/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.10 by adcroft, Thu May 28 16:19:50 1998 UTC revision 1.131 by heimbach, Wed Mar 29 17:00:39 2006 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6    #ifdef ALLOW_OBCS
7    # include "OBCS_OPTIONS.h"
8    #endif
9    
10    #undef DYNAMICS_GUGV_EXCH_CHECK
11    
12    CBOP
13    C     !ROUTINE: DYNAMICS
14    C     !INTERFACE:
15        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16  C     /==========================================================\  C     !DESCRIPTION: \bv
17  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
18  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS                                      
19  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model  
20  C     |==========================================================|  C     |   dynamics.                                              
21  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
22  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each      
23  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have  
24  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.      
25  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this  
26  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference  
27  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region    
28  C     | Notes                                                    |  C     | require special consideration.                            
29  C     | =====                                                    |  C     | The algorithm...
30  C     | C*P* comments indicating place holders for which code is |  C     |
31  C     |      presently being developed.                          |  C     | "Correction Step"
32  C     \==========================================================/  C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76          IMPLICIT NONE
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
80  #include "PARAMS.h"  #include "PARAMS.h"
81  #include "DYNVARS.h"  #include "DYNVARS.h"
82    #ifdef ALLOW_CD_CODE
83    #include "CD_CODE_VARS.h"
84    #endif
85    #include "GRID.h"
86    #ifdef ALLOW_AUTODIFF_TAMC
87    # include "tamc.h"
88    # include "tamc_keys.h"
89    # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #  include "OBCS.h"
100    #  ifdef ALLOW_PTRACERS
101    #   include "OBCS_PTRACERS.h"
102    #  endif
103    # endif
104    #endif /* ALLOW_AUTODIFF_TAMC */
105    
106    C     !CALLING SEQUENCE:
107    C     DYNAMICS()
108    C      |
109    C      |-- CALC_EP_FORCING
110    C      |
111    C      |-- CALC_GRAD_PHI_SURF
112    C      |
113    C      |-- CALC_VISCOSITY
114    C      |
115    C      |-- CALC_PHI_HYD  
116    C      |
117    C      |-- MOM_FLUXFORM  
118    C      |
119    C      |-- MOM_VECINV    
120    C      |
121    C      |-- TIMESTEP      
122    C      |
123    C      |-- OBCS_APPLY_UV
124    C      |
125    C      |-- MOM_U_IMPLICIT_R      
126    C      |-- MOM_V_IMPLICIT_R      
127    C      |
128    C      |-- IMPLDIFF      
129    C      |
130    C      |-- OBCS_APPLY_UV
131    C      |
132    C      |-- CALC_GW
133    C      |
134    C      |-- DIAGNOSTICS_FILL
135    C      |-- DEBUG_STATS_RL
136    
137    C     !INPUT/OUTPUT PARAMETERS:
138  C     == Routine arguments ==  C     == Routine arguments ==
139  C     myTime - Current time in simulation  C     myTime - Current time in simulation
140  C     myIter - Current iteration number in simulation  C     myIter - Current iteration number in simulation
141  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
       INTEGER myThid  
142        _RL myTime        _RL myTime
143        INTEGER myIter        INTEGER myIter
144          INTEGER myThid
145    
146    C     !LOCAL VARIABLES:
147  C     == Local variables  C     == Local variables
148  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
149  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
150  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
151  C                              o vTrans: Meridional transport  C                                    variable.
152  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
153  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
154  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
155  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
156  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
157  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
158  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
159  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
160  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
161  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
162  C                              o fZon: Zonal flux term  C     iMin, iMax     - Ranges and sub-block indices on which calculations
163  C                              o fMer: Meridional flux term  C     jMin, jMax       are applied.
 C                              o fVer: Vertical flux term - note fVer  
 C                                      is "pipelined" in the vertical  
 C                                      so we need an fVer for each  
 C                                      variable.  
 C     iMin, iMax - Ranges and sub-block indices on which calculations  
 C     jMin, jMax   are applied.  
164  C     bi, bj  C     bi, bj
165  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
166  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
167  C                          into fVerTerm  C                      index into fVerTerm.
168        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
169        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
170        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
171        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
172        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
173        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
174        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
175        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
176        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
177        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
178        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
179        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
180        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
181        INTEGER iMin, iMax        INTEGER iMin, iMax
182        INTEGER jMin, jMax        INTEGER jMin, jMax
183        INTEGER bi, bj        INTEGER bi, bj
184        INTEGER i, j        INTEGER i, j
185        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
186    
187    #ifdef ALLOW_DIAGNOSTICS
188          _RL tmpFac
189    #endif /* ALLOW_DIAGNOSTICS */
190    
191    
192    C---    The algorithm...
193    C
194    C       "Correction Step"
195    C       =================
196    C       Here we update the horizontal velocities with the surface
197    C       pressure such that the resulting flow is either consistent
198    C       with the free-surface evolution or the rigid-lid:
199    C         U[n] = U* + dt x d/dx P
200    C         V[n] = V* + dt x d/dy P
201    C
202    C       "Calculation of Gs"
203    C       ===================
204    C       This is where all the accelerations and tendencies (ie.
205    C       physics, parameterizations etc...) are calculated
206    C         rho = rho ( theta[n], salt[n] )
207    C         b   = b(rho, theta)
208    C         K31 = K31 ( rho )
209    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
210    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
211    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
212    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
213    C
214    C       "Time-stepping" or "Prediction"
215    C       ================================
216    C       The models variables are stepped forward with the appropriate
217    C       time-stepping scheme (currently we use Adams-Bashforth II)
218    C       - For momentum, the result is always *only* a "prediction"
219    C       in that the flow may be divergent and will be "corrected"
220    C       later with a surface pressure gradient.
221    C       - Normally for tracers the result is the new field at time
222    C       level [n+1} *BUT* in the case of implicit diffusion the result
223    C       is also *only* a prediction.
224    C       - We denote "predictors" with an asterisk (*).
225    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
226    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
227    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
228    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
229    C       With implicit diffusion:
230    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
231    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
232    C         (1 + dt * K * d_zz) theta[n] = theta*
233    C         (1 + dt * K * d_zz) salt[n] = salt*
234    C---
235    CEOP
236    
237    #ifdef ALLOW_DEBUG
238          IF ( debugLevel .GE. debLevB )
239         &   CALL DEBUG_ENTER( 'DYNAMICS', myThid )
240    #endif
241    
242    C-- Call to routine for calculation of
243    C   Eliassen-Palm-flux-forced U-tendency,
244    C   if desired:
245    #ifdef INCLUDE_EP_FORCING_CODE
246          CALL CALC_EP_FORCING(myThid)
247    #endif
248    
249    #ifdef ALLOW_AUTODIFF_TAMC
250    C--   HPF directive to help TAMC
251    CHPF$ INDEPENDENT
252    #endif /* ALLOW_AUTODIFF_TAMC */
253    
254          DO bj=myByLo(myThid),myByHi(myThid)
255    
256    #ifdef ALLOW_AUTODIFF_TAMC
257    C--    HPF directive to help TAMC
258    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
259    CHPF$&                  ,phiHydF
260    CHPF$&                  ,KappaRU,KappaRV
261    CHPF$&                  )
262    #endif /* ALLOW_AUTODIFF_TAMC */
263    
264           DO bi=myBxLo(myThid),myBxHi(myThid)
265    
266    #ifdef ALLOW_AUTODIFF_TAMC
267              act1 = bi - myBxLo(myThid)
268              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
269              act2 = bj - myByLo(myThid)
270              max2 = myByHi(myThid) - myByLo(myThid) + 1
271              act3 = myThid - 1
272              max3 = nTx*nTy
273              act4 = ikey_dynamics - 1
274              idynkey = (act1 + 1) + act2*max1
275         &                      + act3*max1*max2
276         &                      + act4*max1*max2*max3
277    #endif /* ALLOW_AUTODIFF_TAMC */
278    
279  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
280  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
281  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
282  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
283  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0. _d 0  
         yA(i,j)      = 0. _d 0  
         uTrans(i,j)  = 0. _d 0  
         vTrans(i,j)  = 0. _d 0  
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
         rhotmp(i,j)  = 0. _d 0  
        ENDDO  
       ENDDO  
284    
285        DO bj=myByLo(myThid),myByHi(myThid)          DO k=1,Nr
286         DO bi=myBxLo(myThid),myBxHi(myThid)           DO j=1-OLy,sNy+OLy
287              DO i=1-OLx,sNx+OLx
288  C--     Boundary condition on hydrostatic pressure is pH(z=0)=0             KappaRU(i,j,k) = 0. _d 0
289          DO j=1-OLy,sNy+OLy             KappaRV(i,j,k) = 0. _d 0
290           DO i=1-OLx,sNx+OLx  #ifdef ALLOW_AUTODIFF_TAMC
291            pH(i,j,1) = 0. _d 0  cph(
292            K13(i,j,1) = 0. _d 0  c--   need some re-initialisation here to break dependencies
293            K23(i,j,1) = 0. _d 0  cph)
294            K33(i,j,1) = 0. _d 0             gU(i,j,k,bi,bj) = 0. _d 0
295            KapGM(i,j) = 0. _d 0             gV(i,j,k,bi,bj) = 0. _d 0
296    #endif
297              ENDDO
298           ENDDO           ENDDO
299          ENDDO          ENDDO
   
 C--     Set up work arrays that need valid initial values  
300          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
301           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
302            wTrans(i,j)  = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
303            fVerT(i,j,1) = 0. _d 0            fVerU  (i,j,2) = 0. _d 0
304            fVerT(i,j,2) = 0. _d 0            fVerV  (i,j,1) = 0. _d 0
305            fVerS(i,j,1) = 0. _d 0            fVerV  (i,j,2) = 0. _d 0
306            fVerS(i,j,2) = 0. _d 0            phiHydF (i,j)  = 0. _d 0
307            fVerU(i,j,1) = 0. _d 0            phiHydC (i,j)  = 0. _d 0
308            fVerU(i,j,2) = 0. _d 0            dPhiHydX(i,j)  = 0. _d 0
309            fVerV(i,j,1) = 0. _d 0            dPhiHydY(i,j)  = 0. _d 0
310            fVerV(i,j,2) = 0. _d 0            phiSurfX(i,j)  = 0. _d 0
311           ENDDO            phiSurfY(i,j)  = 0. _d 0
312          ENDDO            guDissip(i,j)  = 0. _d 0
313              gvDissip(i,j)  = 0. _d 0
         iMin = 1-OLx+1  
         iMax = sNx+OLx  
         jMin = 1-OLy+1  
         jMax = sNy+OLy  
   
 C--     Calculate gradient of surface pressure  
         CALL GRAD_PSURF(  
      I       bi,bj,iMin,iMax,jMin,jMax,  
      O       pSurfX,pSurfY,  
      I       myThid)  
   
 C--     Update fields in top level according to tendency terms  
         CALL TIMESTEP(  
      I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)  
   
 C--     Density of 1st level (below W(1)) reference to level 1  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax, 1, 1, eosType,  
      O     rhoKm1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,  
      U      pH,  
      I      myThid )  
         DO J=1-Oly,sNy+Oly  
          DO I=1-Olx,sNx+Olx  
           rhoKp1(I,J)=rhoKm1(I,J)  
          ENDDO  
         ENDDO  
   
         DO K=2,Nz  
 C--     Update fields in Kth level according to tendency terms  
         CALL TIMESTEP(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)  
 C--     Density of K-1 level (above W(K)) reference to K-1 level  
 copt    CALL FIND_RHO(  
 copt I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, eosType,  
 copt O     rhoKm1,  
 copt I     myThid )  
 C       rhoKm1=rhoKp1  
         DO J=1-Oly,sNy+Oly  
          DO I=1-Olx,sNx+Olx  
           rhoKm1(I,J)=rhoKp1(I,J)  
314           ENDDO           ENDDO
315          ENDDO          ENDDO
 C--     Density of K level (below W(K)) reference to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, eosType,  
      O     rhoKp1,  
      I     myThid )  
 C--     Density of K-1 level (above W(K)) reference to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K, eosType,  
      O     rhotmp,  
      I     myThid )  
 C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  
         CALL CALC_ISOSLOPES(  
      I            bi, bj, iMin, iMax, jMin, jMax, K,  
      I            rhoKm1, rhoKp1, rhotmp,  
      O            K13, K23, K33, KapGM,  
      I            myThid )  
 C--     Calculate static stability and mix where convectively unstable  
         CALL CONVECT(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      I      myTime,myIter,myThid)  
 C--     Density of K-1 level (above W(K)) reference to K-1 level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, eosType,  
      O     rhoKm1,  
      I     myThid )  
 C--     Density of K level (below W(K)) referenced to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, eosType,  
      O     rhoKp1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      U      pH,  
      I      myThid )  
   
         ENDDO  
316    
317          DO K = Nz, 1, -1  C--     Start computation of dynamics
318           kM1  =max(1,k-1)   ! Points to level above k (=k-1)          iMin = 0
319           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above          iMax = sNx+1
320           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer          jMin = 0
321           iMin = 1-OLx+2          jMax = sNy+1
322           iMax = sNx+OLx-1  
323           jMin = 1-OLy+2  #ifdef ALLOW_AUTODIFF_TAMC
324           jMax = sNy+OLy-1  CADJ STORE wvel (:,:,:,bi,bj) =
325    CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
326  C--      Get temporary terms used by tendency routines  #endif /* ALLOW_AUTODIFF_TAMC */
327           CALL CALC_COMMON_FACTORS (  
328       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
329       O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
330            IF (implicSurfPress.NE.1.) THEN
331              CALL CALC_GRAD_PHI_SURF(
332         I         bi,bj,iMin,iMax,jMin,jMax,
333         I         etaN,
334         O         phiSurfX,phiSurfY,
335         I         myThid )                        
336            ENDIF
337    
338    #ifdef ALLOW_AUTODIFF_TAMC
339    CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
340    CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
341    #ifdef ALLOW_KPP
342    CADJ STORE KPPviscAz (:,:,:,bi,bj)
343    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
344    #endif /* ALLOW_KPP */
345    #endif /* ALLOW_AUTODIFF_TAMC */
346    
347    #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
348    C--      Calculate the total vertical diffusivity
349            DO k=1,Nr
350             CALL CALC_VISCOSITY(
351         I        bi,bj,iMin,iMax,jMin,jMax,k,
352         O        KappaRU,KappaRV,
353       I        myThid)       I        myThid)
354           ENDDO
355    #endif
356    
357  C--      Calculate accelerations in the momentum equations  #ifdef ALLOW_AUTODIFF_TAMC
358           IF ( momStepping ) THEN  CADJ STORE KappaRU(:,:,:)
359            CALL CALC_MOM_RHS(  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
360       I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ STORE KappaRV(:,:,:)
361       I         xA,yA,uTrans,vTrans,wTrans,maskC,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
362       I         pH,  #endif /* ALLOW_AUTODIFF_TAMC */
363       U         aTerm,xTerm,cTerm,mTerm,pTerm,  
364       U         fZon, fMer, fVerU, fVerV,  C--     Start of dynamics loop
365       I         myThid)          DO k=1,Nr
366    
367    C--       km1    Points to level above k (=k-1)
368    C--       kup    Cycles through 1,2 to point to layer above
369    C--       kDown  Cycles through 2,1 to point to current layer
370    
371              km1  = MAX(1,k-1)
372              kp1  = MIN(k+1,Nr)
373              kup  = 1+MOD(k+1,2)
374              kDown= 1+MOD(k,2)
375    
376    #ifdef ALLOW_AUTODIFF_TAMC
377             kkey = (idynkey-1)*Nr + k
378    c
379    CADJ STORE totphihyd (:,:,k,bi,bj)
380    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
381    CADJ STORE theta (:,:,k,bi,bj)
382    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
383    CADJ STORE salt  (:,:,k,bi,bj)
384    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
385    CADJ STORE gt(:,:,k,bi,bj)
386    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
387    CADJ STORE gs(:,:,k,bi,bj)
388    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
389    # ifdef NONLIN_FRSURF
390    cph-test
391    CADJ STORE  phiHydC (:,:)
392    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
393    CADJ STORE  phiHydF (:,:)
394    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
395    CADJ STORE  gudissip (:,:)
396    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
397    CADJ STORE  gvdissip (:,:)
398    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
399    CADJ STORE  fVerU (:,:,:)
400    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
401    CADJ STORE  fVerV (:,:,:)
402    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
403    CADJ STORE gu(:,:,k,bi,bj)
404    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
405    CADJ STORE gv(:,:,k,bi,bj)
406    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
407    CADJ STORE gunm1(:,:,k,bi,bj)
408    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
409    CADJ STORE gvnm1(:,:,k,bi,bj)
410    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
411    #  ifdef ALLOW_CD_CODE
412    CADJ STORE unm1(:,:,k,bi,bj)
413    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
414    CADJ STORE vnm1(:,:,k,bi,bj)
415    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
416    CADJ STORE uVelD(:,:,k,bi,bj)
417    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
418    CADJ STORE vVelD(:,:,k,bi,bj)
419    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
420    #  endif
421    # endif
422    #endif /* ALLOW_AUTODIFF_TAMC */
423    
424    C--      Integrate hydrostatic balance for phiHyd with BC of
425    C        phiHyd(z=0)=0
426             IF ( implicitIntGravWave ) THEN
427               CALL CALC_PHI_HYD(
428         I        bi,bj,iMin,iMax,jMin,jMax,k,
429         I        gT, gS,
430         U        phiHydF,
431         O        phiHydC, dPhiHydX, dPhiHydY,
432         I        myTime, myIter, myThid )
433             ELSE
434               CALL CALC_PHI_HYD(
435         I        bi,bj,iMin,iMax,jMin,jMax,k,
436         I        theta, salt,
437         U        phiHydF,
438         O        phiHydC, dPhiHydX, dPhiHydY,
439         I        myTime, myIter, myThid )
440           ENDIF           ENDIF
441    
442  C--      Calculate active tracer tendencies  C--      Calculate accelerations in the momentum equations (gU, gV, ...)
443           IF ( tempStepping ) THEN  C        and step forward storing the result in gU, gV, etc...
444            CALL CALC_GT(           IF ( momStepping ) THEN
445       I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  #ifdef ALLOW_MOM_FLUXFORM
446       I         xA,yA,uTrans,vTrans,wTrans,maskUp,             IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
447       I         K13,K23,K33,KapGM,       I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
448       U         aTerm,xTerm,fZon,fMer,fVerT,       I         KappaRU, KappaRV,
449       I         myThid)       U         fVerU, fVerV,
450         O         guDissip, gvDissip,
451         I         myTime, myIter, myThid)
452    #endif
453    #ifdef ALLOW_MOM_VECINV
454               IF (vectorInvariantMomentum) THEN
455    C
456    # ifdef ALLOW_AUTODIFF_TAMC
457    #  ifdef NONLIN_FRSURF
458    CADJ STORE fVerU(:,:,:)
459    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
460    CADJ STORE fVerV(:,:,:)
461    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
462    #  endif
463    # endif /* ALLOW_AUTODIFF_TAMC */
464    C
465                 CALL MOM_VECINV(
466         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
467         I         KappaRU, KappaRV,
468         U         fVerU, fVerV,
469         O         guDissip, gvDissip,
470         I         myTime, myIter, myThid)
471               ENDIF
472    #endif
473               CALL TIMESTEP(
474         I         bi,bj,iMin,iMax,jMin,jMax,k,
475         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
476         I         guDissip, gvDissip,
477         I         myTime, myIter, myThid)
478    
479    #ifdef   ALLOW_OBCS
480    C--      Apply open boundary conditions
481               IF (useOBCS) THEN
482                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
483               ENDIF
484    #endif   /* ALLOW_OBCS */
485    
486           ENDIF           ENDIF
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg I        K13,K23,K33,KapGM,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
487    
488    
489    C--     end of dynamics k loop (1:Nr)
490          ENDDO          ENDDO
491    
492    C--     Implicit Vertical advection & viscosity
493    #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON))
494            IF ( momImplVertAdv ) THEN
495              CALL MOM_U_IMPLICIT_R( kappaRU,
496         I                           bi, bj, myTime, myIter, myThid )
497              CALL MOM_V_IMPLICIT_R( kappaRV,
498         I                           bi, bj, myTime, myIter, myThid )
499            ELSEIF ( implicitViscosity ) THEN
500    #else /* INCLUDE_IMPLVERTADV_CODE */
501            IF     ( implicitViscosity ) THEN
502    #endif /* INCLUDE_IMPLVERTADV_CODE */
503    #ifdef    ALLOW_AUTODIFF_TAMC
504    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
505    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
506    #endif    /* ALLOW_AUTODIFF_TAMC */
507              CALL IMPLDIFF(
508         I         bi, bj, iMin, iMax, jMin, jMax,
509         I         -1, KappaRU,recip_HFacW,
510         U         gU,
511         I         myThid )
512    #ifdef    ALLOW_AUTODIFF_TAMC
513    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
514    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
515    #endif    /* ALLOW_AUTODIFF_TAMC */
516              CALL IMPLDIFF(
517         I         bi, bj, iMin, iMax, jMin, jMax,
518         I         -2, KappaRV,recip_HFacS,
519         U         gV,
520         I         myThid )
521            ENDIF
522    
523    #ifdef   ALLOW_OBCS
524    C--      Apply open boundary conditions
525            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
526               DO K=1,Nr
527                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
528               ENDDO
529            ENDIF
530    #endif   /* ALLOW_OBCS */
531    
532    #ifdef    ALLOW_CD_CODE
533            IF (implicitViscosity.AND.useCDscheme) THEN
534    #ifdef    ALLOW_AUTODIFF_TAMC
535    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
536    #endif    /* ALLOW_AUTODIFF_TAMC */
537              CALL IMPLDIFF(
538         I         bi, bj, iMin, iMax, jMin, jMax,
539         I         0, KappaRU,recip_HFacW,
540         U         vVelD,
541         I         myThid )
542    #ifdef    ALLOW_AUTODIFF_TAMC
543    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
544    #endif    /* ALLOW_AUTODIFF_TAMC */
545              CALL IMPLDIFF(
546         I         bi, bj, iMin, iMax, jMin, jMax,
547         I         0, KappaRV,recip_HFacS,
548         U         uVelD,
549         I         myThid )
550            ENDIF
551    #endif    /* ALLOW_CD_CODE */
552    C--     End implicit Vertical advection & viscosity
553    
554         ENDDO         ENDDO
555        ENDDO        ENDDO
556    
557  !dbg  write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x)  #ifdef ALLOW_OBCS
558  !dbg  write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)),        IF (useOBCS) THEN
559  !dbg &                         maxval(uVel(1:sNx,1:sNy,:,:,:))         CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
560  !dbg  write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)),        ENDIF
561  !dbg &                         maxval(vVel(1:sNx,1:sNy,:,:,:))  #endif
562  !dbg  write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),  
563  !dbg &                         maxval(K13(1:sNx,1:sNy,:))  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
564  !dbg  write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),  
565  !dbg &                         maxval(K23(1:sNx,1:sNy,:))  #ifdef ALLOW_NONHYDROSTATIC
566  !dbg  write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),  C--   Step forward W field in N-H algorithm
567  !dbg &                         maxval(K33(1:sNx,1:sNy,:))        IF ( nonHydrostatic ) THEN
568  !dbg  write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)),  #ifdef ALLOW_DEBUG
569  !dbg &                         maxval(gT(1:sNx,1:sNy,:,:,:))           IF ( debugLevel .GE. debLevB )
570  !dbg  write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)),       &     CALL DEBUG_CALL('CALC_GW', myThid )
571  !dbg &                         maxval(Theta(1:sNx,1:sNy,:,:,:))  #endif
572  !dbg  write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)),           CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
573  !dbg &                          maxval(pH/(Gravity*Rhonil))           CALL CALC_GW( myTime, myIter, myThid )
574          ENDIF
575          IF ( nonHydrostatic.OR.implicitIntGravWave )
576         &   CALL TIMESTEP_WVEL( myTime, myIter, myThid )
577          IF ( nonHydrostatic )
578         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
579    #endif
580    
581    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
582    
583    Cml(
584    C     In order to compare the variance of phiHydLow of a p/z-coordinate
585    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
586    C     has to be removed by something like the following subroutine:
587    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
588    C     &                'phiHydLow', myThid )
589    Cml)
590    
591    #ifdef ALLOW_DIAGNOSTICS
592          IF ( useDiagnostics ) THEN
593    
594           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
595           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
596    
597           tmpFac = 1. _d 0
598           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
599         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
600    
601           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
602         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
603    
604          ENDIF
605    #endif /* ALLOW_DIAGNOSTICS */
606          
607    #ifdef ALLOW_DEBUG
608          If ( debugLevel .GE. debLevB ) THEN
609           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
610           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
611           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
612           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
613           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
614           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
615           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
616           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
617           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
618           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
619    #ifndef ALLOW_ADAMSBASHFORTH_3
620           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
621           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
622           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
623           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
624    #endif
625          ENDIF
626    #endif
627    
628    #ifdef DYNAMICS_GUGV_EXCH_CHECK
629    C- jmc: For safety checking only: This Exchange here should not change
630    C       the solution. If solution changes, it means something is wrong,
631    C       but it does not mean that it is less wrong with this exchange.
632          IF ( debugLevel .GT. debLevB ) THEN
633           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
634          ENDIF
635    #endif
636    
637    #ifdef ALLOW_DEBUG
638          IF ( debugLevel .GE. debLevB )
639         &   CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
640    #endif
641    
642        RETURN        RETURN
643        END        END

Legend:
Removed from v.1.10  
changed lines
  Added in v.1.131

  ViewVC Help
Powered by ViewVC 1.1.22