/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.26 - (show annotations) (download)
Wed Aug 19 16:20:49 1998 UTC (25 years, 9 months ago) by cnh
Branch: MAIN
Changes since 1.25: +35 -16 lines
Changes to support r as vertical coordinate

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.25 1998/07/16 15:23:43 adcroft Exp $
2
3 #include "CPP_OPTIONS.h"
4
5 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
6 C /==========================================================\
7 C | SUBROUTINE DYNAMICS |
8 C | o Controlling routine for the explicit part of the model |
9 C | dynamics. |
10 C |==========================================================|
11 C | This routine evaluates the "dynamics" terms for each |
12 C | block of ocean in turn. Because the blocks of ocean have |
13 C | overlap regions they are independent of one another. |
14 C | If terms involving lateral integrals are needed in this |
15 C | routine care will be needed. Similarly finite-difference |
16 C | operations with stencils wider than the overlap region |
17 C | require special consideration. |
18 C | Notes |
19 C | ===== |
20 C | C*P* comments indicating place holders for which code is |
21 C | presently being developed. |
22 C \==========================================================/
23
24 C == Global variables ===
25 #include "SIZE.h"
26 #include "EEPARAMS.h"
27 #include "CG2D.h"
28 #include "PARAMS.h"
29 #include "DYNVARS.h"
30
31 C == Routine arguments ==
32 C myTime - Current time in simulation
33 C myIter - Current iteration number in simulation
34 C myThid - Thread number for this instance of the routine.
35 INTEGER myThid
36 _RL myTime
37 INTEGER myIter
38
39 C == Local variables
40 C xA, yA - Per block temporaries holding face areas
41 C uTrans, vTrans, wTrans - Per block temporaries holding flow transport
42 C wVel o uTrans: Zonal transport
43 C o vTrans: Meridional transport
44 C o wTrans: Vertical transport
45 C o wVel: Vertical velocity at upper and lower
46 C cell faces.
47 C maskC,maskUp o maskC: land/water mask for tracer cells
48 C o maskUp: land/water mask for W points
49 C aTerm, xTerm, cTerm - Work arrays for holding separate terms in
50 C mTerm, pTerm, tendency equations.
51 C fZon, fMer, fVer[STUV] o aTerm: Advection term
52 C o xTerm: Mixing term
53 C o cTerm: Coriolis term
54 C o mTerm: Metric term
55 C o pTerm: Pressure term
56 C o fZon: Zonal flux term
57 C o fMer: Meridional flux term
58 C o fVer: Vertical flux term - note fVer
59 C is "pipelined" in the vertical
60 C so we need an fVer for each
61 C variable.
62 C rhoK, rhoKM1 - Density at current level, level above and level below.
63 C rhoKP1
64 C buoyK, buoyKM1 - Buoyancy at current level and level above.
65 C phiHyd - Hydrostatic part of the potential phi.
66 C In z coords phiHyd is the hydrostatic pressure anomaly
67 C In p coords phiHyd is the geopotential surface height anomaly.
68 C iMin, iMax - Ranges and sub-block indices on which calculations
69 C jMin, jMax are applied.
70 C bi, bj
71 C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown
72 C are switched with layer to be the appropriate index
73 C into fVerTerm
74 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL wVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
80 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
90 _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
91 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
92 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
93 _RL phiHyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
94 _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95 _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
96 _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL buoyKM1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99 _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
103 _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
104 _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
105 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
106 _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
107 _RL KappaZS(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
108
109 INTEGER iMin, iMax
110 INTEGER jMin, jMax
111 INTEGER bi, bj
112 INTEGER i, j
113 INTEGER k, kM1, kUp, kDown
114 LOGICAL BOTTOM_LAYER
115
116 C--- The algorithm...
117 C
118 C "Correction Step"
119 C =================
120 C Here we update the horizontal velocities with the surface
121 C pressure such that the resulting flow is either consistent
122 C with the free-surface evolution or the rigid-lid:
123 C U[n] = U* + dt x d/dx P
124 C V[n] = V* + dt x d/dy P
125 C
126 C "Calculation of Gs"
127 C ===================
128 C This is where all the accelerations and tendencies (ie.
129 C physics, parameterizations etc...) are calculated
130 C w = sum_z ( div. u[n] )
131 C rho = rho ( theta[n], salt[n] )
132 C K31 = K31 ( rho )
133 C Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )
134 C Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )
135 C Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )
136 C Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )
137 C
138 C "Time-stepping" or "Prediction"
139 C ================================
140 C The models variables are stepped forward with the appropriate
141 C time-stepping scheme (currently we use Adams-Bashforth II)
142 C - For momentum, the result is always *only* a "prediction"
143 C in that the flow may be divergent and will be "corrected"
144 C later with a surface pressure gradient.
145 C - Normally for tracers the result is the new field at time
146 C level [n+1} *BUT* in the case of implicit diffusion the result
147 C is also *only* a prediction.
148 C - We denote "predictors" with an asterisk (*).
149 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
150 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
151 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
152 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
153 C With implicit diffusion:
154 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
155 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
156 C (1 + dt * K * d_zz) theta[n] = theta*
157 C (1 + dt * K * d_zz) salt[n] = salt*
158 C---
159
160 C-- Set up work arrays with valid (i.e. not NaN) values
161 C These inital values do not alter the numerical results. They
162 C just ensure that all memory references are to valid floating
163 C point numbers. This prevents spurious hardware signals due to
164 C uninitialised but inert locations.
165 DO j=1-OLy,sNy+OLy
166 DO i=1-OLx,sNx+OLx
167 xA(i,j) = 0. _d 0
168 yA(i,j) = 0. _d 0
169 uTrans(i,j) = 0. _d 0
170 vTrans(i,j) = 0. _d 0
171 aTerm(i,j) = 0. _d 0
172 xTerm(i,j) = 0. _d 0
173 cTerm(i,j) = 0. _d 0
174 mTerm(i,j) = 0. _d 0
175 pTerm(i,j) = 0. _d 0
176 fZon(i,j) = 0. _d 0
177 fMer(i,j) = 0. _d 0
178 DO K=1,nZ
179 pH (i,j,k) = 0. _d 0
180 K13(i,j,k) = 0. _d 0
181 K23(i,j,k) = 0. _d 0
182 K33(i,j,k) = 0. _d 0
183 KappaZT(i,j,k) = 0. _d 0
184 ENDDO
185 rhokm1(i,j) = 0. _d 0
186 rhok (i,j) = 0. _d 0
187 rhokp1(i,j) = 0. _d 0
188 rhotmp(i,j) = 0. _d 0
189 buoyKM1(i,j) = 0. _d 0
190 buoyK (i,j) = 0. _d 0
191 maskC (i,j) = 0. _d 0
192 ENDDO
193 ENDDO
194
195 DO bj=myByLo(myThid),myByHi(myThid)
196 DO bi=myBxLo(myThid),myBxHi(myThid)
197
198 C-- Set up work arrays that need valid initial values
199 DO j=1-OLy,sNy+OLy
200 DO i=1-OLx,sNx+OLx
201 wTrans(i,j) = 0. _d 0
202 wVel (i,j,1) = 0. _d 0
203 wVel (i,j,2) = 0. _d 0
204 fVerT(i,j,1) = 0. _d 0
205 fVerT(i,j,2) = 0. _d 0
206 fVerS(i,j,1) = 0. _d 0
207 fVerS(i,j,2) = 0. _d 0
208 fVerU(i,j,1) = 0. _d 0
209 fVerU(i,j,2) = 0. _d 0
210 fVerV(i,j,1) = 0. _d 0
211 fVerV(i,j,2) = 0. _d 0
212 pH(i,j,1) = 0. _d 0
213 K13(i,j,1) = 0. _d 0
214 K23(i,j,1) = 0. _d 0
215 K33(i,j,1) = 0. _d 0
216 KapGM(i,j) = GMkbackground
217 ENDDO
218 ENDDO
219
220 iMin = 1-OLx+1
221 iMax = sNx+OLx
222 jMin = 1-OLy+1
223 jMax = sNy+OLy
224
225 K = 1
226 BOTTOM_LAYER = K .EQ. Nz
227
228 C-- Calculate gradient of surface pressure
229 CALL GRAD_PSURF(
230 I bi,bj,iMin,iMax,jMin,jMax,
231 O pSurfX,pSurfY,
232 I myThid)
233
234 C-- Update fields in top level according to tendency terms
235 CALL CORRECTION_STEP(
236 I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myTime,myThid)
237
238 IF ( .NOT. BOTTOM_LAYER ) THEN
239 C-- Update fields in layer below according to tendency terms
240 CALL CORRECTION_STEP(
241 I bi,bj,iMin,iMax,jMin,jMax,K+1,pSurfX,pSurfY,myTime,myThid)
242 ENDIF
243 C-- Density of 1st level (below W(1)) reference to level 1
244 CALL FIND_RHO(
245 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
246 O rhoKm1,
247 I myThid )
248
249 IF ( .NOT. BOTTOM_LAYER ) THEN
250
251 C-- Check static stability with layer below
252 C and mix as needed.
253 CALL FIND_RHO(
254 I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
255 O rhoKp1,
256 I myThid )
257 CALL CONVECT(
258 I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1,
259 I myTime,myIter,myThid)
260 C-- Recompute density after mixing
261 CALL FIND_RHO(
262 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
263 O rhoKm1,
264 I myThid )
265 ENDIF
266
267 C-- Calculate buoyancy
268 CALL CALC_BUOY(
269 I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,
270 O buoyKm1,
271 I myThid )
272
273 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
274 CALL CALC_PHI_HYD(
275 I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1,
276 U phiHyd,
277 I myThid )
278
279 DO K=2,Nz
280
281 BOTTOM_LAYER = K .EQ. Nz
282 IF ( .NOT. BOTTOM_LAYER ) THEN
283 C-- Update fields in layer below according to tendency terms
284 CALL CORRECTION_STEP(
285 I bi,bj,iMin,iMax,jMin,jMax,K+1,pSurfX,pSurfY,myTime,myThid)
286 ENDIF
287 C-- Density of K level (below W(K)) reference to K level
288 CALL FIND_RHO(
289 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
290 O rhoK,
291 I myThid )
292 IF ( .NOT. BOTTOM_LAYER ) THEN
293 C-- Check static stability with layer below
294 C and mix as needed.
295 C-- Density of K+1 level (below W(K+1)) reference to K level
296 CALL FIND_RHO(
297 I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType,
298 O rhoKp1,
299 I myThid )
300 CALL CONVECT(
301 I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1,
302 I myTime,myIter,myThid)
303 C-- Recompute density after mixing
304 CALL FIND_RHO(
305 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
306 O rhoK,
307 I myThid )
308 ENDIF
309
310 C-- Calculate buoyancy
311 CALL CALC_BUOY(
312 I bi,bj,iMin,iMax,jMin,jMax,K,rhoK,
313 O buoyK,
314 I myThid )
315
316 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
317 CALL CALC_PHI_HYD(
318 I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK,
319 U phiHyd,
320 I myThid )
321 C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
322 CALL FIND_RHO(
323 I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,
324 O rhoTmp,
325 I myThid )
326 CALL CALC_ISOSLOPES(
327 I bi, bj, iMin, iMax, jMin, jMax, K,
328 I rhoKm1, rhoK, rhotmp,
329 O K13, K23, K33, KapGM,
330 I myThid )
331 DO J=jMin,jMax
332 DO I=iMin,iMax
333 rhoKm1(I,J) =rhoK(I,J)
334 buoyKm1(I,J)=buoyK(I,J)
335 ENDDO
336 ENDDO
337
338 ENDDO ! K
339
340 DO K = Nz, 1, -1
341 kM1 =max(1,k-1) ! Points to level above k (=k-1)
342 kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above
343 kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer
344 iMin = 1-OLx+2
345 iMax = sNx+OLx-1
346 jMin = 1-OLy+2
347 jMax = sNy+OLy-1
348
349 C-- Get temporary terms used by tendency routines
350 CALL CALC_COMMON_FACTORS (
351 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
352 O xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp,
353 I myThid)
354
355 C-- Calculate the total vertical diffusivity
356 CALL CALC_DIFFUSIVITY(
357 I bi,bj,iMin,iMax,jMin,jMax,K,
358 I maskC,maskUp,KapGM,K33,
359 O KappaZT,KappaZS,
360 I myThid)
361
362 C-- Calculate accelerations in the momentum equations
363 IF ( momStepping ) THEN
364 CALL CALC_MOM_RHS(
365 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
366 I xA,yA,uTrans,vTrans,wTrans,wVel,maskC,
367 I phiHyd,
368 U aTerm,xTerm,cTerm,mTerm,pTerm,
369 U fZon, fMer, fVerU, fVerV,
370 I myThid)
371 ENDIF
372
373 C-- Calculate active tracer tendencies
374 IF ( tempStepping ) THEN
375 CALL CALC_GT(
376 I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
377 I xA,yA,uTrans,vTrans,wTrans,maskUp,maskC,
378 I K13,K23,KappaZT,KapGM,
379 U aTerm,xTerm,fZon,fMer,fVerT,
380 I myThid)
381 ENDIF
382 IF ( saltStepping ) THEN
383 CALL CALC_GS(
384 I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
385 I xA,yA,uTrans,vTrans,wTrans,maskUp,maskC,
386 I K13,K23,KappaZS,KapGM,
387 U aTerm,xTerm,fZon,fMer,fVerS,
388 I myThid)
389 ENDIF
390
391 C-- Prediction step (step forward all model variables)
392 CALL TIMESTEP(
393 I bi,bj,iMin,iMax,jMin,jMax,K,
394 I myThid)
395
396 C-- Diagnose barotropic divergence of predicted fields
397 CALL DIV_G(
398 I bi,bj,iMin,iMax,jMin,jMax,K,
399 I xA,yA,
400 I myThid)
401
402 C-- Cumulative diagnostic calculations (ie. time-averaging)
403 #ifdef ALLOW_DIAGNOSTICS
404 IF (taveFreq.GT.0.) THEN
405 CALL DO_TIME_AVERAGES(
406 I myTime, myIter, bi, bj, K, kUp, kDown,
407 I K13, K23, wVel, KapGM,
408 I myThid )
409 ENDIF
410 #endif
411
412 ENDDO ! K
413
414 C-- Implicit diffusion
415 IF (implicitDiffusion) THEN
416 CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
417 I KappaZT,KappaZS,
418 I myThid )
419 ENDIF
420
421 ENDDO
422 ENDDO
423
424 C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),
425 C & maxval(cg2d_x(1:sNx,1:sNy,:,:))
426 C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.),
427 C & maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.)
428 C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.),
429 C & maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.)
430 C write(0,*) 'dynamics: wVel(1) ',
431 C & minval(wVel(1:sNx,1:sNy,1),mask=wVel(1:sNx,1:sNy,1).NE.0.),
432 C & maxval(wVel(1:sNx,1:sNy,1),mask=wVel(1:sNx,1:sNy,1).NE.0.)
433 C write(0,*) 'dynamics: wVel(2) ',
434 C & minval(wVel(1:sNx,1:sNy,2),mask=wVel(1:sNx,1:sNy,2).NE.0.),
435 C & maxval(wVel(1:sNx,1:sNy,2),mask=wVel(1:sNx,1:sNy,2).NE.0.)
436 cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
437 cblk & maxval(K13(1:sNx,1:sNy,:))
438 cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
439 cblk & maxval(K23(1:sNx,1:sNy,:))
440 cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
441 cblk & maxval(K33(1:sNx,1:sNy,:))
442 C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),
443 C & maxval(gT(1:sNx,1:sNy,:,:,:))
444 C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)),
445 C & maxval(Theta(1:sNx,1:sNy,:,:,:))
446 C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),
447 C & maxval(gS(1:sNx,1:sNy,:,:,:))
448 C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)),
449 C & maxval(salt(1:sNx,1:sNy,:,:,:))
450 C write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil),mask=ph.NE.0.),
451 C & maxval(pH/(Gravity*Rhonil))
452
453 RETURN
454 END

  ViewVC Help
Powered by ViewVC 1.1.22