/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.88 - (show annotations) (download)
Sat Jul 13 04:59:42 2002 UTC (21 years, 10 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint46a_post, checkpoint46b_pre, checkpoint46, checkpoint46a_pre
Changes since 1.87: +8 -7 lines
Merging from release1_p5 (cf. tag-index for checkpoint46).

1 C $Header: /u/gcmpack/MITgcm/model/src/dynamics.F,v 1.83.2.5 2002/07/11 14:24:26 heimbach Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: DYNAMICS
8 C !INTERFACE:
9 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
10 C !DESCRIPTION: \bv
11 C *==========================================================*
12 C | SUBROUTINE DYNAMICS
13 C | o Controlling routine for the explicit part of the model
14 C | dynamics.
15 C *==========================================================*
16 C | This routine evaluates the "dynamics" terms for each
17 C | block of ocean in turn. Because the blocks of ocean have
18 C | overlap regions they are independent of one another.
19 C | If terms involving lateral integrals are needed in this
20 C | routine care will be needed. Similarly finite-difference
21 C | operations with stencils wider than the overlap region
22 C | require special consideration.
23 C | The algorithm...
24 C |
25 C | "Correction Step"
26 C | =================
27 C | Here we update the horizontal velocities with the surface
28 C | pressure such that the resulting flow is either consistent
29 C | with the free-surface evolution or the rigid-lid:
30 C | U[n] = U* + dt x d/dx P
31 C | V[n] = V* + dt x d/dy P
32 C |
33 C | "Calculation of Gs"
34 C | ===================
35 C | This is where all the accelerations and tendencies (ie.
36 C | physics, parameterizations etc...) are calculated
37 C | rho = rho ( theta[n], salt[n] )
38 C | b = b(rho, theta)
39 C | K31 = K31 ( rho )
40 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
41 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
42 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
43 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
44 C |
45 C | "Time-stepping" or "Prediction"
46 C | ================================
47 C | The models variables are stepped forward with the appropriate
48 C | time-stepping scheme (currently we use Adams-Bashforth II)
49 C | - For momentum, the result is always *only* a "prediction"
50 C | in that the flow may be divergent and will be "corrected"
51 C | later with a surface pressure gradient.
52 C | - Normally for tracers the result is the new field at time
53 C | level [n+1} *BUT* in the case of implicit diffusion the result
54 C | is also *only* a prediction.
55 C | - We denote "predictors" with an asterisk (*).
56 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
57 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
58 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
59 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60 C | With implicit diffusion:
61 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63 C | (1 + dt * K * d_zz) theta[n] = theta*
64 C | (1 + dt * K * d_zz) salt[n] = salt*
65 C |
66 C *==========================================================*
67 C \ev
68 C !USES:
69 IMPLICIT NONE
70 C == Global variables ===
71 #include "SIZE.h"
72 #include "EEPARAMS.h"
73 #include "PARAMS.h"
74 #include "DYNVARS.h"
75 #include "GRID.h"
76 #ifdef ALLOW_PASSIVE_TRACER
77 #include "TR1.h"
78 #endif
79 #ifdef ALLOW_AUTODIFF_TAMC
80 # include "tamc.h"
81 # include "tamc_keys.h"
82 # include "FFIELDS.h"
83 # ifdef ALLOW_KPP
84 # include "KPP.h"
85 # endif
86 #endif /* ALLOW_AUTODIFF_TAMC */
87 #ifdef ALLOW_TIMEAVE
88 #include "TIMEAVE_STATV.h"
89 #endif
90
91 C !CALLING SEQUENCE:
92 C DYNAMICS()
93 C |
94 C |-- CALC_GRAD_PHI_SURF
95 C |
96 C |-- CALC_VISCOSITY
97 C |
98 C |-- CALC_PHI_HYD
99 C |
100 C |-- MOM_FLUXFORM
101 C |
102 C |-- MOM_VECINV
103 C |
104 C |-- TIMESTEP
105 C |
106 C |-- OBCS_APPLY_UV
107 C |
108 C |-- IMPLDIFF
109 C |
110 C |-- OBCS_APPLY_UV
111 C |
112 C |-- CALL TIMEAVE_CUMUL_1T
113 C |-- CALL DEBUG_STATS_RL
114
115 C !INPUT/OUTPUT PARAMETERS:
116 C == Routine arguments ==
117 C myTime - Current time in simulation
118 C myIter - Current iteration number in simulation
119 C myThid - Thread number for this instance of the routine.
120 _RL myTime
121 INTEGER myIter
122 INTEGER myThid
123
124 C !LOCAL VARIABLES:
125 C == Local variables
126 C fVer[STUV] o fVer: Vertical flux term - note fVer
127 C is "pipelined" in the vertical
128 C so we need an fVer for each
129 C variable.
130 C rhoK, rhoKM1 - Density at current level, and level above
131 C phiHyd - Hydrostatic part of the potential phiHydi.
132 C In z coords phiHydiHyd is the hydrostatic
133 C Potential (=pressure/rho0) anomaly
134 C In p coords phiHydiHyd is the geopotential
135 C surface height anomaly.
136 C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean)
137 C phiSurfY or geopotentiel (atmos) in X and Y direction
138 C iMin, iMax - Ranges and sub-block indices on which calculations
139 C jMin, jMax are applied.
140 C bi, bj
141 C k, kup, - Index for layer above and below. kup and kDown
142 C kDown, km1 are switched with layer to be the appropriate
143 C index into fVerTerm.
144 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
145 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
146 _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
147 _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
148 _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
149 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
150 _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
151 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
152 _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
153
154 INTEGER iMin, iMax
155 INTEGER jMin, jMax
156 INTEGER bi, bj
157 INTEGER i, j
158 INTEGER k, km1, kp1, kup, kDown
159
160 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
161 c CHARACTER*(MAX_LEN_MBUF) suff
162 c LOGICAL DIFFERENT_MULTIPLE
163 c EXTERNAL DIFFERENT_MULTIPLE
164 Cjmc(end)
165
166 C--- The algorithm...
167 C
168 C "Correction Step"
169 C =================
170 C Here we update the horizontal velocities with the surface
171 C pressure such that the resulting flow is either consistent
172 C with the free-surface evolution or the rigid-lid:
173 C U[n] = U* + dt x d/dx P
174 C V[n] = V* + dt x d/dy P
175 C
176 C "Calculation of Gs"
177 C ===================
178 C This is where all the accelerations and tendencies (ie.
179 C physics, parameterizations etc...) are calculated
180 C rho = rho ( theta[n], salt[n] )
181 C b = b(rho, theta)
182 C K31 = K31 ( rho )
183 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
184 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
185 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
186 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
187 C
188 C "Time-stepping" or "Prediction"
189 C ================================
190 C The models variables are stepped forward with the appropriate
191 C time-stepping scheme (currently we use Adams-Bashforth II)
192 C - For momentum, the result is always *only* a "prediction"
193 C in that the flow may be divergent and will be "corrected"
194 C later with a surface pressure gradient.
195 C - Normally for tracers the result is the new field at time
196 C level [n+1} *BUT* in the case of implicit diffusion the result
197 C is also *only* a prediction.
198 C - We denote "predictors" with an asterisk (*).
199 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
200 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
201 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
202 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
203 C With implicit diffusion:
204 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
205 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
206 C (1 + dt * K * d_zz) theta[n] = theta*
207 C (1 + dt * K * d_zz) salt[n] = salt*
208 C---
209 CEOP
210
211 C-- Set up work arrays with valid (i.e. not NaN) values
212 C These inital values do not alter the numerical results. They
213 C just ensure that all memory references are to valid floating
214 C point numbers. This prevents spurious hardware signals due to
215 C uninitialised but inert locations.
216 DO j=1-OLy,sNy+OLy
217 DO i=1-OLx,sNx+OLx
218 rhoKM1 (i,j) = 0. _d 0
219 rhok (i,j) = 0. _d 0
220 phiSurfX(i,j) = 0. _d 0
221 phiSurfY(i,j) = 0. _d 0
222 ENDDO
223 ENDDO
224
225 C-- Call to routine for calculation of
226 C Eliassen-Palm-flux-forced U-tendency,
227 C if desired:
228 #ifdef INCLUDE_EP_FORCING_CODE
229 CALL CALC_EP_FORCING(myThid)
230 #endif
231
232 #ifdef ALLOW_AUTODIFF_TAMC
233 C-- HPF directive to help TAMC
234 CHPF$ INDEPENDENT
235 #endif /* ALLOW_AUTODIFF_TAMC */
236
237 DO bj=myByLo(myThid),myByHi(myThid)
238
239 #ifdef ALLOW_AUTODIFF_TAMC
240 C-- HPF directive to help TAMC
241 CHPF$ INDEPENDENT, NEW (fVerU,fVerV
242 CHPF$& ,phiHyd
243 CHPF$& ,KappaRU,KappaRV
244 CHPF$& )
245 #endif /* ALLOW_AUTODIFF_TAMC */
246
247 DO bi=myBxLo(myThid),myBxHi(myThid)
248
249 #ifdef ALLOW_AUTODIFF_TAMC
250 act1 = bi - myBxLo(myThid)
251 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
252 act2 = bj - myByLo(myThid)
253 max2 = myByHi(myThid) - myByLo(myThid) + 1
254 act3 = myThid - 1
255 max3 = nTx*nTy
256 act4 = ikey_dynamics - 1
257 ikey = (act1 + 1) + act2*max1
258 & + act3*max1*max2
259 & + act4*max1*max2*max3
260 #endif /* ALLOW_AUTODIFF_TAMC */
261
262 C-- Set up work arrays that need valid initial values
263 DO j=1-OLy,sNy+OLy
264 DO i=1-OLx,sNx+OLx
265 DO k=1,Nr
266 phiHyd(i,j,k) = 0. _d 0
267 KappaRU(i,j,k) = 0. _d 0
268 KappaRV(i,j,k) = 0. _d 0
269 ENDDO
270 fVerU (i,j,1) = 0. _d 0
271 fVerU (i,j,2) = 0. _d 0
272 fVerV (i,j,1) = 0. _d 0
273 fVerV (i,j,2) = 0. _d 0
274 ENDDO
275 ENDDO
276
277 C-- Start computation of dynamics
278 iMin = 1-OLx+2
279 iMax = sNx+OLx-1
280 jMin = 1-OLy+2
281 jMax = sNy+OLy-1
282
283 #ifdef ALLOW_AUTODIFF_TAMC
284 CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
285 #endif /* ALLOW_AUTODIFF_TAMC */
286
287 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
288 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
289 IF (implicSurfPress.NE.1.) THEN
290 CALL CALC_GRAD_PHI_SURF(
291 I bi,bj,iMin,iMax,jMin,jMax,
292 I etaN,
293 O phiSurfX,phiSurfY,
294 I myThid )
295 ENDIF
296
297 #ifdef ALLOW_AUTODIFF_TAMC
298 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
299 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
300 #ifdef ALLOW_KPP
301 CADJ STORE KPPviscAz (:,:,:,bi,bj)
302 CADJ & = comlev1_bibj, key=ikey, byte=isbyte
303 #endif /* ALLOW_KPP */
304 #endif /* ALLOW_AUTODIFF_TAMC */
305
306 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
307 C-- Calculate the total vertical diffusivity
308 DO k=1,Nr
309 CALL CALC_VISCOSITY(
310 I bi,bj,iMin,iMax,jMin,jMax,k,
311 O KappaRU,KappaRV,
312 I myThid)
313 ENDDO
314 #endif
315
316 C-- Start of dynamics loop
317 DO k=1,Nr
318
319 C-- km1 Points to level above k (=k-1)
320 C-- kup Cycles through 1,2 to point to layer above
321 C-- kDown Cycles through 2,1 to point to current layer
322
323 km1 = MAX(1,k-1)
324 kp1 = MIN(k+1,Nr)
325 kup = 1+MOD(k+1,2)
326 kDown= 1+MOD(k,2)
327
328 #ifdef ALLOW_AUTODIFF_TAMC
329 kkey = (ikey-1)*Nr + k
330 #endif /* ALLOW_AUTODIFF_TAMC */
331
332 C-- Integrate hydrostatic balance for phiHyd with BC of
333 C phiHyd(z=0)=0
334 C distinguishe between Stagger and Non Stagger time stepping
335 IF (staggerTimeStep) THEN
336 CALL CALC_PHI_HYD(
337 I bi,bj,iMin,iMax,jMin,jMax,k,
338 I gT, gS,
339 U phiHyd,
340 I myThid )
341 ELSE
342 CALL CALC_PHI_HYD(
343 I bi,bj,iMin,iMax,jMin,jMax,k,
344 I theta, salt,
345 U phiHyd,
346 I myThid )
347 ENDIF
348
349 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
350 C and step forward storing the result in gUnm1, gVnm1, etc...
351 IF ( momStepping ) THEN
352 #ifndef DISABLE_MOM_FLUXFORM
353 IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
354 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
355 I phiHyd,KappaRU,KappaRV,
356 U fVerU, fVerV,
357 I myTime, myIter, myThid)
358 #endif
359 #ifndef DISABLE_MOM_VECINV
360 IF (vectorInvariantMomentum) CALL MOM_VECINV(
361 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
362 I phiHyd,KappaRU,KappaRV,
363 U fVerU, fVerV,
364 I myTime, myIter, myThid)
365 #endif
366 CALL TIMESTEP(
367 I bi,bj,iMin,iMax,jMin,jMax,k,
368 I phiHyd, phiSurfX, phiSurfY,
369 I myIter, myThid)
370
371 #ifdef ALLOW_OBCS
372 C-- Apply open boundary conditions
373 IF (useOBCS) THEN
374 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
375 END IF
376 #endif /* ALLOW_OBCS */
377
378 #ifdef ALLOW_AUTODIFF_TAMC
379 #ifdef INCLUDE_CD_CODE
380 ELSE
381 DO j=1-OLy,sNy+OLy
382 DO i=1-OLx,sNx+OLx
383 guCD(i,j,k,bi,bj) = 0.0
384 gvCD(i,j,k,bi,bj) = 0.0
385 END DO
386 END DO
387 #endif /* INCLUDE_CD_CODE */
388 #endif /* ALLOW_AUTODIFF_TAMC */
389 ENDIF
390
391
392 C-- end of dynamics k loop (1:Nr)
393 ENDDO
394
395 C-- Implicit viscosity
396 IF (implicitViscosity.AND.momStepping) THEN
397 #ifdef ALLOW_AUTODIFF_TAMC
398 CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
399 #endif /* ALLOW_AUTODIFF_TAMC */
400 CALL IMPLDIFF(
401 I bi, bj, iMin, iMax, jMin, jMax,
402 I deltaTmom, KappaRU,recip_HFacW,
403 U gUNm1,
404 I myThid )
405 #ifdef ALLOW_AUTODIFF_TAMC
406 CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
407 #endif /* ALLOW_AUTODIFF_TAMC */
408 CALL IMPLDIFF(
409 I bi, bj, iMin, iMax, jMin, jMax,
410 I deltaTmom, KappaRV,recip_HFacS,
411 U gVNm1,
412 I myThid )
413
414 #ifdef ALLOW_OBCS
415 C-- Apply open boundary conditions
416 IF (useOBCS) THEN
417 DO K=1,Nr
418 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
419 ENDDO
420 END IF
421 #endif /* ALLOW_OBCS */
422
423 #ifdef INCLUDE_CD_CODE
424 #ifdef ALLOW_AUTODIFF_TAMC
425 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
426 #endif /* ALLOW_AUTODIFF_TAMC */
427 CALL IMPLDIFF(
428 I bi, bj, iMin, iMax, jMin, jMax,
429 I deltaTmom, KappaRU,recip_HFacW,
430 U vVelD,
431 I myThid )
432 #ifdef ALLOW_AUTODIFF_TAMC
433 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
434 #endif /* ALLOW_AUTODIFF_TAMC */
435 CALL IMPLDIFF(
436 I bi, bj, iMin, iMax, jMin, jMax,
437 I deltaTmom, KappaRV,recip_HFacS,
438 U uVelD,
439 I myThid )
440 #endif /* INCLUDE_CD_CODE */
441 C-- End If implicitViscosity.AND.momStepping
442 ENDIF
443
444 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
445 c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime)
446 c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
447 c WRITE(suff,'(I10.10)') myIter+1
448 c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid)
449 c ENDIF
450 Cjmc(end)
451
452 #ifdef ALLOW_TIMEAVE
453 IF (taveFreq.GT.0.) THEN
454 CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr,
455 I deltaTclock, bi, bj, myThid)
456 ENDIF
457 #endif /* ALLOW_TIMEAVE */
458
459 ENDDO
460 ENDDO
461
462 #ifndef DISABLE_DEBUGMODE
463 If (debugMode) THEN
464 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
465 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
466 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
467 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
468 CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
469 CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
470 CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
471 CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
472 CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
473 CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
474 CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
475 CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
476 CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
477 CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
478 ENDIF
479 #endif
480
481 RETURN
482 END

  ViewVC Help
Powered by ViewVC 1.1.22