/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by cnh, Mon May 25 20:05:55 1998 UTC revision 1.134 by heimbach, Wed Jun 7 01:55:12 2006 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6    #ifdef ALLOW_OBCS
7    # include "OBCS_OPTIONS.h"
8    #endif
9    
10    #undef DYNAMICS_GUGV_EXCH_CHECK
11    
12    CBOP
13    C     !ROUTINE: DYNAMICS
14    C     !INTERFACE:
15        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16  C     /==========================================================\  C     !DESCRIPTION: \bv
17  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
18  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS                                      
19  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model  
20  C     |==========================================================|  C     |   dynamics.                                              
21  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
22  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each      
23  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have  
24  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.      
25  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this  
26  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference  
27  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region    
28  C     | Notes                                                    |  C     | require special consideration.                            
29  C     | =====                                                    |  C     | The algorithm...
30  C     | C*P* comments indicating place holders for which code is |  C     |
31  C     |      presently being developed.                          |  C     | "Correction Step"
32  C     \==========================================================/  C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76          IMPLICIT NONE
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
80  #include "PARAMS.h"  #include "PARAMS.h"
81  #include "DYNVARS.h"  #include "DYNVARS.h"
82    #ifdef ALLOW_CD_CODE
83    #include "CD_CODE_VARS.h"
84    #endif
85    #include "GRID.h"
86    #ifdef ALLOW_AUTODIFF_TAMC
87    # include "tamc.h"
88    # include "tamc_keys.h"
89    # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #  include "OBCS.h"
100    #  ifdef ALLOW_PTRACERS
101    #   include "OBCS_PTRACERS.h"
102    #  endif
103    # endif
104    # ifdef ALLOW_MOM_FLUXFORM
105    #  include "MOM_FLUXFORM.h"
106    # endif
107    #endif /* ALLOW_AUTODIFF_TAMC */
108    
109    C     !CALLING SEQUENCE:
110    C     DYNAMICS()
111    C      |
112    C      |-- CALC_EP_FORCING
113    C      |
114    C      |-- CALC_GRAD_PHI_SURF
115    C      |
116    C      |-- CALC_VISCOSITY
117    C      |
118    C      |-- CALC_PHI_HYD  
119    C      |
120    C      |-- MOM_FLUXFORM  
121    C      |
122    C      |-- MOM_VECINV    
123    C      |
124    C      |-- TIMESTEP      
125    C      |
126    C      |-- OBCS_APPLY_UV
127    C      |
128    C      |-- MOM_U_IMPLICIT_R      
129    C      |-- MOM_V_IMPLICIT_R      
130    C      |
131    C      |-- IMPLDIFF      
132    C      |
133    C      |-- OBCS_APPLY_UV
134    C      |
135    C      |-- CALC_GW
136    C      |
137    C      |-- DIAGNOSTICS_FILL
138    C      |-- DEBUG_STATS_RL
139    
140    C     !INPUT/OUTPUT PARAMETERS:
141  C     == Routine arguments ==  C     == Routine arguments ==
142  C     myTime - Current time in simulation  C     myTime - Current time in simulation
143  C     myIter - Current iteration number in simulation  C     myIter - Current iteration number in simulation
144  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
       INTEGER myThid  
145        _RL myTime        _RL myTime
146        INTEGER myIter        INTEGER myIter
147          INTEGER myThid
148    
149    C     !LOCAL VARIABLES:
150  C     == Local variables  C     == Local variables
151  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
152  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
153  C                              o uTrans: Zonal transport  C                                    so we need an fVer for each
154  C                              o vTrans: Meridional transport  C                                    variable.
155  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
156  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In z coords phiHyd is the hydrostatic potential
157  C                              o maskUp: land/water mask for W points  C                      (=pressure/rho0) anomaly
158  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C                   In p coords phiHyd is the geopotential height anomaly.
159  C     mTerm, pTerm,            tendency equations.  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
160  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
161  C                              o xTerm: Mixing term  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
162  C                              o cTerm: Coriolis term  C     phiSurfY             or geopotential (atmos) in X and Y direction
163  C                              o mTerm: Metric term  C     guDissip   :: dissipation tendency (all explicit terms), u component
164  C                              o pTerm: Pressure term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
165  C                              o fZon: Zonal flux term  C     iMin, iMax     - Ranges and sub-block indices on which calculations
166  C                              o fMer: Meridional flux term  C     jMin, jMax       are applied.
 C                              o fVer: Vertical flux term - note fVer  
 C                                      is "pipelined" in the vertical  
 C                                      so we need an fVer for each  
 C                                      variable.  
 C     iMin, iMax - Ranges and sub-block indices on which calculations  
 C     jMin, jMax   are applied.  
167  C     bi, bj  C     bi, bj
168  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
169  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
170  C                          into fVerTerm  C                      index into fVerTerm.
171        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
172        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
173        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
174        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
175        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
176        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
177        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
178        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
179        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
180        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
181        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
182        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
183        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
184        INTEGER iMin, iMax        INTEGER iMin, iMax
185        INTEGER jMin, jMax        INTEGER jMin, jMax
186        INTEGER bi, bj        INTEGER bi, bj
187        INTEGER i, j        INTEGER i, j
188        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
189    
190    #ifdef ALLOW_DIAGNOSTICS
191          _RL tmpFac
192    #endif /* ALLOW_DIAGNOSTICS */
193    
194    
195    C---    The algorithm...
196    C
197    C       "Correction Step"
198    C       =================
199    C       Here we update the horizontal velocities with the surface
200    C       pressure such that the resulting flow is either consistent
201    C       with the free-surface evolution or the rigid-lid:
202    C         U[n] = U* + dt x d/dx P
203    C         V[n] = V* + dt x d/dy P
204    C
205    C       "Calculation of Gs"
206    C       ===================
207    C       This is where all the accelerations and tendencies (ie.
208    C       physics, parameterizations etc...) are calculated
209    C         rho = rho ( theta[n], salt[n] )
210    C         b   = b(rho, theta)
211    C         K31 = K31 ( rho )
212    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
213    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
214    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
215    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
216    C
217    C       "Time-stepping" or "Prediction"
218    C       ================================
219    C       The models variables are stepped forward with the appropriate
220    C       time-stepping scheme (currently we use Adams-Bashforth II)
221    C       - For momentum, the result is always *only* a "prediction"
222    C       in that the flow may be divergent and will be "corrected"
223    C       later with a surface pressure gradient.
224    C       - Normally for tracers the result is the new field at time
225    C       level [n+1} *BUT* in the case of implicit diffusion the result
226    C       is also *only* a prediction.
227    C       - We denote "predictors" with an asterisk (*).
228    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
229    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
230    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
231    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
232    C       With implicit diffusion:
233    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
234    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
235    C         (1 + dt * K * d_zz) theta[n] = theta*
236    C         (1 + dt * K * d_zz) salt[n] = salt*
237    C---
238    CEOP
239    
240    #ifdef ALLOW_DEBUG
241          IF ( debugLevel .GE. debLevB )
242         &   CALL DEBUG_ENTER( 'DYNAMICS', myThid )
243    #endif
244    
245    C-- Call to routine for calculation of
246    C   Eliassen-Palm-flux-forced U-tendency,
247    C   if desired:
248    #ifdef INCLUDE_EP_FORCING_CODE
249          CALL CALC_EP_FORCING(myThid)
250    #endif
251    
252    #ifdef ALLOW_AUTODIFF_TAMC
253    C--   HPF directive to help TAMC
254    CHPF$ INDEPENDENT
255    #endif /* ALLOW_AUTODIFF_TAMC */
256    
257          DO bj=myByLo(myThid),myByHi(myThid)
258    
259    #ifdef ALLOW_AUTODIFF_TAMC
260    C--    HPF directive to help TAMC
261    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
262    CHPF$&                  ,phiHydF
263    CHPF$&                  ,KappaRU,KappaRV
264    CHPF$&                  )
265    #endif /* ALLOW_AUTODIFF_TAMC */
266    
267           DO bi=myBxLo(myThid),myBxHi(myThid)
268    
269    #ifdef ALLOW_AUTODIFF_TAMC
270              act1 = bi - myBxLo(myThid)
271              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
272              act2 = bj - myByLo(myThid)
273              max2 = myByHi(myThid) - myByLo(myThid) + 1
274              act3 = myThid - 1
275              max3 = nTx*nTy
276              act4 = ikey_dynamics - 1
277              idynkey = (act1 + 1) + act2*max1
278         &                      + act3*max1*max2
279         &                      + act4*max1*max2*max3
280    #endif /* ALLOW_AUTODIFF_TAMC */
281    
282  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
283  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
284  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
285  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
286  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0. _d 0  
         yA(i,j)      = 0. _d 0  
         uTrans(i,j)  = 0. _d 0  
         vTrans(i,j)  = 0. _d 0  
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
        ENDDO  
       ENDDO  
   
       DO bj=myByLo(myThid),myByHi(myThid)  
        DO bi=myBxLo(myThid),myBxHi(myThid)  
287    
288  C--     Boundary condition on hydrostatic pressure is pH(z=0)=0          DO k=1,Nr
289          DO j=1-OLy,sNy+OLy           DO j=1-OLy,sNy+OLy
290           DO i=1-OLx,sNx+OLx            DO i=1-OLx,sNx+OLx
291            pH(i,j,1) = 0. _d 0             KappaRU(i,j,k) = 0. _d 0
292            K13(i,j,1) = 0. _d 0             KappaRV(i,j,k) = 0. _d 0
293            K23(i,j,1) = 0. _d 0  #ifdef ALLOW_AUTODIFF_TAMC
294            K33(i,j,1) = 0. _d 0  cph(
295            KapGM(i,j) = 0. _d 0  c--   need some re-initialisation here to break dependencies
296    cph)
297               gU(i,j,k,bi,bj) = 0. _d 0
298               gV(i,j,k,bi,bj) = 0. _d 0
299    #endif
300              ENDDO
301           ENDDO           ENDDO
302          ENDDO          ENDDO
   
 C--     Set up work arrays that need valid initial values  
303          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
304           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
305            wTrans(i,j)  = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
306            fVerT(i,j,1) = 0. _d 0            fVerU  (i,j,2) = 0. _d 0
307            fVerT(i,j,2) = 0. _d 0            fVerV  (i,j,1) = 0. _d 0
308            fVerS(i,j,1) = 0. _d 0            fVerV  (i,j,2) = 0. _d 0
309            fVerS(i,j,2) = 0. _d 0            phiHydF (i,j)  = 0. _d 0
310            fVerU(i,j,1) = 0. _d 0            phiHydC (i,j)  = 0. _d 0
311            fVerU(i,j,2) = 0. _d 0            dPhiHydX(i,j)  = 0. _d 0
312            fVerV(i,j,1) = 0. _d 0            dPhiHydY(i,j)  = 0. _d 0
313            fVerV(i,j,2) = 0. _d 0            phiSurfX(i,j)  = 0. _d 0
314              phiSurfY(i,j)  = 0. _d 0
315              guDissip(i,j)  = 0. _d 0
316              gvDissip(i,j)  = 0. _d 0
317    #ifdef ALLOW_AUTODIFF_TAMC
318    cph(
319    c--   need some re-initialisation here to break dependencies
320    cph)
321    # ifdef NONLIN_FRSURF
322    #  ifndef DISABLE_RSTAR_CODE
323              dWtransC(i,j,bi,bj)  = 0. _d 0
324              dWtransU(i,j,bi,bj)  = 0. _d 0
325              dWtransV(i,j,bi,bj)  = 0. _d 0
326    #  endif
327    # endif /* NONLIN_FRSURF */
328    #endif /* ALLOW_AUTODIFF_TAMC */
329           ENDDO           ENDDO
330          ENDDO          ENDDO
331    
332          iMin = 1-OLx+1  C--     Start computation of dynamics
333          iMax = sNx+OLx          iMin = 0
334          jMin = 1-OLy+1          iMax = sNx+1
335          jMax = sNy+OLy          jMin = 0
336            jMax = sNy+1
337  C--     Calculate gradient of surface pressure  
338          CALL GRAD_PSURF(  #ifdef ALLOW_AUTODIFF_TAMC
339       I       bi,bj,iMin,iMax,jMin,jMax,  CADJ STORE wvel (:,:,:,bi,bj) =
340       O       pSurfX,pSurfY,  CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
341       I       myThid)  #endif /* ALLOW_AUTODIFF_TAMC */
342    
343  C--     Update fields in top level according to tendency terms  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
344          CALL TIMESTEP(  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
345       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)          IF (implicSurfPress.NE.1.) THEN
346              CALL CALC_GRAD_PHI_SURF(
347  C--     Density of 1st level (below W(1)) reference to level 1       I         bi,bj,iMin,iMax,jMin,jMax,
348          CALL FIND_RHO(       I         etaN,
349       I     bi, bj, iMin, iMax, jMin, jMax, 1, 1, 'LINEAR',       O         phiSurfX,phiSurfY,
350       O     rhoKm1,       I         myThid )                        
351       I     myThid )          ENDIF
352  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
353          CALL CALC_PH(  #ifdef ALLOW_AUTODIFF_TAMC
354       I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
355       U      pH,  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
356       I      myThid )  #ifdef ALLOW_KPP
357    CADJ STORE KPPviscAz (:,:,:,bi,bj)
358          DO K=2,Nz  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
359  C--     Update fields in Kth level according to tendency terms  #endif /* ALLOW_KPP */
360          CALL TIMESTEP(  #endif /* ALLOW_AUTODIFF_TAMC */
361       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)  
362  C--     Density of K-1 level (above W(K)) reference to K level  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
363          CALL FIND_RHO(  C--      Calculate the total vertical diffusivity
364       I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',          DO k=1,Nr
365       O     rhoKm1,           CALL CALC_VISCOSITY(
366       I     myThid )       I        bi,bj,iMin,iMax,jMin,jMax,k,
367  C--     Density of K level (below W(K)) reference to K level       O        KappaRU,KappaRV,
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O     rhoKp1,  
      I     myThid )  
 C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  
         CALL CALC_ISOSLOPES(  
      I            bi, bj, iMin, iMax, jMin, jMax, K,  
      I            rhoKm1, rhoKp1,  
      O            K13, K23, K33, KapGM,  
      I            myThid )  
 C--     Calculate static stability and mix where convectively unstable  
         CALL CONVECT(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      I      myTime,myIter,myThid)  
 C--     Density of K-1 level (above W(K)) reference to K-1 level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',  
      O     rhoKm1,  
      I     myThid )  
 C--     Density of K level (below W(K)) referenced to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O     rhoKp1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      U      pH,  
      I      myThid )  
   
         ENDDO  
   
         DO K = Nz, 1, -1  
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
368       I        myThid)       I        myThid)
369           ENDDO
370    #endif
371    
372  C--      Calculate accelerations in the momentum equations  #ifdef ALLOW_AUTODIFF_TAMC
373           CALL CALC_MOM_RHS(  CADJ STORE KappaRU(:,:,:)
374       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
375       I        xA,yA,uTrans,vTrans,wTrans,maskC,  CADJ STORE KappaRV(:,:,:)
376       I        pH,  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
377       U        aTerm,xTerm,cTerm,mTerm,pTerm,  #endif /* ALLOW_AUTODIFF_TAMC */
378       U        fZon, fMer, fVerU, fVerV,  
379       I        myThid)  C--     Start of dynamics loop
380            DO k=1,Nr
381    
382    C--       km1    Points to level above k (=k-1)
383    C--       kup    Cycles through 1,2 to point to layer above
384    C--       kDown  Cycles through 2,1 to point to current layer
385    
386              km1  = MAX(1,k-1)
387              kp1  = MIN(k+1,Nr)
388              kup  = 1+MOD(k+1,2)
389              kDown= 1+MOD(k,2)
390    
391    #ifdef ALLOW_AUTODIFF_TAMC
392             kkey = (idynkey-1)*Nr + k
393    c
394    CADJ STORE totphihyd (:,:,k,bi,bj)
395    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
396    CADJ STORE theta (:,:,k,bi,bj)
397    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
398    CADJ STORE salt  (:,:,k,bi,bj)
399    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
400    CADJ STORE gt(:,:,k,bi,bj)
401    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
402    CADJ STORE gs(:,:,k,bi,bj)
403    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
404    # ifdef NONLIN_FRSURF
405    cph-test
406    CADJ STORE  phiHydC (:,:)
407    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
408    CADJ STORE  phiHydF (:,:)
409    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
410    CADJ STORE  gudissip (:,:)
411    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
412    CADJ STORE  gvdissip (:,:)
413    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
414    CADJ STORE  fVerU (:,:,:)
415    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
416    CADJ STORE  fVerV (:,:,:)
417    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
418    CADJ STORE gu(:,:,k,bi,bj)
419    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
420    CADJ STORE gv(:,:,k,bi,bj)
421    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
422    CADJ STORE gunm1(:,:,k,bi,bj)
423    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
424    CADJ STORE gvnm1(:,:,k,bi,bj)
425    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
426    #  ifndef DISABLE_RSTAR_CODE
427    CADJ STORE dwtransc(:,:,bi,bj)
428    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
429    CADJ STORE dwtransu(:,:,bi,bj)
430    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
431    CADJ STORE dwtransv(:,:,bi,bj)
432    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
433    #  endif
434    #  ifdef ALLOW_CD_CODE
435    CADJ STORE unm1(:,:,k,bi,bj)
436    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
437    CADJ STORE vnm1(:,:,k,bi,bj)
438    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
439    CADJ STORE uVelD(:,:,k,bi,bj)
440    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
441    CADJ STORE vVelD(:,:,k,bi,bj)
442    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
443    #  endif
444    # endif
445    # ifdef ALLOW_DEPTH_CONTROL
446    CADJ STORE  fVerU (:,:,:)
447    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
448    CADJ STORE  fVerV (:,:,:)
449    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
450    # endif
451    #endif /* ALLOW_AUTODIFF_TAMC */
452    
453    C--      Integrate hydrostatic balance for phiHyd with BC of
454    C        phiHyd(z=0)=0
455             IF ( implicitIntGravWave ) THEN
456               CALL CALC_PHI_HYD(
457         I        bi,bj,iMin,iMax,jMin,jMax,k,
458         I        gT, gS,
459         U        phiHydF,
460         O        phiHydC, dPhiHydX, dPhiHydY,
461         I        myTime, myIter, myThid )
462             ELSE
463               CALL CALC_PHI_HYD(
464         I        bi,bj,iMin,iMax,jMin,jMax,k,
465         I        theta, salt,
466         U        phiHydF,
467         O        phiHydC, dPhiHydX, dPhiHydY,
468         I        myTime, myIter, myThid )
469             ENDIF
470    
471    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
472    C        and step forward storing the result in gU, gV, etc...
473             IF ( momStepping ) THEN
474               IF (.NOT. vectorInvariantMomentum) THEN
475    #ifdef ALLOW_MOM_FLUXFORM
476    C
477    # ifdef ALLOW_AUTODIFF_TAMC
478    #  ifdef NONLIN_FRSURF
479    #   ifndef DISABLE_RSTAR_CODE
480    CADJ STORE dwtransc(:,:,bi,bj)
481    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
482    CADJ STORE dwtransu(:,:,bi,bj)
483    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
484    CADJ STORE dwtransv(:,:,bi,bj)
485    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
486    #   endif
487    #  endif
488    # endif /* ALLOW_AUTODIFF_TAMC */
489    C
490                  CALL MOM_FLUXFORM(
491         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
492         I         KappaRU, KappaRV,
493         U         fVerU, fVerV,
494         O         guDissip, gvDissip,
495         I         myTime, myIter, myThid)
496    #endif
497               ELSE
498    #ifdef ALLOW_MOM_VECINV
499    C
500    # ifdef ALLOW_AUTODIFF_TAMC
501    #  ifdef NONLIN_FRSURF
502    CADJ STORE fVerU(:,:,:)
503    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
504    CADJ STORE fVerV(:,:,:)
505    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
506    #  endif
507    # endif /* ALLOW_AUTODIFF_TAMC */
508    C
509                 CALL MOM_VECINV(
510         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
511         I         KappaRU, KappaRV,
512         U         fVerU, fVerV,
513         O         guDissip, gvDissip,
514         I         myTime, myIter, myThid)
515    #endif
516               ENDIF
517    C
518               CALL TIMESTEP(
519         I         bi,bj,iMin,iMax,jMin,jMax,k,
520         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
521         I         guDissip, gvDissip,
522         I         myTime, myIter, myThid)
523    
524    #ifdef   ALLOW_OBCS
525    C--      Apply open boundary conditions
526               IF (useOBCS) THEN
527                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
528               ENDIF
529    #endif   /* ALLOW_OBCS */
530    
531             ENDIF
532    
 C--      Calculate active tracer tendencies  
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      I        K13,K23,K33,KapGM,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg I        K13,K23,K33,KapGM,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
533    
534    C--     end of dynamics k loop (1:Nr)
535          ENDDO          ENDDO
536    
537    C--     Implicit Vertical advection & viscosity
538    #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON))
539            IF ( momImplVertAdv ) THEN
540              CALL MOM_U_IMPLICIT_R( kappaRU,
541         I                           bi, bj, myTime, myIter, myThid )
542              CALL MOM_V_IMPLICIT_R( kappaRV,
543         I                           bi, bj, myTime, myIter, myThid )
544            ELSEIF ( implicitViscosity ) THEN
545    #else /* INCLUDE_IMPLVERTADV_CODE */
546            IF     ( implicitViscosity ) THEN
547    #endif /* INCLUDE_IMPLVERTADV_CODE */
548    #ifdef    ALLOW_AUTODIFF_TAMC
549    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
550    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
551    #endif    /* ALLOW_AUTODIFF_TAMC */
552              CALL IMPLDIFF(
553         I         bi, bj, iMin, iMax, jMin, jMax,
554         I         -1, KappaRU,recip_HFacW,
555         U         gU,
556         I         myThid )
557    #ifdef    ALLOW_AUTODIFF_TAMC
558    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
559    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
560    #endif    /* ALLOW_AUTODIFF_TAMC */
561              CALL IMPLDIFF(
562         I         bi, bj, iMin, iMax, jMin, jMax,
563         I         -2, KappaRV,recip_HFacS,
564         U         gV,
565         I         myThid )
566            ENDIF
567    
568    #ifdef   ALLOW_OBCS
569    C--      Apply open boundary conditions
570            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
571               DO K=1,Nr
572                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
573               ENDDO
574            ENDIF
575    #endif   /* ALLOW_OBCS */
576    
577    #ifdef    ALLOW_CD_CODE
578            IF (implicitViscosity.AND.useCDscheme) THEN
579    #ifdef    ALLOW_AUTODIFF_TAMC
580    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
581    #endif    /* ALLOW_AUTODIFF_TAMC */
582              CALL IMPLDIFF(
583         I         bi, bj, iMin, iMax, jMin, jMax,
584         I         0, KappaRU,recip_HFacW,
585         U         vVelD,
586         I         myThid )
587    #ifdef    ALLOW_AUTODIFF_TAMC
588    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
589    #endif    /* ALLOW_AUTODIFF_TAMC */
590              CALL IMPLDIFF(
591         I         bi, bj, iMin, iMax, jMin, jMax,
592         I         0, KappaRV,recip_HFacS,
593         U         uVelD,
594         I         myThid )
595            ENDIF
596    #endif    /* ALLOW_CD_CODE */
597    C--     End implicit Vertical advection & viscosity
598    
599         ENDDO         ENDDO
600        ENDDO        ENDDO
601    
602  !dbg  write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x)  #ifdef ALLOW_OBCS
603  !dbg  write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)),        IF (useOBCS) THEN
604  !dbg &                         maxval(uVel(1:sNx,1:sNy,:,:,:))         CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
605  !dbg  write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)),        ENDIF
606  !dbg &                         maxval(vVel(1:sNx,1:sNy,:,:,:))  #endif
607  !dbg  write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)),  
608  !dbg &                         maxval(gT(1:sNx,1:sNy,:,:,:))  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
609  !dbg  write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)),  
610  !dbg &                         maxval(Theta(1:sNx,1:sNy,:,:,:))  #ifdef ALLOW_NONHYDROSTATIC
611  !dbg  write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)),  C--   Step forward W field in N-H algorithm
612  !dbg &                          maxval(pH/(Gravity*Rhonil))        IF ( nonHydrostatic ) THEN
613    #ifdef ALLOW_DEBUG
614             IF ( debugLevel .GE. debLevB )
615         &     CALL DEBUG_CALL('CALC_GW', myThid )
616    #endif
617             CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
618             CALL CALC_GW( myTime, myIter, myThid )
619          ENDIF
620          IF ( nonHydrostatic.OR.implicitIntGravWave )
621         &   CALL TIMESTEP_WVEL( myTime, myIter, myThid )
622          IF ( nonHydrostatic )
623         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
624    #endif
625    
626    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
627    
628    Cml(
629    C     In order to compare the variance of phiHydLow of a p/z-coordinate
630    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
631    C     has to be removed by something like the following subroutine:
632    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
633    C     &                'phiHydLow', myThid )
634    Cml)
635    
636    #ifdef ALLOW_DIAGNOSTICS
637          IF ( useDiagnostics ) THEN
638    
639           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
640           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
641    
642           tmpFac = 1. _d 0
643           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
644         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
645    
646           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
647         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
648    
649          ENDIF
650    #endif /* ALLOW_DIAGNOSTICS */
651          
652    #ifdef ALLOW_DEBUG
653          If ( debugLevel .GE. debLevB ) THEN
654           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
655           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
656           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
657           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
658           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
659           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
660           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
661           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
662           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
663           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
664    #ifndef ALLOW_ADAMSBASHFORTH_3
665           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
666           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
667           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
668           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
669    #endif
670          ENDIF
671    #endif
672    
673    #ifdef DYNAMICS_GUGV_EXCH_CHECK
674    C- jmc: For safety checking only: This Exchange here should not change
675    C       the solution. If solution changes, it means something is wrong,
676    C       but it does not mean that it is less wrong with this exchange.
677          IF ( debugLevel .GT. debLevB ) THEN
678           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
679          ENDIF
680    #endif
681    
682    #ifdef ALLOW_DEBUG
683          IF ( debugLevel .GE. debLevB )
684         &   CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
685    #endif
686    
687        RETURN        RETURN
688        END        END

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.134

  ViewVC Help
Powered by ViewVC 1.1.22