/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by cnh, Mon May 25 16:17:36 1998 UTC revision 1.96 by jmc, Thu Apr 17 13:41:34 2003 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "CPP_OPTIONS.h"
   
       SUBROUTINE DYNAMICS(myThid)  
 C     /==========================================================\  
 C     | SUBROUTINE DYNAMICS                                      |  
 C     | o Controlling routine for the explicit part of the model |  
 C     |   dynamics.                                              |  
 C     |==========================================================|  
 C     | This routine evaluates the "dynamics" terms for each     |  
 C     | block of ocean in turn. Because the blocks of ocean have |  
 C     | overlap regions they are independent of one another.     |  
 C     | If terms involving lateral integrals are needed in this  |  
 C     | routine care will be needed. Similarly finite-difference |  
 C     | operations with stencils wider than the overlap region   |  
 C     | require special consideration.                           |  
 C     | Notes                                                    |  
 C     | =====                                                    |  
 C     | C*P* comments indicating place holders for which code is |  
 C     |      presently being developed.                          |  
 C     \==========================================================/  
5    
6    CBOP
7    C     !ROUTINE: DYNAMICS
8    C     !INTERFACE:
9          SUBROUTINE DYNAMICS(myTime, myIter, myThid)
10    C     !DESCRIPTION: \bv
11    C     *==========================================================*
12    C     | SUBROUTINE DYNAMICS                                      
13    C     | o Controlling routine for the explicit part of the model  
14    C     |   dynamics.                                              
15    C     *==========================================================*
16    C     | This routine evaluates the "dynamics" terms for each      
17    C     | block of ocean in turn. Because the blocks of ocean have  
18    C     | overlap regions they are independent of one another.      
19    C     | If terms involving lateral integrals are needed in this  
20    C     | routine care will be needed. Similarly finite-difference  
21    C     | operations with stencils wider than the overlap region    
22    C     | require special consideration.                            
23    C     | The algorithm...
24    C     |
25    C     | "Correction Step"
26    C     | =================
27    C     | Here we update the horizontal velocities with the surface
28    C     | pressure such that the resulting flow is either consistent
29    C     | with the free-surface evolution or the rigid-lid:
30    C     |   U[n] = U* + dt x d/dx P
31    C     |   V[n] = V* + dt x d/dy P
32    C     |
33    C     | "Calculation of Gs"
34    C     | ===================
35    C     | This is where all the accelerations and tendencies (ie.
36    C     | physics, parameterizations etc...) are calculated
37    C     |   rho = rho ( theta[n], salt[n] )
38    C     |   b   = b(rho, theta)
39    C     |   K31 = K31 ( rho )
40    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
41    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
42    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
43    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
44    C     |
45    C     | "Time-stepping" or "Prediction"
46    C     | ================================
47    C     | The models variables are stepped forward with the appropriate
48    C     | time-stepping scheme (currently we use Adams-Bashforth II)
49    C     | - For momentum, the result is always *only* a "prediction"
50    C     | in that the flow may be divergent and will be "corrected"
51    C     | later with a surface pressure gradient.
52    C     | - Normally for tracers the result is the new field at time
53    C     | level [n+1} *BUT* in the case of implicit diffusion the result
54    C     | is also *only* a prediction.
55    C     | - We denote "predictors" with an asterisk (*).
56    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
57    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
58    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
59    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60    C     | With implicit diffusion:
61    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     |   (1 + dt * K * d_zz) theta[n] = theta*
64    C     |   (1 + dt * K * d_zz) salt[n] = salt*
65    C     |
66    C     *==========================================================*
67    C     \ev
68    C     !USES:
69          IMPLICIT NONE
70  C     == Global variables ===  C     == Global variables ===
71  #include "SIZE.h"  #include "SIZE.h"
72  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
73  #include "PARAMS.h"  #include "PARAMS.h"
74  #include "DYNVARS.h"  #include "DYNVARS.h"
75    #include "GRID.h"
76    #ifdef ALLOW_PASSIVE_TRACER
77    #include "TR1.h"
78    #endif
79    #ifdef ALLOW_AUTODIFF_TAMC
80    # include "tamc.h"
81    # include "tamc_keys.h"
82    # include "FFIELDS.h"
83    # include "EOS.h"
84    # ifdef ALLOW_KPP
85    #  include "KPP.h"
86    # endif
87    #endif /* ALLOW_AUTODIFF_TAMC */
88    
89    C     !CALLING SEQUENCE:
90    C     DYNAMICS()
91    C      |
92    C      |-- CALC_GRAD_PHI_SURF
93    C      |
94    C      |-- CALC_VISCOSITY
95    C      |
96    C      |-- CALC_PHI_HYD  
97    C      |
98    C      |-- MOM_FLUXFORM  
99    C      |
100    C      |-- MOM_VECINV    
101    C      |
102    C      |-- TIMESTEP      
103    C      |
104    C      |-- OBCS_APPLY_UV
105    C      |
106    C      |-- IMPLDIFF      
107    C      |
108    C      |-- OBCS_APPLY_UV
109    C      |
110    C      |-- CALL TIMEAVE_CUMUL_1T
111    C      |-- CALL DEBUG_STATS_RL
112    
113    C     !INPUT/OUTPUT PARAMETERS:
114  C     == Routine arguments ==  C     == Routine arguments ==
115    C     myTime - Current time in simulation
116    C     myIter - Current iteration number in simulation
117  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
118          _RL myTime
119          INTEGER myIter
120        INTEGER myThid        INTEGER myThid
121    
122    C     !LOCAL VARIABLES:
123  C     == Local variables  C     == Local variables
124  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[STUV]               o fVer: Vertical flux term - note fVer
 C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  
 C                              o uTrans: Zonal transport  
 C                              o vTrans: Meridional transport  
 C                              o wTrans: Vertical transport  
 C     maskC,maskUp             o maskC: land/water mask for tracer cells  
 C                              o maskUp: land/water mask for W points  
 C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  
 C     mTerm, pTerm,            tendency equations.  
 C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  
 C                              o xTerm: Mixing term  
 C                              o cTerm: Coriolis term  
 C                              o mTerm: Metric term  
 C                              o pTerm: Pressure term  
 C                              o fZon: Zonal flux term  
 C                              o fMer: Meridional flux term  
 C                              o fVer: Vertical flux term - note fVer  
125  C                                      is "pipelined" in the vertical  C                                      is "pipelined" in the vertical
126  C                                      so we need an fVer for each  C                                      so we need an fVer for each
127  C                                      variable.  C                                      variable.
128  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     phiHydC    :: hydrostatic potential anomaly at cell center
129  C     jMin, jMax   are applied.  C                   In z coords phiHyd is the hydrostatic potential
130    C                      (=pressure/rho0) anomaly
131    C                   In p coords phiHyd is the geopotential height anomaly.
132    C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
133    C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
134    C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
135    C     phiSurfY             or geopotential (atmos) in X and Y direction
136    C     iMin, iMax     - Ranges and sub-block indices on which calculations
137    C     jMin, jMax       are applied.
138  C     bi, bj  C     bi, bj
139  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
140  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
141  C                          into fVerTerm  C                      index into fVerTerm.
142        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
143        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
144        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
145        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
146        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
147        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
148        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
149        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
150        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
151        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
152        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
153        INTEGER iMin, iMax        INTEGER iMin, iMax
154        INTEGER jMin, jMax        INTEGER jMin, jMax
155        INTEGER bi, bj        INTEGER bi, bj
156        INTEGER i, j        INTEGER i, j
157        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
158    
159          LOGICAL  DIFFERENT_MULTIPLE
160          EXTERNAL DIFFERENT_MULTIPLE
161    
162    C---    The algorithm...
163    C
164    C       "Correction Step"
165    C       =================
166    C       Here we update the horizontal velocities with the surface
167    C       pressure such that the resulting flow is either consistent
168    C       with the free-surface evolution or the rigid-lid:
169    C         U[n] = U* + dt x d/dx P
170    C         V[n] = V* + dt x d/dy P
171    C
172    C       "Calculation of Gs"
173    C       ===================
174    C       This is where all the accelerations and tendencies (ie.
175    C       physics, parameterizations etc...) are calculated
176    C         rho = rho ( theta[n], salt[n] )
177    C         b   = b(rho, theta)
178    C         K31 = K31 ( rho )
179    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
180    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
181    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
182    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
183    C
184    C       "Time-stepping" or "Prediction"
185    C       ================================
186    C       The models variables are stepped forward with the appropriate
187    C       time-stepping scheme (currently we use Adams-Bashforth II)
188    C       - For momentum, the result is always *only* a "prediction"
189    C       in that the flow may be divergent and will be "corrected"
190    C       later with a surface pressure gradient.
191    C       - Normally for tracers the result is the new field at time
192    C       level [n+1} *BUT* in the case of implicit diffusion the result
193    C       is also *only* a prediction.
194    C       - We denote "predictors" with an asterisk (*).
195    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
196    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
197    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
198    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
199    C       With implicit diffusion:
200    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
201    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
202    C         (1 + dt * K * d_zz) theta[n] = theta*
203    C         (1 + dt * K * d_zz) salt[n] = salt*
204    C---
205    CEOP
206    
207  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
208  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
# Line 99  C     point numbers. This prevents spuri Line 211  C     point numbers. This prevents spuri
211  C     uninitialised but inert locations.  C     uninitialised but inert locations.
212        DO j=1-OLy,sNy+OLy        DO j=1-OLy,sNy+OLy
213         DO i=1-OLx,sNx+OLx         DO i=1-OLx,sNx+OLx
214          xA(i,j)      = 0. _d 0          phiSurfX(i,j) = 0. _d 0
215          yA(i,j)      = 0. _d 0          phiSurfY(i,j) = 0. _d 0
         uTrans(i,j)  = 0. _d 0  
         vTrans(i,j)  = 0. _d 0  
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
216         ENDDO         ENDDO
217        ENDDO        ENDDO
218    
219    C-- Call to routine for calculation of
220    C   Eliassen-Palm-flux-forced U-tendency,
221    C   if desired:
222    #ifdef INCLUDE_EP_FORCING_CODE
223          CALL CALC_EP_FORCING(myThid)
224    #endif
225    
226    #ifdef ALLOW_AUTODIFF_TAMC
227    C--   HPF directive to help TAMC
228    CHPF$ INDEPENDENT
229    #endif /* ALLOW_AUTODIFF_TAMC */
230    
231        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
232    
233    #ifdef ALLOW_AUTODIFF_TAMC
234    C--    HPF directive to help TAMC
235    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
236    CHPF$&                  ,phiHydF
237    CHPF$&                  ,KappaRU,KappaRV
238    CHPF$&                  )
239    #endif /* ALLOW_AUTODIFF_TAMC */
240    
241         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
242    
243  C--     Boundary condition on hydrostatic pressure is pH(z=0)=0  #ifdef ALLOW_AUTODIFF_TAMC
244          DO j=1-OLy,sNy+OLy            act1 = bi - myBxLo(myThid)
245           DO i=1-OLx,sNx+OLx            max1 = myBxHi(myThid) - myBxLo(myThid) + 1
246            pH(i,j,1) = 0. _d 0            act2 = bj - myByLo(myThid)
247            K13(i,j,1) = 0. _d 0            max2 = myByHi(myThid) - myByLo(myThid) + 1
248            K23(i,j,1) = 0. _d 0            act3 = myThid - 1
249            K33(i,j,1) = 0. _d 0            max3 = nTx*nTy
250            KapGM(i,j) = 0. _d 0            act4 = ikey_dynamics - 1
251           ENDDO            idynkey = (act1 + 1) + act2*max1
252          ENDDO       &                      + act3*max1*max2
253         &                      + act4*max1*max2*max3
254    #endif /* ALLOW_AUTODIFF_TAMC */
255    
256  C--     Set up work arrays that need valid initial values  C--     Set up work arrays that need valid initial values
257            DO k=1,Nr
258             DO j=1-OLy,sNy+OLy
259              DO i=1-OLx,sNx+OLx
260               KappaRU(i,j,k) = 0. _d 0
261               KappaRV(i,j,k) = 0. _d 0
262              ENDDO
263             ENDDO
264            ENDDO
265          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
266           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
267            wTrans(i,j)  = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
268            fVerT(i,j,1) = 0. _d 0            fVerU  (i,j,2) = 0. _d 0
269            fVerT(i,j,2) = 0. _d 0            fVerV  (i,j,1) = 0. _d 0
270            fVerS(i,j,1) = 0. _d 0            fVerV  (i,j,2) = 0. _d 0
271            fVerS(i,j,2) = 0. _d 0            phiHydF (i,j)  = 0. _d 0
272            fVerU(i,j,1) = 0. _d 0            phiHydC (i,j)  = 0. _d 0
273            fVerU(i,j,2) = 0. _d 0            dPhiHydX(i,j)  = 0. _d 0
274            fVerV(i,j,1) = 0. _d 0            dPhiHydY(i,j)  = 0. _d 0
           fVerV(i,j,2) = 0. _d 0  
275           ENDDO           ENDDO
276          ENDDO          ENDDO
277    
278          iMin = 1-OLx+1  C--     Start computation of dynamics
279          iMax = sNx+OLx          iMin = 0
280          jMin = 1-OLy+1          iMax = sNx+1
281          jMax = sNy+OLy          jMin = 0
282            jMax = sNy+1
283  C--     Calculate gradient of surface pressure  
284          CALL GRAD_PSURF(  #ifdef ALLOW_AUTODIFF_TAMC
285       I       bi,bj,iMin,iMax,jMin,jMax,  CADJ STORE wvel (:,:,:,bi,bj) =
286       O       pSurfX,pSurfY,  CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
287       I       myThid)  #endif /* ALLOW_AUTODIFF_TAMC */
288    
289  C--     Update fields in top level according to tendency terms  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
290          CALL TIMESTEP(  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
291       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)          IF (implicSurfPress.NE.1.) THEN
292              CALL CALC_GRAD_PHI_SURF(
293  C--     Density of 1st level (below W(1)) reference to level 1       I         bi,bj,iMin,iMax,jMin,jMax,
294          CALL FIND_RHO(       I         etaN,
295       I     bi, bj, iMin, iMax, jMin, jMax, 1, 1, 'LINEAR',       O         phiSurfX,phiSurfY,
296       O     rhoKm1,       I         myThid )                        
297       I     myThid )          ENDIF
298  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
299          CALL CALC_PH(  #ifdef ALLOW_AUTODIFF_TAMC
300       I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
301       U      pH,  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
302       I      myThid )  #ifdef ALLOW_KPP
303    CADJ STORE KPPviscAz (:,:,:,bi,bj)
304          DO K=2,Nz  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
305  C--     Update fields in Kth level according to tendency terms  #endif /* ALLOW_KPP */
306          CALL TIMESTEP(  #endif /* ALLOW_AUTODIFF_TAMC */
307       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)  
308  C--     Density of K-1 level (above W(K)) reference to K level  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
309          CALL FIND_RHO(  C--      Calculate the total vertical diffusivity
310       I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',          DO k=1,Nr
311       O     rhoKm1,           CALL CALC_VISCOSITY(
312       I     myThid )       I        bi,bj,iMin,iMax,jMin,jMax,k,
313  C--     Density of K level (below W(K)) reference to K level       O        KappaRU,KappaRV,
314          CALL FIND_RHO(       I        myThid)
315       I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',         ENDDO
316       O     rhoKp1,  #endif
      I     myThid )  
 C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  
         CALL CALC_ISOSLOPES(  
      I            bi, bj, iMin, iMax, jMin, jMax, K,  
      I            rhoKm1, rhoKp1,  
      O            K13, K23, K33, KapGM,  
      I            myThid )  
 C--     Calculate static stability and mix where convectively unstable  
         CALL CONVECT(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,myThid)  
 C--     Density of K-1 level (above W(K)) reference to K-1 level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',  
      O     rhoKm1,  
      I     myThid )  
 C--     Density of K level (below W(K)) referenced to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O     rhoKp1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      U      pH,  
      I      myThid )  
317    
318          ENDDO  C--     Start of dynamics loop
319            DO k=1,Nr
320    
321          DO K = Nz, 1, -1  C--       km1    Points to level above k (=k-1)
322           kM1  =max(1,k-1)   ! Points to level above k (=k-1)  C--       kup    Cycles through 1,2 to point to layer above
323           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  C--       kDown  Cycles through 2,1 to point to current layer
324           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
325           iMin = 1-OLx+2            km1  = MAX(1,k-1)
326           iMax = sNx+OLx-1            kp1  = MIN(k+1,Nr)
327           jMin = 1-OLy+2            kup  = 1+MOD(k+1,2)
328           jMax = sNy+OLy-1            kDown= 1+MOD(k,2)
329    
330  C--      Get temporary terms used by tendency routines  #ifdef ALLOW_AUTODIFF_TAMC
331           CALL CALC_COMMON_FACTORS (           kkey = (idynkey-1)*Nr + k
332       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ STORE totphihyd (:,:,k,bi,bj)
333       O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
334       I        myThid)  #endif /* ALLOW_AUTODIFF_TAMC */
335    
336    C--      Integrate hydrostatic balance for phiHyd with BC of
337    C        phiHyd(z=0)=0
338    C        distinguishe between Stagger and Non Stagger time stepping
339             IF (staggerTimeStep) THEN
340               CALL CALC_PHI_HYD(
341         I        bi,bj,iMin,iMax,jMin,jMax,k,
342         I        gT, gS,
343         U        phiHydF,
344         O        phiHydC, dPhiHydX, dPhiHydY,
345         I        myTime, myIter, myThid )
346             ELSE
347               CALL CALC_PHI_HYD(
348         I        bi,bj,iMin,iMax,jMin,jMax,k,
349         I        theta, salt,
350         U        phiHydF,
351         O        phiHydC, dPhiHydX, dPhiHydY,
352         I        myTime, myIter, myThid )
353             ENDIF
354    
355    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
356    C        and step forward storing the result in gU, gV, etc...
357             IF ( momStepping ) THEN
358    #ifndef DISABLE_MOM_FLUXFORM
359               IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
360         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
361         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
362         U         fVerU, fVerV,
363         I         myTime, myIter, myThid)
364    #endif
365    #ifndef DISABLE_MOM_VECINV
366               IF (vectorInvariantMomentum) CALL MOM_VECINV(
367         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
368         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
369         U         fVerU, fVerV,
370         I         myTime, myIter, myThid)
371    #endif
372               CALL TIMESTEP(
373         I         bi,bj,iMin,iMax,jMin,jMax,k,
374         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
375         I         myTime, myIter, myThid)
376    
377    #ifdef   ALLOW_OBCS
378    C--      Apply open boundary conditions
379               IF (useOBCS) THEN
380                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
381               ENDIF
382    #endif   /* ALLOW_OBCS */
383    
384  C--      Calculate accelerations in the momentum equations           ENDIF
          CALL CALC_MOM_RHS(  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskC,  
      I        pH,  
      U        aTerm,xTerm,cTerm,mTerm,pTerm,  
      U        fZon, fMer, fVerU, fVerV,  
      I        myThid)  
385    
 C--      Calculate active tracer tendencies  
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      I        K13,K23,K33,KapGM,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg I        K13,K23,K33,KapGM,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
386    
387    C--     end of dynamics k loop (1:Nr)
388          ENDDO          ENDDO
389    
390    C--     Implicit viscosity
391            IF (implicitViscosity.AND.momStepping) THEN
392    #ifdef    ALLOW_AUTODIFF_TAMC
393    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
394    #endif    /* ALLOW_AUTODIFF_TAMC */
395              CALL IMPLDIFF(
396         I         bi, bj, iMin, iMax, jMin, jMax,
397         I         deltaTmom, KappaRU,recip_HFacW,
398         U         gU,
399         I         myThid )
400    #ifdef    ALLOW_AUTODIFF_TAMC
401    CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
402    #endif    /* ALLOW_AUTODIFF_TAMC */
403              CALL IMPLDIFF(
404         I         bi, bj, iMin, iMax, jMin, jMax,
405         I         deltaTmom, KappaRV,recip_HFacS,
406         U         gV,
407         I         myThid )
408    
409    #ifdef   ALLOW_OBCS
410    C--      Apply open boundary conditions
411             IF (useOBCS) THEN
412               DO K=1,Nr
413                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
414               ENDDO
415             END IF
416    #endif   /* ALLOW_OBCS */
417    
418    #ifdef    INCLUDE_CD_CODE
419    #ifdef    ALLOW_AUTODIFF_TAMC
420    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
421    #endif    /* ALLOW_AUTODIFF_TAMC */
422              CALL IMPLDIFF(
423         I         bi, bj, iMin, iMax, jMin, jMax,
424         I         deltaTmom, KappaRU,recip_HFacW,
425         U         vVelD,
426         I         myThid )
427    #ifdef    ALLOW_AUTODIFF_TAMC
428    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
429    #endif    /* ALLOW_AUTODIFF_TAMC */
430              CALL IMPLDIFF(
431         I         bi, bj, iMin, iMax, jMin, jMax,
432         I         deltaTmom, KappaRV,recip_HFacS,
433         U         uVelD,
434         I         myThid )
435    #endif    /* INCLUDE_CD_CODE */
436    C--     End If implicitViscosity.AND.momStepping
437            ENDIF
438    
439         ENDDO         ENDDO
440        ENDDO        ENDDO
441    
442  !dbg  write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x)  Cml(
443  !dbg  write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)),  C     In order to compare the variance of phiHydLow of a p/z-coordinate
444  !dbg &                         maxval(uVel(1:sNx,1:sNy,:,:,:))  C     run with etaH of a z/p-coordinate run the drift of phiHydLow
445  !dbg  write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)),  C     has to be removed by something like the following subroutine:
446  !dbg &                         maxval(vVel(1:sNx,1:sNy,:,:,:))  C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
447  !dbg  write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)),  C     &                'phiHydLow', myThid )
448  !dbg &                         maxval(gT(1:sNx,1:sNy,:,:,:))  Cml)
449  !dbg  write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)),  
450  !dbg &                         maxval(Theta(1:sNx,1:sNy,:,:,:))  #ifndef DISABLE_DEBUGMODE
451  !dbg  write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)),        If (debugMode) THEN
452  !dbg &                          maxval(pH/(Gravity*Rhonil))         CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
453           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
454           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
455           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
456           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
457           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
458           CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
459           CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
460           CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
461           CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
462           CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
463           CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
464           CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
465           CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
466          ENDIF
467    #endif
468    
469        RETURN        RETURN
470        END        END

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.96

  ViewVC Help
Powered by ViewVC 1.1.22