/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.9 by cnh, Mon May 25 21:29:45 1998 UTC revision 1.113 by jmc, Fri Jan 28 01:00:13 2005 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6    
7    CBOP
8    C     !ROUTINE: DYNAMICS
9    C     !INTERFACE:
10        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
11  C     /==========================================================\  C     !DESCRIPTION: \bv
12  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
13  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS                                      
14  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model  
15  C     |==========================================================|  C     |   dynamics.                                              
16  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
17  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each      
18  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have  
19  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.      
20  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this  
21  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference  
22  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region    
23  C     | Notes                                                    |  C     | require special consideration.                            
24  C     | =====                                                    |  C     | The algorithm...
25  C     | C*P* comments indicating place holders for which code is |  C     |
26  C     |      presently being developed.                          |  C     | "Correction Step"
27  C     \==========================================================/  C     | =================
28    C     | Here we update the horizontal velocities with the surface
29    C     | pressure such that the resulting flow is either consistent
30    C     | with the free-surface evolution or the rigid-lid:
31    C     |   U[n] = U* + dt x d/dx P
32    C     |   V[n] = V* + dt x d/dy P
33    C     |
34    C     | "Calculation of Gs"
35    C     | ===================
36    C     | This is where all the accelerations and tendencies (ie.
37    C     | physics, parameterizations etc...) are calculated
38    C     |   rho = rho ( theta[n], salt[n] )
39    C     |   b   = b(rho, theta)
40    C     |   K31 = K31 ( rho )
41    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
42    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
43    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
44    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
45    C     |
46    C     | "Time-stepping" or "Prediction"
47    C     | ================================
48    C     | The models variables are stepped forward with the appropriate
49    C     | time-stepping scheme (currently we use Adams-Bashforth II)
50    C     | - For momentum, the result is always *only* a "prediction"
51    C     | in that the flow may be divergent and will be "corrected"
52    C     | later with a surface pressure gradient.
53    C     | - Normally for tracers the result is the new field at time
54    C     | level [n+1} *BUT* in the case of implicit diffusion the result
55    C     | is also *only* a prediction.
56    C     | - We denote "predictors" with an asterisk (*).
57    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
58    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
59    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
61    C     | With implicit diffusion:
62    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
64    C     |   (1 + dt * K * d_zz) theta[n] = theta*
65    C     |   (1 + dt * K * d_zz) salt[n] = salt*
66    C     |
67    C     *==========================================================*
68    C     \ev
69    C     !USES:
70          IMPLICIT NONE
71  C     == Global variables ===  C     == Global variables ===
72  #include "SIZE.h"  #include "SIZE.h"
73  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
74  #include "PARAMS.h"  #include "PARAMS.h"
75  #include "DYNVARS.h"  #include "DYNVARS.h"
76    #ifdef ALLOW_CD_CODE
77    #include "CD_CODE_VARS.h"
78    #endif
79    #include "GRID.h"
80    #ifdef ALLOW_AUTODIFF_TAMC
81    # include "tamc.h"
82    # include "tamc_keys.h"
83    # include "FFIELDS.h"
84    # include "EOS.h"
85    # ifdef ALLOW_KPP
86    #  include "KPP.h"
87    # endif
88    #endif /* ALLOW_AUTODIFF_TAMC */
89    
90    C     !CALLING SEQUENCE:
91    C     DYNAMICS()
92    C      |
93    C      |-- CALC_GRAD_PHI_SURF
94    C      |
95    C      |-- CALC_VISCOSITY
96    C      |
97    C      |-- CALC_PHI_HYD  
98    C      |
99    C      |-- MOM_FLUXFORM  
100    C      |
101    C      |-- MOM_VECINV    
102    C      |
103    C      |-- TIMESTEP      
104    C      |
105    C      |-- OBCS_APPLY_UV
106    C      |
107    C      |-- IMPLDIFF      
108    C      |
109    C      |-- OBCS_APPLY_UV
110    C      |
111    C      |-- CALL DEBUG_STATS_RL
112    
113    C     !INPUT/OUTPUT PARAMETERS:
114  C     == Routine arguments ==  C     == Routine arguments ==
115  C     myTime - Current time in simulation  C     myTime - Current time in simulation
116  C     myIter - Current iteration number in simulation  C     myIter - Current iteration number in simulation
117  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
       INTEGER myThid  
118        _RL myTime        _RL myTime
119        INTEGER myIter        INTEGER myIter
120          INTEGER myThid
121    
122    C     !LOCAL VARIABLES:
123  C     == Local variables  C     == Local variables
124  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
125  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
126  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
127  C                              o vTrans: Meridional transport  C                                    variable.
128  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
129  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
130  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
131  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
132  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
133  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
134  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
135  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
136  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
137  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
138  C                              o fZon: Zonal flux term  C     iMin, iMax     - Ranges and sub-block indices on which calculations
139  C                              o fMer: Meridional flux term  C     jMin, jMax       are applied.
 C                              o fVer: Vertical flux term - note fVer  
 C                                      is "pipelined" in the vertical  
 C                                      so we need an fVer for each  
 C                                      variable.  
 C     iMin, iMax - Ranges and sub-block indices on which calculations  
 C     jMin, jMax   are applied.  
140  C     bi, bj  C     bi, bj
141  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
142  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
143  C                          into fVerTerm  C                      index into fVerTerm.
144        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
145        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
146        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
147        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
148        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
149        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
150        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
151        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
152        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
153        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
154        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
155        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
156        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
157        INTEGER iMin, iMax        INTEGER iMin, iMax
158        INTEGER jMin, jMax        INTEGER jMin, jMax
159        INTEGER bi, bj        INTEGER bi, bj
160        INTEGER i, j        INTEGER i, j
161        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
162    
163          LOGICAL  DIFFERENT_MULTIPLE
164          EXTERNAL DIFFERENT_MULTIPLE
165    
166    #ifdef ALLOW_DIAGNOSTICS
167          _RL tmpFld  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
168          LOGICAL  DIAGNOSTICS_IS_ON
169          EXTERNAL DIAGNOSTICS_IS_ON
170    #endif /* ALLOW_DIAGNOSTICS */
171    
172    
173    C---    The algorithm...
174    C
175    C       "Correction Step"
176    C       =================
177    C       Here we update the horizontal velocities with the surface
178    C       pressure such that the resulting flow is either consistent
179    C       with the free-surface evolution or the rigid-lid:
180    C         U[n] = U* + dt x d/dx P
181    C         V[n] = V* + dt x d/dy P
182    C
183    C       "Calculation of Gs"
184    C       ===================
185    C       This is where all the accelerations and tendencies (ie.
186    C       physics, parameterizations etc...) are calculated
187    C         rho = rho ( theta[n], salt[n] )
188    C         b   = b(rho, theta)
189    C         K31 = K31 ( rho )
190    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
191    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
192    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
193    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
194    C
195    C       "Time-stepping" or "Prediction"
196    C       ================================
197    C       The models variables are stepped forward with the appropriate
198    C       time-stepping scheme (currently we use Adams-Bashforth II)
199    C       - For momentum, the result is always *only* a "prediction"
200    C       in that the flow may be divergent and will be "corrected"
201    C       later with a surface pressure gradient.
202    C       - Normally for tracers the result is the new field at time
203    C       level [n+1} *BUT* in the case of implicit diffusion the result
204    C       is also *only* a prediction.
205    C       - We denote "predictors" with an asterisk (*).
206    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
207    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
208    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
209    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
210    C       With implicit diffusion:
211    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
212    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
213    C         (1 + dt * K * d_zz) theta[n] = theta*
214    C         (1 + dt * K * d_zz) salt[n] = salt*
215    C---
216    CEOP
217    
218    C-- Call to routine for calculation of
219    C   Eliassen-Palm-flux-forced U-tendency,
220    C   if desired:
221    #ifdef INCLUDE_EP_FORCING_CODE
222          CALL CALC_EP_FORCING(myThid)
223    #endif
224    
225    #ifdef ALLOW_AUTODIFF_TAMC
226    C--   HPF directive to help TAMC
227    CHPF$ INDEPENDENT
228    #endif /* ALLOW_AUTODIFF_TAMC */
229    
230          DO bj=myByLo(myThid),myByHi(myThid)
231    
232    #ifdef ALLOW_AUTODIFF_TAMC
233    C--    HPF directive to help TAMC
234    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
235    CHPF$&                  ,phiHydF
236    CHPF$&                  ,KappaRU,KappaRV
237    CHPF$&                  )
238    #endif /* ALLOW_AUTODIFF_TAMC */
239    
240           DO bi=myBxLo(myThid),myBxHi(myThid)
241    
242    #ifdef ALLOW_AUTODIFF_TAMC
243              act1 = bi - myBxLo(myThid)
244              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
245              act2 = bj - myByLo(myThid)
246              max2 = myByHi(myThid) - myByLo(myThid) + 1
247              act3 = myThid - 1
248              max3 = nTx*nTy
249              act4 = ikey_dynamics - 1
250              idynkey = (act1 + 1) + act2*max1
251         &                      + act3*max1*max2
252         &                      + act4*max1*max2*max3
253    #endif /* ALLOW_AUTODIFF_TAMC */
254    
255  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
256  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
257  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
258  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
259  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0. _d 0  
         yA(i,j)      = 0. _d 0  
         uTrans(i,j)  = 0. _d 0  
         vTrans(i,j)  = 0. _d 0  
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
        ENDDO  
       ENDDO  
260    
261        DO bj=myByLo(myThid),myByHi(myThid)          DO k=1,Nr
262         DO bi=myBxLo(myThid),myBxHi(myThid)           DO j=1-OLy,sNy+OLy
263              DO i=1-OLx,sNx+OLx
264  C--     Boundary condition on hydrostatic pressure is pH(z=0)=0             KappaRU(i,j,k) = 0. _d 0
265          DO j=1-OLy,sNy+OLy             KappaRV(i,j,k) = 0. _d 0
266           DO i=1-OLx,sNx+OLx  #ifdef ALLOW_AUTODIFF_TAMC
267            pH(i,j,1) = 0. _d 0  cph(
268            K13(i,j,1) = 0. _d 0  c--   need some re-initialisation here to break dependencies
269            K23(i,j,1) = 0. _d 0  cph)
270            K33(i,j,1) = 0. _d 0             gu(i,j,k,bi,bj) = 0. _d 0
271            KapGM(i,j) = 0. _d 0             gv(i,j,k,bi,bj) = 0. _d 0
272    #endif
273              ENDDO
274           ENDDO           ENDDO
275          ENDDO          ENDDO
   
 C--     Set up work arrays that need valid initial values  
276          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
277           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
278            wTrans(i,j)  = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
279            fVerT(i,j,1) = 0. _d 0            fVerU  (i,j,2) = 0. _d 0
280            fVerT(i,j,2) = 0. _d 0            fVerV  (i,j,1) = 0. _d 0
281            fVerS(i,j,1) = 0. _d 0            fVerV  (i,j,2) = 0. _d 0
282            fVerS(i,j,2) = 0. _d 0            phiHydF (i,j)  = 0. _d 0
283            fVerU(i,j,1) = 0. _d 0            phiHydC (i,j)  = 0. _d 0
284            fVerU(i,j,2) = 0. _d 0            dPhiHydX(i,j)  = 0. _d 0
285            fVerV(i,j,1) = 0. _d 0            dPhiHydY(i,j)  = 0. _d 0
286            fVerV(i,j,2) = 0. _d 0            phiSurfX(i,j)  = 0. _d 0
287              phiSurfY(i,j)  = 0. _d 0
288              guDissip(i,j)  = 0. _d 0
289              gvDissip(i,j)  = 0. _d 0
290           ENDDO           ENDDO
291          ENDDO          ENDDO
292    
293          iMin = 1-OLx+1  C--     Start computation of dynamics
294          iMax = sNx+OLx          iMin = 0
295          jMin = 1-OLy+1          iMax = sNx+1
296          jMax = sNy+OLy          jMin = 0
297            jMax = sNy+1
298  C--     Calculate gradient of surface pressure  
299          CALL GRAD_PSURF(  #ifdef ALLOW_AUTODIFF_TAMC
300       I       bi,bj,iMin,iMax,jMin,jMax,  CADJ STORE wvel (:,:,:,bi,bj) =
301       O       pSurfX,pSurfY,  CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
302       I       myThid)  #endif /* ALLOW_AUTODIFF_TAMC */
303    
304  C--     Update fields in top level according to tendency terms  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
305          CALL TIMESTEP(  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
306       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)          IF (implicSurfPress.NE.1.) THEN
307              CALL CALC_GRAD_PHI_SURF(
308  C--     Density of 1st level (below W(1)) reference to level 1       I         bi,bj,iMin,iMax,jMin,jMax,
309          CALL FIND_RHO(       I         etaN,
310       I     bi, bj, iMin, iMax, jMin, jMax, 1, 1, 'LINEAR',       O         phiSurfX,phiSurfY,
311       O     rhoKm1,       I         myThid )                        
312       I     myThid )          ENDIF
313  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
314          CALL CALC_PH(  #ifdef ALLOW_AUTODIFF_TAMC
315       I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
316       U      pH,  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
317       I      myThid )  #ifdef ALLOW_KPP
318    CADJ STORE KPPviscAz (:,:,:,bi,bj)
319          DO K=2,Nz  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
320  C--     Update fields in Kth level according to tendency terms  #endif /* ALLOW_KPP */
321          CALL TIMESTEP(  #endif /* ALLOW_AUTODIFF_TAMC */
322       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)  
323  C--     Density of K-1 level (above W(K)) reference to K level  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
324          CALL FIND_RHO(  C--      Calculate the total vertical diffusivity
325       I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',          DO k=1,Nr
326       O     rhoKm1,           CALL CALC_VISCOSITY(
327       I     myThid )       I        bi,bj,iMin,iMax,jMin,jMax,k,
328  C--     Density of K level (below W(K)) reference to K level       O        KappaRU,KappaRV,
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O     rhoKp1,  
      I     myThid )  
 C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  
         CALL CALC_ISOSLOPES(  
      I            bi, bj, iMin, iMax, jMin, jMax, K,  
      I            rhoKm1, rhoKp1,  
      O            K13, K23, K33, KapGM,  
      I            myThid )  
 C--     Calculate static stability and mix where convectively unstable  
         CALL CONVECT(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      I      myTime,myIter,myThid)  
 C--     Density of K-1 level (above W(K)) reference to K-1 level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',  
      O     rhoKm1,  
      I     myThid )  
 C--     Density of K level (below W(K)) referenced to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O     rhoKp1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      U      pH,  
      I      myThid )  
   
         ENDDO  
   
         DO K = Nz, 1, -1  
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
329       I        myThid)       I        myThid)
330           ENDDO
331    #endif
332    
333    #ifdef ALLOW_AUTODIFF_TAMC
334    CADJ STORE KappaRU(:,:,:)
335    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
336    CADJ STORE KappaRV(:,:,:)
337    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
338    #endif /* ALLOW_AUTODIFF_TAMC */
339    
340    C--     Start of dynamics loop
341            DO k=1,Nr
342    
343    C--       km1    Points to level above k (=k-1)
344    C--       kup    Cycles through 1,2 to point to layer above
345    C--       kDown  Cycles through 2,1 to point to current layer
346    
347              km1  = MAX(1,k-1)
348              kp1  = MIN(k+1,Nr)
349              kup  = 1+MOD(k+1,2)
350              kDown= 1+MOD(k,2)
351    
352    #ifdef ALLOW_AUTODIFF_TAMC
353             kkey = (idynkey-1)*Nr + k
354    c
355    CADJ STORE totphihyd (:,:,k,bi,bj)
356    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
357    CADJ STORE theta (:,:,k,bi,bj)
358    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
359    CADJ STORE salt  (:,:,k,bi,bj)
360    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
361    #endif /* ALLOW_AUTODIFF_TAMC */
362    
363    C--      Integrate hydrostatic balance for phiHyd with BC of
364    C        phiHyd(z=0)=0
365             CALL CALC_PHI_HYD(
366         I        bi,bj,iMin,iMax,jMin,jMax,k,
367         I        theta, salt,
368         U        phiHydF,
369         O        phiHydC, dPhiHydX, dPhiHydY,
370         I        myTime, myIter, myThid )
371    
372  C--      Calculate accelerations in the momentum equations  C--      Calculate accelerations in the momentum equations (gU, gV, ...)
373    C        and step forward storing the result in gU, gV, etc...
374           IF ( momStepping ) THEN           IF ( momStepping ) THEN
375            CALL CALC_MOM_RHS(  #ifdef ALLOW_MOM_FLUXFORM
376       I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,             IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
377       I         xA,yA,uTrans,vTrans,wTrans,maskC,       I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
378       I         pH,       I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
379       U         aTerm,xTerm,cTerm,mTerm,pTerm,       U         fVerU, fVerV,
380       U         fZon, fMer, fVerU, fVerV,       I         myTime, myIter, myThid)
381       I         myThid)  #endif
382           ENDIF  #ifdef ALLOW_MOM_VECINV
383               IF (vectorInvariantMomentum) CALL MOM_VECINV(
384         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
385         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
386         U         fVerU, fVerV,
387         O         guDissip, gvDissip,
388         I         myTime, myIter, myThid)
389    #endif
390               CALL TIMESTEP(
391         I         bi,bj,iMin,iMax,jMin,jMax,k,
392         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
393         I         guDissip, gvDissip,
394         I         myTime, myIter, myThid)
395    
396    #ifdef   ALLOW_OBCS
397    C--      Apply open boundary conditions
398               IF (useOBCS) THEN
399                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
400               ENDIF
401    #endif   /* ALLOW_OBCS */
402    
 C--      Calculate active tracer tendencies  
          IF ( tempStepping ) THEN  
           CALL CALC_GT(  
      I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I         xA,yA,uTrans,vTrans,wTrans,maskUp,  
      I         K13,K23,K33,KapGM,  
      U         aTerm,xTerm,fZon,fMer,fVerT,  
      I         myThid)  
403           ENDIF           ENDIF
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg I        K13,K23,K33,KapGM,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
404    
405    
406    C--     end of dynamics k loop (1:Nr)
407          ENDDO          ENDDO
408    
409    C--     Implicit Vertical advection & viscosity
410    #ifdef INCLUDE_IMPLVERTADV_CODE
411            IF ( momImplVertAdv ) THEN
412              CALL MOM_U_IMPLICIT_R( kappaRU,
413         I                           bi, bj, myTime, myIter, myThid )
414              CALL MOM_V_IMPLICIT_R( kappaRV,
415         I                           bi, bj, myTime, myIter, myThid )
416            ELSEIF ( implicitViscosity ) THEN
417    #else /* INCLUDE_IMPLVERTADV_CODE */
418            IF     ( implicitViscosity ) THEN
419    #endif /* INCLUDE_IMPLVERTADV_CODE */
420    #ifdef    ALLOW_AUTODIFF_TAMC
421    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
422    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
423    #endif    /* ALLOW_AUTODIFF_TAMC */
424              CALL IMPLDIFF(
425         I         bi, bj, iMin, iMax, jMin, jMax,
426         I         0, KappaRU,recip_HFacW,
427         U         gU,
428         I         myThid )
429    #ifdef    ALLOW_AUTODIFF_TAMC
430    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
431    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
432    #endif    /* ALLOW_AUTODIFF_TAMC */
433              CALL IMPLDIFF(
434         I         bi, bj, iMin, iMax, jMin, jMax,
435         I         0, KappaRV,recip_HFacS,
436         U         gV,
437         I         myThid )
438            ENDIF
439    
440    #ifdef   ALLOW_OBCS
441    C--      Apply open boundary conditions
442            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
443               DO K=1,Nr
444                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
445               ENDDO
446            ENDIF
447    #endif   /* ALLOW_OBCS */
448    
449    #ifdef    ALLOW_CD_CODE
450            IF (implicitViscosity.AND.useCDscheme) THEN
451    #ifdef    ALLOW_AUTODIFF_TAMC
452    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
453    #endif    /* ALLOW_AUTODIFF_TAMC */
454              CALL IMPLDIFF(
455         I         bi, bj, iMin, iMax, jMin, jMax,
456         I         0, KappaRU,recip_HFacW,
457         U         vVelD,
458         I         myThid )
459    #ifdef    ALLOW_AUTODIFF_TAMC
460    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
461    #endif    /* ALLOW_AUTODIFF_TAMC */
462              CALL IMPLDIFF(
463         I         bi, bj, iMin, iMax, jMin, jMax,
464         I         0, KappaRV,recip_HFacS,
465         U         uVelD,
466         I         myThid )
467            ENDIF
468    #endif    /* ALLOW_CD_CODE */
469    C--     End implicit Vertical advection & viscosity
470    
471         ENDDO         ENDDO
472        ENDDO        ENDDO
473    
474  !dbg  write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x)  #ifdef ALLOW_OBCS
475  !dbg  write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)),        IF (useOBCS) THEN
476  !dbg &                         maxval(uVel(1:sNx,1:sNy,:,:,:))         CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
477  !dbg  write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)),        ENDIF
478  !dbg &                         maxval(vVel(1:sNx,1:sNy,:,:,:))  #endif
479  !dbg  write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)),  
480  !dbg &                         maxval(gT(1:sNx,1:sNy,:,:,:))  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
481  !dbg  write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)),  
482  !dbg &                         maxval(Theta(1:sNx,1:sNy,:,:,:))  Cml(
483  !dbg  write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)),  C     In order to compare the variance of phiHydLow of a p/z-coordinate
484  !dbg &                          maxval(pH/(Gravity*Rhonil))  C     run with etaH of a z/p-coordinate run the drift of phiHydLow
485    C     has to be removed by something like the following subroutine:
486    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
487    C     &                'phiHydLow', myThid )
488    Cml)
489    
490    #ifdef ALLOW_DIAGNOSTICS
491          IF ( usediagnostics ) THEN
492    
493           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
494           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0,1,0,1,1,myThid)
495    
496           IF ( DIAGNOSTICS_IS_ON('PHIBOTSQ',myThid) ) THEN
497            DO bj = myByLo(myThid), myByHi(myThid)
498             DO bi = myBxLo(myThid), myBxHi(myThid)
499              DO j = 1,sNy
500               DO i = 1,sNx
501                 tmpFld(i,j) = phiHydLow(i,j,bi,bj)*phiHydLow(i,j,bi,bj)
502               ENDDO
503              ENDDO
504              CALL DIAGNOSTICS_FILL(tmpFld,'PHIBOTSQ',0,1,2,bi,bj,myThid)
505             ENDDO
506            ENDDO
507           ENDIF
508    
509          ENDIF
510    #endif /* ALLOW_DIAGNOSTICS */
511          
512    #ifdef ALLOW_DEBUG
513          If ( debugLevel .GE. debLevB ) THEN
514           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
515           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
516           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
517           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
518           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
519           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
520           CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
521           CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
522           CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
523           CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
524           CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
525           CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
526           CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
527           CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
528          ENDIF
529    #endif
530    
531        RETURN        RETURN
532        END        END

Legend:
Removed from v.1.9  
changed lines
  Added in v.1.113

  ViewVC Help
Powered by ViewVC 1.1.22