/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by adcroft, Wed Apr 29 21:31:09 1998 UTC revision 1.98 by heimbach, Tue Jul 8 15:00:26 2003 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "CPP_OPTIONS.h"
   
       SUBROUTINE DYNAMICS(myThid)  
 C     /==========================================================\  
 C     | SUBROUTINE DYNAMICS                                      |  
 C     | o Controlling routine for the explicit part of the model |  
 C     |   dynamics.                                              |  
 C     |==========================================================|  
 C     | This routine evaluates the "dynamics" terms for each     |  
 C     | block of ocean in turn. Because the blocks of ocean have |  
 C     | overlap regions they are independent of one another.     |  
 C     | If terms involving lateral integrals are needed in this  |  
 C     | routine care will be needed. Similarly finite-difference |  
 C     | operations with stencils wider than the overlap region   |  
 C     | require special consideration.                           |  
 C     | Notes                                                    |  
 C     | =====                                                    |  
 C     | C*P* comments indicating place holders for which code is |  
 C     |      presently being developed.                          |  
 C     \==========================================================/  
5    
6    CBOP
7    C     !ROUTINE: DYNAMICS
8    C     !INTERFACE:
9          SUBROUTINE DYNAMICS(myTime, myIter, myThid)
10    C     !DESCRIPTION: \bv
11    C     *==========================================================*
12    C     | SUBROUTINE DYNAMICS                                      
13    C     | o Controlling routine for the explicit part of the model  
14    C     |   dynamics.                                              
15    C     *==========================================================*
16    C     | This routine evaluates the "dynamics" terms for each      
17    C     | block of ocean in turn. Because the blocks of ocean have  
18    C     | overlap regions they are independent of one another.      
19    C     | If terms involving lateral integrals are needed in this  
20    C     | routine care will be needed. Similarly finite-difference  
21    C     | operations with stencils wider than the overlap region    
22    C     | require special consideration.                            
23    C     | The algorithm...
24    C     |
25    C     | "Correction Step"
26    C     | =================
27    C     | Here we update the horizontal velocities with the surface
28    C     | pressure such that the resulting flow is either consistent
29    C     | with the free-surface evolution or the rigid-lid:
30    C     |   U[n] = U* + dt x d/dx P
31    C     |   V[n] = V* + dt x d/dy P
32    C     |
33    C     | "Calculation of Gs"
34    C     | ===================
35    C     | This is where all the accelerations and tendencies (ie.
36    C     | physics, parameterizations etc...) are calculated
37    C     |   rho = rho ( theta[n], salt[n] )
38    C     |   b   = b(rho, theta)
39    C     |   K31 = K31 ( rho )
40    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
41    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
42    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
43    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
44    C     |
45    C     | "Time-stepping" or "Prediction"
46    C     | ================================
47    C     | The models variables are stepped forward with the appropriate
48    C     | time-stepping scheme (currently we use Adams-Bashforth II)
49    C     | - For momentum, the result is always *only* a "prediction"
50    C     | in that the flow may be divergent and will be "corrected"
51    C     | later with a surface pressure gradient.
52    C     | - Normally for tracers the result is the new field at time
53    C     | level [n+1} *BUT* in the case of implicit diffusion the result
54    C     | is also *only* a prediction.
55    C     | - We denote "predictors" with an asterisk (*).
56    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
57    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
58    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
59    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60    C     | With implicit diffusion:
61    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     |   (1 + dt * K * d_zz) theta[n] = theta*
64    C     |   (1 + dt * K * d_zz) salt[n] = salt*
65    C     |
66    C     *==========================================================*
67    C     \ev
68    C     !USES:
69          IMPLICIT NONE
70  C     == Global variables ===  C     == Global variables ===
71  #include "SIZE.h"  #include "SIZE.h"
72  #include "EEPARAMS.h"  #include "EEPARAMS.h"
73  #include "CG2D.h"  #include "PARAMS.h"
74  #include "DYNVARS.h"  #include "DYNVARS.h"
75    #include "GRID.h"
76    #ifdef ALLOW_PASSIVE_TRACER
77    #include "TR1.h"
78    #endif
79    #ifdef ALLOW_AUTODIFF_TAMC
80    # include "tamc.h"
81    # include "tamc_keys.h"
82    # include "FFIELDS.h"
83    # include "EOS.h"
84    # ifdef ALLOW_KPP
85    #  include "KPP.h"
86    # endif
87    #endif /* ALLOW_AUTODIFF_TAMC */
88    
89    C     !CALLING SEQUENCE:
90    C     DYNAMICS()
91    C      |
92    C      |-- CALC_GRAD_PHI_SURF
93    C      |
94    C      |-- CALC_VISCOSITY
95    C      |
96    C      |-- CALC_PHI_HYD  
97    C      |
98    C      |-- MOM_FLUXFORM  
99    C      |
100    C      |-- MOM_VECINV    
101    C      |
102    C      |-- TIMESTEP      
103    C      |
104    C      |-- OBCS_APPLY_UV
105    C      |
106    C      |-- IMPLDIFF      
107    C      |
108    C      |-- OBCS_APPLY_UV
109    C      |
110    C      |-- CALL TIMEAVE_CUMUL_1T
111    C      |-- CALL DEBUG_STATS_RL
112    
113    C     !INPUT/OUTPUT PARAMETERS:
114  C     == Routine arguments ==  C     == Routine arguments ==
115    C     myTime - Current time in simulation
116    C     myIter - Current iteration number in simulation
117  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
118          _RL myTime
119          INTEGER myIter
120        INTEGER myThid        INTEGER myThid
121    
122    C     !LOCAL VARIABLES:
123  C     == Local variables  C     == Local variables
124  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[STUV]               o fVer: Vertical flux term - note fVer
 C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  
 C                              o uTrans: Zonal transport  
 C                              o vTrans: Meridional transport  
 C                              o wTrans: Vertical transport  
 C     maskC,maskUp             o maskC: land/water mask for tracer cells  
 C                              o maskUp: land/water mask for W points  
 C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  
 C     mTerm, pTerm,            tendency equations.  
 C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  
 C                              o xTerm: Mixing term  
 C                              o cTerm: Coriolis term  
 C                              o mTerm: Metric term  
 C                              o pTerm: Pressure term  
 C                              o fZon: Zonal flux term  
 C                              o fMer: Meridional flux term  
 C                              o fVer: Vertical flux term - note fVer  
125  C                                      is "pipelined" in the vertical  C                                      is "pipelined" in the vertical
126  C                                      so we need an fVer for each  C                                      so we need an fVer for each
127  C                                      variable.  C                                      variable.
128  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     phiHydC    :: hydrostatic potential anomaly at cell center
129  C     jMin, jMax   are applied.  C                   In z coords phiHyd is the hydrostatic potential
130    C                      (=pressure/rho0) anomaly
131    C                   In p coords phiHyd is the geopotential height anomaly.
132    C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
133    C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
134    C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
135    C     phiSurfY             or geopotential (atmos) in X and Y direction
136    C     iMin, iMax     - Ranges and sub-block indices on which calculations
137    C     jMin, jMax       are applied.
138  C     bi, bj  C     bi, bj
139  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
140  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
141  C                          into fVerTerm  C                      index into fVerTerm.
142        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
143        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
144        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
145        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
146        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
147        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
148        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
149        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
150        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
151        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
152        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
153        INTEGER iMin, iMax        INTEGER iMin, iMax
154        INTEGER jMin, jMax        INTEGER jMin, jMax
155        INTEGER bi, bj        INTEGER bi, bj
156        INTEGER i, j        INTEGER i, j
157        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
158    
159          LOGICAL  DIFFERENT_MULTIPLE
160          EXTERNAL DIFFERENT_MULTIPLE
161    
162    C---    The algorithm...
163    C
164    C       "Correction Step"
165    C       =================
166    C       Here we update the horizontal velocities with the surface
167    C       pressure such that the resulting flow is either consistent
168    C       with the free-surface evolution or the rigid-lid:
169    C         U[n] = U* + dt x d/dx P
170    C         V[n] = V* + dt x d/dy P
171    C
172    C       "Calculation of Gs"
173    C       ===================
174    C       This is where all the accelerations and tendencies (ie.
175    C       physics, parameterizations etc...) are calculated
176    C         rho = rho ( theta[n], salt[n] )
177    C         b   = b(rho, theta)
178    C         K31 = K31 ( rho )
179    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
180    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
181    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
182    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
183    C
184    C       "Time-stepping" or "Prediction"
185    C       ================================
186    C       The models variables are stepped forward with the appropriate
187    C       time-stepping scheme (currently we use Adams-Bashforth II)
188    C       - For momentum, the result is always *only* a "prediction"
189    C       in that the flow may be divergent and will be "corrected"
190    C       later with a surface pressure gradient.
191    C       - Normally for tracers the result is the new field at time
192    C       level [n+1} *BUT* in the case of implicit diffusion the result
193    C       is also *only* a prediction.
194    C       - We denote "predictors" with an asterisk (*).
195    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
196    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
197    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
198    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
199    C       With implicit diffusion:
200    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
201    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
202    C         (1 + dt * K * d_zz) theta[n] = theta*
203    C         (1 + dt * K * d_zz) salt[n] = salt*
204    C---
205    CEOP
206    
207    C-- Call to routine for calculation of
208    C   Eliassen-Palm-flux-forced U-tendency,
209    C   if desired:
210    #ifdef INCLUDE_EP_FORCING_CODE
211          CALL CALC_EP_FORCING(myThid)
212    #endif
213    
214    #ifdef ALLOW_AUTODIFF_TAMC
215    C--   HPF directive to help TAMC
216    CHPF$ INDEPENDENT
217    #endif /* ALLOW_AUTODIFF_TAMC */
218    
219          DO bj=myByLo(myThid),myByHi(myThid)
220    
221    #ifdef ALLOW_AUTODIFF_TAMC
222    C--    HPF directive to help TAMC
223    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
224    CHPF$&                  ,phiHydF
225    CHPF$&                  ,KappaRU,KappaRV
226    CHPF$&                  )
227    #endif /* ALLOW_AUTODIFF_TAMC */
228    
229           DO bi=myBxLo(myThid),myBxHi(myThid)
230    
231    #ifdef ALLOW_AUTODIFF_TAMC
232              act1 = bi - myBxLo(myThid)
233              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
234              act2 = bj - myByLo(myThid)
235              max2 = myByHi(myThid) - myByLo(myThid) + 1
236              act3 = myThid - 1
237              max3 = nTx*nTy
238              act4 = ikey_dynamics - 1
239              idynkey = (act1 + 1) + act2*max1
240         &                      + act3*max1*max2
241         &                      + act4*max1*max2*max3
242    #endif /* ALLOW_AUTODIFF_TAMC */
243    
244  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
245  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
246  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
247  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
248  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0.*1. _d 37  
         yA(i,j)      = 0.*1. _d 37  
         uTrans(i,j)  = 0.*1. _d 37  
         vTrans(i,j)  = 0.*1. _d 37  
         aTerm(i,j)   = 0.*1. _d 37  
         xTerm(i,j)   = 0.*1. _d 37  
         cTerm(i,j)   = 0.*1. _d 37  
         mTerm(i,j)   = 0.*1. _d 37  
         pTerm(i,j)   = 0.*1. _d 37  
         fZon(i,j)    = 0.*1. _d 37  
         fMer(i,j)    = 0.*1. _d 37  
         DO K=1,nZ  
          pH (i,j,k)  = 0.*1. _d 37  
         ENDDO  
         rhokm1(i,j)    = 0. _d 0  
         rhokp1(i,j)    = 0. _d 0  
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
        ENDDO  
       ENDDO  
   
       DO bj=myByLo(myThid),myByHi(myThid)  
        DO bi=myBxLo(myThid),myBxHi(myThid)  
249    
250  C--   Boundary condition on hydrostatic pressure is pH(z=0)=0          DO k=1,Nr
251             DO j=1-OLy,sNy+OLy
252              DO i=1-OLx,sNx+OLx
253               KappaRU(i,j,k) = 0. _d 0
254               KappaRV(i,j,k) = 0. _d 0
255    #ifdef ALLOW_AUTODIFF_TAMC
256    cph(
257    c--   need some re-initialisation here to break dependencies
258    c--   totphihyd is assumed zero from ini_pressure, i.e.
259    c--   avoiding iterate pressure p = integral of (g*rho(p)*dz)
260    cph)
261               totPhiHyd(i,j,k,bi,bj) = 0. _d 0
262               gu(i,j,k,bi,bj) = 0. _d 0
263               gv(i,j,k,bi,bj) = 0. _d 0
264    #endif
265              ENDDO
266             ENDDO
267            ENDDO
268          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
269           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
270            pH(i,j,1) = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
271              fVerU  (i,j,2) = 0. _d 0
272              fVerV  (i,j,1) = 0. _d 0
273              fVerV  (i,j,2) = 0. _d 0
274              phiHydF (i,j)  = 0. _d 0
275              phiHydC (i,j)  = 0. _d 0
276              dPhiHydX(i,j)  = 0. _d 0
277              dPhiHydY(i,j)  = 0. _d 0
278              phiSurfX(i,j)  = 0. _d 0
279              phiSurfY(i,j)  = 0. _d 0
280           ENDDO           ENDDO
281          ENDDO          ENDDO
282    
283          iMin = 1-OLx+1  C--     Start computation of dynamics
284          iMax = sNx+OLx          iMin = 0
285          jMin = 1-OLy+1          iMax = sNx+1
286          jMax = sNy+OLy          jMin = 0
287            jMax = sNy+1
288  C--     Update fields according to tendency terms  
289          CALL TIMESTEP(  #ifdef ALLOW_AUTODIFF_TAMC
290       I       bi,bj,iMin,iMax,jMin,jMax,myThid)  CADJ STORE wvel (:,:,:,bi,bj) =
291    CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
292          DO K=2,Nz  #endif /* ALLOW_AUTODIFF_TAMC */
293  C Density of K-1 level (above W(K)) reference to K level  
294           CALL FIND_RHO(  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
295       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
296       O      rhoKm1,          IF (implicSurfPress.NE.1.) THEN
297       I      myThid )            CALL CALC_GRAD_PHI_SURF(
298  C Density of K level (below W(K)) reference to K level       I         bi,bj,iMin,iMax,jMin,jMax,
299           CALL FIND_RHO(       I         etaN,
300       I      bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',       O         phiSurfX,phiSurfY,
301       O      rhoKp1,       I         myThid )                        
302       I      myThid )          ENDIF
303  C--     Calculate static stability and mix where convectively unstable  
304           CALL CONVECT(  #ifdef ALLOW_AUTODIFF_TAMC
305       I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,myThid)  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
306  C Density of K-1 level (above W(K)) reference to K-1 level  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
307           CALL FIND_RHO(  #ifdef ALLOW_KPP
308       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',  CADJ STORE KPPviscAz (:,:,:,bi,bj)
309       O      rhoKm1,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
310       I      myThid )  #endif /* ALLOW_KPP */
311  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  #endif /* ALLOW_AUTODIFF_TAMC */
312           CALL CALC_PH(  
313       I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
314       U       pH,  C--      Calculate the total vertical diffusivity
315       I       myThid )          DO k=1,Nr
316          ENDDO ! K           CALL CALC_VISCOSITY(
317         I        bi,bj,iMin,iMax,jMin,jMax,k,
318  C Density of Nz level (bottom level) reference to Nz level       O        KappaRU,KappaRV,
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax,  Nz, Nz, 'LINEAR',  
      O      rhoKm1,  
      I      myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
          CALL CALC_PH(  
      I       bi,bj,iMin,iMax,jMin,jMax,Nz+1,rhoKm1,  
      U       pH,  
      I       myThid )  
   
         DO K = Nz, 1, -1  
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
319       I        myThid)       I        myThid)
320           ENDDO
321    #endif
322    
323  C--      Calculate accelerations in the momentum equations  C--     Start of dynamics loop
324           CALL CALC_MOM_RHS(          DO k=1,Nr
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskC,  
      I        pH,  
      U        aTerm,xTerm,cTerm,mTerm,pTerm,  
      U        fZon, fMer, fVerU, fVerV,  
      I        myThid)  
325    
326  C--      Calculate active tracer tendencies  C--       km1    Points to level above k (=k-1)
327           CALL CALC_GT(  C--       kup    Cycles through 1,2 to point to layer above
328       I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  C--       kDown  Cycles through 2,1 to point to current layer
329       I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
330       U        aTerm,xTerm,fZon,fMer,fVerT,            km1  = MAX(1,k-1)
331       I        myThid)            kp1  = MIN(k+1,Nr)
332  Cdbg     CALL CALC_GS(            kup  = 1+MOD(k+1,2)
333  Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,            kDown= 1+MOD(k,2)
334  Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
335  Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  #ifdef ALLOW_AUTODIFF_TAMC
336  Cdbg I        myThid)           kkey = (idynkey-1)*Nr + k
337    CADJ STORE totphihyd (:,:,k,bi,bj)
338    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
339    #endif /* ALLOW_AUTODIFF_TAMC */
340    
341    C--      Integrate hydrostatic balance for phiHyd with BC of
342    C        phiHyd(z=0)=0
343    C        distinguishe between Stagger and Non Stagger time stepping
344             IF (staggerTimeStep) THEN
345               CALL CALC_PHI_HYD(
346         I        bi,bj,iMin,iMax,jMin,jMax,k,
347         I        gT, gS,
348         U        phiHydF,
349         O        phiHydC, dPhiHydX, dPhiHydY,
350         I        myTime, myIter, myThid )
351             ELSE
352               CALL CALC_PHI_HYD(
353         I        bi,bj,iMin,iMax,jMin,jMax,k,
354         I        theta, salt,
355         U        phiHydF,
356         O        phiHydC, dPhiHydX, dPhiHydY,
357         I        myTime, myIter, myThid )
358             ENDIF
359    
360    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
361    C        and step forward storing the result in gU, gV, etc...
362             IF ( momStepping ) THEN
363    #ifndef DISABLE_MOM_FLUXFORM
364               IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
365         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
366         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
367         U         fVerU, fVerV,
368         I         myTime, myIter, myThid)
369    #endif
370    #ifndef DISABLE_MOM_VECINV
371               IF (vectorInvariantMomentum) CALL MOM_VECINV(
372         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
373         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
374         U         fVerU, fVerV,
375         I         myTime, myIter, myThid)
376    #endif
377               CALL TIMESTEP(
378         I         bi,bj,iMin,iMax,jMin,jMax,k,
379         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
380         I         myTime, myIter, myThid)
381    
382    #ifdef   ALLOW_OBCS
383    C--      Apply open boundary conditions
384               IF (useOBCS) THEN
385                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
386               ENDIF
387    #endif   /* ALLOW_OBCS */
388    
389             ENDIF
390    
391    
392    C--     end of dynamics k loop (1:Nr)
393          ENDDO          ENDDO
394    
395    C--     Implicit viscosity
396            IF (implicitViscosity.AND.momStepping) THEN
397    #ifdef    ALLOW_AUTODIFF_TAMC
398    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
399    #endif    /* ALLOW_AUTODIFF_TAMC */
400              CALL IMPLDIFF(
401         I         bi, bj, iMin, iMax, jMin, jMax,
402         I         deltaTmom, KappaRU,recip_HFacW,
403         U         gU,
404         I         myThid )
405    #ifdef    ALLOW_AUTODIFF_TAMC
406    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
407    #endif    /* ALLOW_AUTODIFF_TAMC */
408              CALL IMPLDIFF(
409         I         bi, bj, iMin, iMax, jMin, jMax,
410         I         deltaTmom, KappaRV,recip_HFacS,
411         U         gV,
412         I         myThid )
413    
414    #ifdef   ALLOW_OBCS
415    C--      Apply open boundary conditions
416             IF (useOBCS) THEN
417               DO K=1,Nr
418                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
419               ENDDO
420             END IF
421    #endif   /* ALLOW_OBCS */
422    
423    #ifdef    INCLUDE_CD_CODE
424    #ifdef    ALLOW_AUTODIFF_TAMC
425    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
426    #endif    /* ALLOW_AUTODIFF_TAMC */
427              CALL IMPLDIFF(
428         I         bi, bj, iMin, iMax, jMin, jMax,
429         I         deltaTmom, KappaRU,recip_HFacW,
430         U         vVelD,
431         I         myThid )
432    #ifdef    ALLOW_AUTODIFF_TAMC
433    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
434    #endif    /* ALLOW_AUTODIFF_TAMC */
435              CALL IMPLDIFF(
436         I         bi, bj, iMin, iMax, jMin, jMax,
437         I         deltaTmom, KappaRV,recip_HFacS,
438         U         uVelD,
439         I         myThid )
440    #endif    /* INCLUDE_CD_CODE */
441    C--     End If implicitViscosity.AND.momStepping
442            ENDIF
443    
444         ENDDO         ENDDO
445        ENDDO        ENDDO
446    
447    Cml(
448    C     In order to compare the variance of phiHydLow of a p/z-coordinate
449    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
450    C     has to be removed by something like the following subroutine:
451    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
452    C     &                'phiHydLow', myThid )
453    Cml)
454    
455    #ifndef DISABLE_DEBUGMODE
456          If ( debugLevel .GE. debLevB ) THEN
457           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
458           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
459           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
460           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
461           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
462           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
463           CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
464           CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
465           CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
466           CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
467           CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
468           CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
469           CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
470           CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
471          ENDIF
472    #endif
473    
474        RETURN        RETURN
475        END        END

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.98

  ViewVC Help
Powered by ViewVC 1.1.22