and kDown
144 C kDown, km1 are switched with layer to be the appropriate
145 C index into fVerTerm.
146 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
147 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
148 _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
149 _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
150 _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
151 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
152 _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
153 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
154 _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
155
156 INTEGER iMin, iMax
157 INTEGER jMin, jMax
158 INTEGER bi, bj
159 INTEGER i, j
160 INTEGER k, km1, kp1, kup, kDown
161
162 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
163 c CHARACTER*(MAX_LEN_MBUF) suff
164 c LOGICAL DIFFERENT_MULTIPLE
165 c EXTERNAL DIFFERENT_MULTIPLE
166 Cjmc(end)
167
168 C--- The algorithm...
169 C
170 C "Correction Step"
171 C =================
172 C Here we update the horizontal velocities with the surface
173 C pressure such that the resulting flow is either consistent
174 C with the free-surface evolution or the rigid-lid:
175 C U[n] = U* + dt x d/dx P
176 C V[n] = V* + dt x d/dy P
177 C
178 C "Calculation of Gs"
179 C ===================
180 C This is where all the accelerations and tendencies (ie.
181 C physics, parameterizations etc...) are calculated
182 C rho = rho ( theta[n], salt[n] )
183 C b = b(rho, theta)
184 C K31 = K31 ( rho )
185 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
186 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
187 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
188 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
189 C
190 C "Time-stepping" or "Prediction"
191 C ================================
192 C The models variables are stepped forward with the appropriate
193 C time-stepping scheme (currently we use Adams-Bashforth II)
194 C - For momentum, the result is always *only* a "prediction"
195 C in that the flow may be divergent and will be "corrected"
196 C later with a surface pressure gradient.
197 C - Normally for tracers the result is the new field at time
198 C level [n+1} *BUT* in the case of implicit diffusion the result
199 C is also *only* a prediction.
200 C - We denote "predictors" with an asterisk (*).
201 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
202 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
203 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
204 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
205 C With implicit diffusion:
206 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
207 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
208 C (1 + dt * K * d_zz) theta[n] = theta*
209 C (1 + dt * K * d_zz) salt[n] = salt*
210 C---
211 CEOP
212
213 C-- Set up work arrays with valid (i.e. not NaN) values
214 C These inital values do not alter the numerical results. They
215 C just ensure that all memory references are to valid floating
216 C point numbers. This prevents spurious hardware signals due to
217 C uninitialised but inert locations.
218 DO j=1-OLy,sNy+OLy
219 DO i=1-OLx,sNx+OLx
220 rhoKM1 (i,j) = 0. _d 0
221 rhok (i,j) = 0. _d 0
222 phiSurfX(i,j) = 0. _d 0
223 phiSurfY(i,j) = 0. _d 0
224 ENDDO
225 ENDDO
226
227 C-- Call to routine for calculation of
228 C Eliassen-Palm-flux-forced U-tendency,
229 C if desired:
230 #ifdef INCLUDE_EP_FORCING_CODE
231 CALL CALC_EP_FORCING(myThid)
232 #endif
233
234 #ifdef ALLOW_AUTODIFF_TAMC
235 C-- HPF directive to help TAMC
236 CHPF$ INDEPENDENT
237 #endif /* ALLOW_AUTODIFF_TAMC */
238
239 DO bj=myByLo(myThid),myByHi(myThid)
240
241 #ifdef ALLOW_AUTODIFF_TAMC
242 C-- HPF directive to help TAMC
243 CHPF$ INDEPENDENT, NEW (fVerU,fVerV
244 CHPF$& ,phiHyd
245 CHPF$& ,KappaRU,KappaRV
246 CHPF$& )
247 #endif /* ALLOW_AUTODIFF_TAMC */
248
249 DO bi=myBxLo(myThid),myBxHi(myThid)
250
251 #ifdef ALLOW_AUTODIFF_TAMC
252 act1 = bi - myBxLo(myThid)
253 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
254 act2 = bj - myByLo(myThid)
255 max2 = myByHi(myThid) - myByLo(myThid) + 1
256 act3 = myThid - 1
257 max3 = nTx*nTy
258 act4 = ikey_dynamics - 1
259 ikey = (act1 + 1) + act2*max1
260 & + act3*max1*max2
261 & + act4*max1*max2*max3
262 #endif /* ALLOW_AUTODIFF_TAMC */
263
264 C-- Set up work arrays that need valid initial values
265 DO j=1-OLy,sNy+OLy
266 DO i=1-OLx,sNx+OLx
267 DO k=1,Nr
268 phiHyd(i,j,k) = 0. _d 0
269 KappaRU(i,j,k) = 0. _d 0
270 KappaRV(i,j,k) = 0. _d 0
271 ENDDO
272 fVerU (i,j,1) = 0. _d 0
273 fVerU (i,j,2) = 0. _d 0
274 fVerV (i,j,1) = 0. _d 0
275 fVerV (i,j,2) = 0. _d 0
276 ENDDO
277 ENDDO
278
279 C-- Start computation of dynamics
280 iMin = 1-OLx+2
281 iMax = sNx+OLx-1
282 jMin = 1-OLy+2
283 jMax = sNy+OLy-1
284
285 #ifdef ALLOW_AUTODIFF_TAMC
286 CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
287 #endif /* ALLOW_AUTODIFF_TAMC */
288
289 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
290 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
291 IF (implicSurfPress.NE.1.) THEN
292 CALL CALC_GRAD_PHI_SURF(
293 I bi,bj,iMin,iMax,jMin,jMax,
294 I etaN,
295 O phiSurfX,phiSurfY,
296 I myThid )
297 ENDIF
298
299 #ifdef ALLOW_AUTODIFF_TAMC
300 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
301 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
302 #ifdef ALLOW_KPP
303 CADJ STORE KPPviscAz (:,:,:,bi,bj)
304 CADJ & = comlev1_bibj, key=ikey, byte=isbyte
305 #endif /* ALLOW_KPP */
306 #endif /* ALLOW_AUTODIFF_TAMC */
307
308 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
309 C-- Calculate the total vertical diffusivity
310 DO k=1,Nr
311 CALL CALC_VISCOSITY(
312 I bi,bj,iMin,iMax,jMin,jMax,k,
313 O KappaRU,KappaRV,
314 I myThid)
315 ENDDO
316 #endif
317
318 C-- Start of dynamics loop
319 DO k=1,Nr
320
321 C-- km1 Points to level above k (=k-1)
322 C-- kup Cycles through 1,2 to point to layer above
323 C-- kDown Cycles through 2,1 to point to current layer
324
325 km1 = MAX(1,k-1)
326 kp1 = MIN(k+1,Nr)
327 kup = 1+MOD(k+1,2)
328 kDown= 1+MOD(k,2)
329
330 #ifdef ALLOW_AUTODIFF_TAMC
331 kkey = (ikey-1)*Nr + k
332 #endif /* ALLOW_AUTODIFF_TAMC */
333
334 C-- Integrate hydrostatic balance for phiHyd with BC of
335 C phiHyd(z=0)=0
336 C distinguishe between Stagger and Non Stagger time stepping
337 IF (staggerTimeStep) THEN
338 CALL CALC_PHI_HYD(
339 I bi,bj,iMin,iMax,jMin,jMax,k,
340 I gT, gS,
341 U phiHyd,
342 I myThid )
343 ELSE
344 CALL CALC_PHI_HYD(
345 I bi,bj,iMin,iMax,jMin,jMax,k,
346 I theta, salt,
347 U phiHyd,
348 I myThid )
349 ENDIF
350
351 C calculate pressure from phiHyd and store it on common block
352 C variable pressure
353 CALL STORE_PRESSURE( bi, bj, k, phiHyd, myThid )
354
355
356 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
357 C and step forward storing the result in gUnm1, gVnm1, etc...
358 IF ( momStepping ) THEN
359 #ifndef DISABLE_MOM_FLUXFORM
360 IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
361 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
362 I phiHyd,KappaRU,KappaRV,
363 U fVerU, fVerV,
364 I myTime, myIter, myThid)
365 #endif
366 #ifndef DISABLE_MOM_VECINV
367 IF (vectorInvariantMomentum) CALL MOM_VECINV(
368 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
369 I phiHyd,KappaRU,KappaRV,
370 U fVerU, fVerV,
371 I myTime, myIter, myThid)
372 #endif
373 CALL TIMESTEP(
374 I bi,bj,iMin,iMax,jMin,jMax,k,
375 I phiHyd, phiSurfX, phiSurfY,
376 I myIter, myThid)
377
378 #ifdef ALLOW_OBCS
379 C-- Apply open boundary conditions
380 IF (useOBCS) THEN
381 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
382 END IF
383 #endif /* ALLOW_OBCS */
384
385 #ifdef ALLOW_AUTODIFF_TAMC
386 #ifdef INCLUDE_CD_CODE
387 ELSE
388 DO j=1-OLy,sNy+OLy
389 DO i=1-OLx,sNx+OLx
390 guCD(i,j,k,bi,bj) = 0.0
391 gvCD(i,j,k,bi,bj) = 0.0
392 END DO
393 END DO
394 #endif /* INCLUDE_CD_CODE */
395 #endif /* ALLOW_AUTODIFF_TAMC */
396 ENDIF
397
398
399 C-- end of dynamics k loop (1:Nr)
400 ENDDO
401
402 C-- Implicit viscosity
403 IF (implicitViscosity.AND.momStepping) THEN
404 #ifdef ALLOW_AUTODIFF_TAMC
405 CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
406 #endif /* ALLOW_AUTODIFF_TAMC */
407 CALL IMPLDIFF(
408 I bi, bj, iMin, iMax, jMin, jMax,
409 I deltaTmom, KappaRU,recip_HFacW,
410 U gUNm1,
411 I myThid )
412 #ifdef ALLOW_AUTODIFF_TAMC
413 CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
414 #endif /* ALLOW_AUTODIFF_TAMC */
415 CALL IMPLDIFF(
416 I bi, bj, iMin, iMax, jMin, jMax,
417 I deltaTmom, KappaRV,recip_HFacS,
418 U gVNm1,
419 I myThid )
420
421 #ifdef ALLOW_OBCS
422 C-- Apply open boundary conditions
423 IF (useOBCS) THEN
424 DO K=1,Nr
425 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
426 ENDDO
427 END IF
428 #endif /* ALLOW_OBCS */
429
430 #ifdef INCLUDE_CD_CODE
431 #ifdef ALLOW_AUTODIFF_TAMC
432 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
433 #endif /* ALLOW_AUTODIFF_TAMC */
434 CALL IMPLDIFF(
435 I bi, bj, iMin, iMax, jMin, jMax,
436 I deltaTmom, KappaRU,recip_HFacW,
437 U vVelD,
438 I myThid )
439 #ifdef ALLOW_AUTODIFF_TAMC
440 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
441 #endif /* ALLOW_AUTODIFF_TAMC */
442 CALL IMPLDIFF(
443 I bi, bj, iMin, iMax, jMin, jMax,
444 I deltaTmom, KappaRV,recip_HFacS,
445 U uVelD,
446 I myThid )
447 #endif /* INCLUDE_CD_CODE */
448 C-- End If implicitViscosity.AND.momStepping
449 ENDIF
450
451 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
452 c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime)
453 c & .AND. buoyancyRelation .ne. 'OCEANIC' ) THEN
454 c WRITE(suff,'(I10.10)') myIter+1
455 c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid)
456 c ENDIF
457 Cjmc(end)
458
459 #ifdef ALLOW_TIMEAVE
460 IF (taveFreq.GT.0.) THEN
461 CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr,
462 I deltaTclock, bi, bj, myThid)
463 ENDIF
464 #endif /* ALLOW_TIMEAVE */
465
466 ENDDO
467 ENDDO
468
469 Cml(
470 C In order to compare the variance of phiHydLow of a p/z-coordinate
471 C run with etaH of a z/p-coordinate run the drift of phiHydLow
472 C has to be removed by something like the following subroutine:
473 C CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
474 C & 'phiHydLow', myThid )
475 Cml)
476
477 #ifndef DISABLE_DEBUGMODE
478 If (debugMode) THEN
479 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
480 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
481 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
482 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
483 CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
484 CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
485 CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
486 CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
487 CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
488 CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
489 CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
490 CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
491 CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
492 CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
493 ENDIF
494 #endif
495
496 RETURN
497 END

  ViewVC Help
Powered by ViewVC 1.1.22