/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.16 by cnh, Tue Jun 9 16:34:03 1998 UTC revision 1.132 by heimbach, Wed May 3 23:34:41 2006 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6    #ifdef ALLOW_OBCS
7    # include "OBCS_OPTIONS.h"
8    #endif
9    
10    #undef DYNAMICS_GUGV_EXCH_CHECK
11    
12    CBOP
13    C     !ROUTINE: DYNAMICS
14    C     !INTERFACE:
15        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
16  C     /==========================================================\  C     !DESCRIPTION: \bv
17  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
18  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS                                      
19  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model  
20  C     |==========================================================|  C     |   dynamics.                                              
21  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
22  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each      
23  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have  
24  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.      
25  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this  
26  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference  
27  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region    
28  C     | Notes                                                    |  C     | require special consideration.                            
29  C     | =====                                                    |  C     | The algorithm...
30  C     | C*P* comments indicating place holders for which code is |  C     |
31  C     |      presently being developed.                          |  C     | "Correction Step"
32  C     \==========================================================/  C     | =================
33    C     | Here we update the horizontal velocities with the surface
34    C     | pressure such that the resulting flow is either consistent
35    C     | with the free-surface evolution or the rigid-lid:
36    C     |   U[n] = U* + dt x d/dx P
37    C     |   V[n] = V* + dt x d/dy P
38    C     |   W[n] = W* + dt x d/dz P  (NH mode)
39    C     |
40    C     | "Calculation of Gs"
41    C     | ===================
42    C     | This is where all the accelerations and tendencies (ie.
43    C     | physics, parameterizations etc...) are calculated
44    C     |   rho = rho ( theta[n], salt[n] )
45    C     |   b   = b(rho, theta)
46    C     |   K31 = K31 ( rho )
47    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
48    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
49    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
50    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
51    C     |
52    C     | "Time-stepping" or "Prediction"
53    C     | ================================
54    C     | The models variables are stepped forward with the appropriate
55    C     | time-stepping scheme (currently we use Adams-Bashforth II)
56    C     | - For momentum, the result is always *only* a "prediction"
57    C     | in that the flow may be divergent and will be "corrected"
58    C     | later with a surface pressure gradient.
59    C     | - Normally for tracers the result is the new field at time
60    C     | level [n+1} *BUT* in the case of implicit diffusion the result
61    C     | is also *only* a prediction.
62    C     | - We denote "predictors" with an asterisk (*).
63    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
64    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
65    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
66    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
67    C     | With implicit diffusion:
68    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
70    C     |   (1 + dt * K * d_zz) theta[n] = theta*
71    C     |   (1 + dt * K * d_zz) salt[n] = salt*
72    C     |
73    C     *==========================================================*
74    C     \ev
75    C     !USES:
76          IMPLICIT NONE
77  C     == Global variables ===  C     == Global variables ===
78  #include "SIZE.h"  #include "SIZE.h"
79  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
80  #include "PARAMS.h"  #include "PARAMS.h"
81  #include "DYNVARS.h"  #include "DYNVARS.h"
82    #ifdef ALLOW_CD_CODE
83    #include "CD_CODE_VARS.h"
84    #endif
85    #include "GRID.h"
86    #ifdef ALLOW_AUTODIFF_TAMC
87    # include "tamc.h"
88    # include "tamc_keys.h"
89    # include "FFIELDS.h"
90    # include "EOS.h"
91    # ifdef ALLOW_KPP
92    #  include "KPP.h"
93    # endif
94    # ifdef ALLOW_PTRACERS
95    #  include "PTRACERS_SIZE.h"
96    #  include "PTRACERS.h"
97    # endif
98    # ifdef ALLOW_OBCS
99    #  include "OBCS.h"
100    #  ifdef ALLOW_PTRACERS
101    #   include "OBCS_PTRACERS.h"
102    #  endif
103    # endif
104    # include "MOM_FLUXFORM.h"
105    #endif /* ALLOW_AUTODIFF_TAMC */
106    
107    C     !CALLING SEQUENCE:
108    C     DYNAMICS()
109    C      |
110    C      |-- CALC_EP_FORCING
111    C      |
112    C      |-- CALC_GRAD_PHI_SURF
113    C      |
114    C      |-- CALC_VISCOSITY
115    C      |
116    C      |-- CALC_PHI_HYD  
117    C      |
118    C      |-- MOM_FLUXFORM  
119    C      |
120    C      |-- MOM_VECINV    
121    C      |
122    C      |-- TIMESTEP      
123    C      |
124    C      |-- OBCS_APPLY_UV
125    C      |
126    C      |-- MOM_U_IMPLICIT_R      
127    C      |-- MOM_V_IMPLICIT_R      
128    C      |
129    C      |-- IMPLDIFF      
130    C      |
131    C      |-- OBCS_APPLY_UV
132    C      |
133    C      |-- CALC_GW
134    C      |
135    C      |-- DIAGNOSTICS_FILL
136    C      |-- DEBUG_STATS_RL
137    
138    C     !INPUT/OUTPUT PARAMETERS:
139  C     == Routine arguments ==  C     == Routine arguments ==
140  C     myTime - Current time in simulation  C     myTime - Current time in simulation
141  C     myIter - Current iteration number in simulation  C     myIter - Current iteration number in simulation
142  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
       INTEGER myThid  
143        _RL myTime        _RL myTime
144        INTEGER myIter        INTEGER myIter
145          INTEGER myThid
146    
147    C     !LOCAL VARIABLES:
148  C     == Local variables  C     == Local variables
149  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[UV]               o fVer: Vertical flux term - note fVer
150  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C                                    is "pipelined" in the vertical
151  C     wVel                     o uTrans: Zonal transport  C                                    so we need an fVer for each
152  C                              o vTrans: Meridional transport  C                                    variable.
153  C                              o wTrans: Vertical transport  C     phiHydC    :: hydrostatic potential anomaly at cell center
154  C                              o wVel:   Vertical velocity at upper and lower  C                   In z coords phiHyd is the hydrostatic potential
155  C                                        cell faces.  C                      (=pressure/rho0) anomaly
156  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C                   In p coords phiHyd is the geopotential height anomaly.
157  C                              o maskUp: land/water mask for W points  C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
158  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
159  C     mTerm, pTerm,            tendency equations.  C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
160  C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  C     phiSurfY             or geopotential (atmos) in X and Y direction
161  C                              o xTerm: Mixing term  C     guDissip   :: dissipation tendency (all explicit terms), u component
162  C                              o cTerm: Coriolis term  C     gvDissip   :: dissipation tendency (all explicit terms), v component
163  C                              o mTerm: Metric term  C     iMin, iMax     - Ranges and sub-block indices on which calculations
164  C                              o pTerm: Pressure term  C     jMin, jMax       are applied.
 C                              o fZon: Zonal flux term  
 C                              o fMer: Meridional flux term  
 C                              o fVer: Vertical flux term - note fVer  
 C                                      is "pipelined" in the vertical  
 C                                      so we need an fVer for each  
 C                                      variable.  
 C     iMin, iMax - Ranges and sub-block indices on which calculations  
 C     jMin, jMax   are applied.  
165  C     bi, bj  C     bi, bj
166  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
167  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
168  C                          into fVerTerm  C                      index into fVerTerm.
169        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
170        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
171        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
172        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
173        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
174        _RL wVel  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
175        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
176        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
177        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
178        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
179        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
180        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
       _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)  
181    
182        INTEGER iMin, iMax        INTEGER iMin, iMax
183        INTEGER jMin, jMax        INTEGER jMin, jMax
184        INTEGER bi, bj        INTEGER bi, bj
185        INTEGER i, j        INTEGER i, j
186        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
187    
188    #ifdef ALLOW_DIAGNOSTICS
189          _RL tmpFac
190    #endif /* ALLOW_DIAGNOSTICS */
191    
192    
193  C---    The algorithm...  C---    The algorithm...
194  C  C
195  C       "Correction Step"  C       "Correction Step"
# Line 116  C       "Calculation of Gs" Line 204  C       "Calculation of Gs"
204  C       ===================  C       ===================
205  C       This is where all the accelerations and tendencies (ie.  C       This is where all the accelerations and tendencies (ie.
206  C       physics, parameterizations etc...) are calculated  C       physics, parameterizations etc...) are calculated
 C         w = sum_z ( div. u[n] )  
207  C         rho = rho ( theta[n], salt[n] )  C         rho = rho ( theta[n], salt[n] )
208    C         b   = b(rho, theta)
209  C         K31 = K31 ( rho )  C         K31 = K31 ( rho )
210  C         Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )  C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
211  C         Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )  C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
212  C         Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )  C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
213  C         Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )  C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
214  C  C
215  C       "Time-stepping" or "Prediction"  C       "Time-stepping" or "Prediction"
216  C       ================================  C       ================================
# Line 145  C         salt* = salt[n] + dt x ( 3/2 G Line 233  C         salt* = salt[n] + dt x ( 3/2 G
233  C         (1 + dt * K * d_zz) theta[n] = theta*  C         (1 + dt * K * d_zz) theta[n] = theta*
234  C         (1 + dt * K * d_zz) salt[n] = salt*  C         (1 + dt * K * d_zz) salt[n] = salt*
235  C---  C---
236    CEOP
237    
238  C--   Set up work arrays with valid (i.e. not NaN) values  #ifdef ALLOW_DEBUG
239  C     These inital values do not alter the numerical results. They        IF ( debugLevel .GE. debLevB )
240  C     just ensure that all memory references are to valid floating       &   CALL DEBUG_ENTER( 'DYNAMICS', myThid )
241  C     point numbers. This prevents spurious hardware signals due to  #endif
242  C     uninitialised but inert locations.  
243        DO j=1-OLy,sNy+OLy  C-- Call to routine for calculation of
244         DO i=1-OLx,sNx+OLx  C   Eliassen-Palm-flux-forced U-tendency,
245          xA(i,j)      = 0. _d 0  C   if desired:
246          yA(i,j)      = 0. _d 0  #ifdef INCLUDE_EP_FORCING_CODE
247          uTrans(i,j)  = 0. _d 0        CALL CALC_EP_FORCING(myThid)
248          vTrans(i,j)  = 0. _d 0  #endif
249          aTerm(i,j)   = 0. _d 0  
250          xTerm(i,j)   = 0. _d 0  #ifdef ALLOW_AUTODIFF_TAMC
251          cTerm(i,j)   = 0. _d 0  C--   HPF directive to help TAMC
252          mTerm(i,j)   = 0. _d 0  CHPF$ INDEPENDENT
253          pTerm(i,j)   = 0. _d 0  #endif /* ALLOW_AUTODIFF_TAMC */
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
          KappaZT(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
         rhotmp(i,j)  = 0. _d 0  
         maskC (i,j)  = 0. _d 0  
        ENDDO  
       ENDDO  
254    
255        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
256    
257    #ifdef ALLOW_AUTODIFF_TAMC
258    C--    HPF directive to help TAMC
259    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
260    CHPF$&                  ,phiHydF
261    CHPF$&                  ,KappaRU,KappaRV
262    CHPF$&                  )
263    #endif /* ALLOW_AUTODIFF_TAMC */
264    
265         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
266    
267  C--     Set up work arrays that need valid initial values  #ifdef ALLOW_AUTODIFF_TAMC
268          DO j=1-OLy,sNy+OLy            act1 = bi - myBxLo(myThid)
269           DO i=1-OLx,sNx+OLx            max1 = myBxHi(myThid) - myBxLo(myThid) + 1
270            wTrans(i,j)  = 0. _d 0            act2 = bj - myByLo(myThid)
271            wVel  (i,j,1) = 0. _d 0            max2 = myByHi(myThid) - myByLo(myThid) + 1
272            wVel  (i,j,2) = 0. _d 0            act3 = myThid - 1
273            fVerT(i,j,1) = 0. _d 0            max3 = nTx*nTy
274            fVerT(i,j,2) = 0. _d 0            act4 = ikey_dynamics - 1
275            fVerS(i,j,1) = 0. _d 0            idynkey = (act1 + 1) + act2*max1
276            fVerS(i,j,2) = 0. _d 0       &                      + act3*max1*max2
277            fVerU(i,j,1) = 0. _d 0       &                      + act4*max1*max2*max3
278            fVerU(i,j,2) = 0. _d 0  #endif /* ALLOW_AUTODIFF_TAMC */
           fVerV(i,j,1) = 0. _d 0  
           fVerV(i,j,2) = 0. _d 0  
           pH(i,j,1) = 0. _d 0  
           K13(i,j,1) = 0. _d 0  
           K23(i,j,1) = 0. _d 0  
           K33(i,j,1) = 0. _d 0  
           KapGM(i,j) = 0. _d 0  
          ENDDO  
         ENDDO  
279    
280          iMin = 1-OLx+1  C--   Set up work arrays with valid (i.e. not NaN) values
281          iMax = sNx+OLx  C     These inital values do not alter the numerical results. They
282          jMin = 1-OLy+1  C     just ensure that all memory references are to valid floating
283          jMax = sNy+OLy  C     point numbers. This prevents spurious hardware signals due to
284    C     uninitialised but inert locations.
 C--     Calculate gradient of surface pressure  
         CALL GRAD_PSURF(  
      I       bi,bj,iMin,iMax,jMin,jMax,  
      O       pSurfX,pSurfY,  
      I       myThid)  
   
 C--     Update fields in top level according to tendency terms  
         CALL CORRECTION_STEP(  
      I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)  
   
 C--     Density of 1st level (below W(1)) reference to level 1  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax, 1, 1, eosType,  
      O     rhoKm1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,  
      U      pH,  
      I      myThid )  
         DO J=jMin,jMax  
          DO I=iMin,iMax  
           rhoKp1(I,J)=rhoKm1(I,J)  
          ENDDO  
         ENDDO  
285    
286          DO K=2,Nz          DO k=1,Nr
287  C--     Update fields in Kth level according to tendency terms           DO j=1-OLy,sNy+OLy
288          CALL CORRECTION_STEP(            DO i=1-OLx,sNx+OLx
289       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)             KappaRU(i,j,k) = 0. _d 0
290  C--     Density of K-1 level (above W(K)) reference to K-1 level             KappaRV(i,j,k) = 0. _d 0
291  copt    CALL FIND_RHO(  #ifdef ALLOW_AUTODIFF_TAMC
292  copt I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, eosType,  cph(
293  copt O     rhoKm1,  c--   need some re-initialisation here to break dependencies
294  copt I     myThid )  cph)
295  C       rhoKm1=rhoKp1             gU(i,j,k,bi,bj) = 0. _d 0
296          DO J=jMin,jMax             gV(i,j,k,bi,bj) = 0. _d 0
297           DO I=iMin,iMax  #endif
298            rhoKm1(I,J)=rhoKp1(I,J)            ENDDO
299           ENDDO           ENDDO
300          ENDDO          ENDDO
 C--     Density of K level (below W(K)) reference to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, eosType,  
      O     rhoKp1,  
      I     myThid )  
 C--     Density of K-1 level (above W(K)) reference to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K, eosType,  
      O     rhotmp,  
      I     myThid )  
 C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  
         CALL CALC_ISOSLOPES(  
      I            bi, bj, iMin, iMax, jMin, jMax, K,  
      I            rhoKm1, rhoKp1, rhotmp,  
      O            K13, K23, K33, KapGM,  
      I            myThid )  
 C--     Calculate static stability and mix where convectively unstable  
         CALL CONVECT(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhotmp,rhoKp1,  
      I      myTime,myIter,myThid)  
 C--     Density of K-1 level (above W(K)) reference to K-1 level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, eosType,  
      O     rhoKm1,  
      I     myThid )  
 C--     Density of K level (below W(K)) referenced to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, eosType,  
      O     rhoKp1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      U      pH,  
      I      myThid )  
   
         ENDDO ! K  
   
 C--     Initial boundary condition on barotropic divergence integral  
301          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
302           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
303            cg2d_b(i,j,bi,bj) = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
304              fVerU  (i,j,2) = 0. _d 0
305              fVerV  (i,j,1) = 0. _d 0
306              fVerV  (i,j,2) = 0. _d 0
307              phiHydF (i,j)  = 0. _d 0
308              phiHydC (i,j)  = 0. _d 0
309              dPhiHydX(i,j)  = 0. _d 0
310              dPhiHydY(i,j)  = 0. _d 0
311              phiSurfX(i,j)  = 0. _d 0
312              phiSurfY(i,j)  = 0. _d 0
313              guDissip(i,j)  = 0. _d 0
314              gvDissip(i,j)  = 0. _d 0
315    #ifdef ALLOW_AUTODIFF_TAMC
316    cph(
317    c--   need some re-initialisation here to break dependencies
318    cph)
319    # ifdef NONLIN_FRSURF
320    #  ifndef DISABLE_RSTAR_CODE
321              dWtransC(i,j,bi,bj)  = 0. _d 0
322              dWtransU(i,j,bi,bj)  = 0. _d 0
323              dWtransV(i,j,bi,bj)  = 0. _d 0
324    #  endif
325    # endif /* NONLIN_FRSURF */
326    #endif /* ALLOW_AUTODIFF_TAMC */
327           ENDDO           ENDDO
328          ENDDO          ENDDO
329    
330          DO K = Nz, 1, -1  C--     Start computation of dynamics
331           kM1  =max(1,k-1)   ! Points to level above k (=k-1)          iMin = 0
332           kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above          iMax = sNx+1
333           kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer          jMin = 0
334           iMin = 1-OLx+2          jMax = sNy+1
335           iMax = sNx+OLx-1  
336           jMin = 1-OLy+2  #ifdef ALLOW_AUTODIFF_TAMC
337           jMax = sNy+OLy-1  CADJ STORE wvel (:,:,:,bi,bj) =
338    CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
339  C--      Get temporary terms used by tendency routines  #endif /* ALLOW_AUTODIFF_TAMC */
340           CALL CALC_COMMON_FACTORS (  
341       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
342       O        xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp,  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
343       I        myThid)          IF (implicSurfPress.NE.1.) THEN
344              CALL CALC_GRAD_PHI_SURF(
345         I         bi,bj,iMin,iMax,jMin,jMax,
346         I         etaN,
347         O         phiSurfX,phiSurfY,
348         I         myThid )                        
349            ENDIF
350    
351    #ifdef ALLOW_AUTODIFF_TAMC
352    CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
353    CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
354    #ifdef ALLOW_KPP
355    CADJ STORE KPPviscAz (:,:,:,bi,bj)
356    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
357    #endif /* ALLOW_KPP */
358    #endif /* ALLOW_AUTODIFF_TAMC */
359    
360    #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
361  C--      Calculate the total vertical diffusivity  C--      Calculate the total vertical diffusivity
362           CALL CALC_DIFFUSIVITY(          DO k=1,Nr
363       I        bi,bj,iMin,iMax,jMin,jMax,K,           CALL CALC_VISCOSITY(
364       I        maskC,maskUp,KapGM,K33,       I        bi,bj,iMin,iMax,jMin,jMax,k,
365       O        KappaZT,       O        KappaRU,KappaRV,
366       I        myThid)       I        myThid)
367           ENDDO
368    #endif
369    
370  C--      Calculate accelerations in the momentum equations  #ifdef ALLOW_AUTODIFF_TAMC
371           IF ( momStepping ) THEN  CADJ STORE KappaRU(:,:,:)
372            CALL CALC_MOM_RHS(  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
373       I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ STORE KappaRV(:,:,:)
374       I         xA,yA,uTrans,vTrans,wTrans,wVel,maskC,  CADJ &     = comlev1_bibj, key=idynkey, byte=isbyte
375       I         pH,  #endif /* ALLOW_AUTODIFF_TAMC */
376       U         aTerm,xTerm,cTerm,mTerm,pTerm,  
377       U         fZon, fMer, fVerU, fVerV,  C--     Start of dynamics loop
378       I         myThid)          DO k=1,Nr
379    
380    C--       km1    Points to level above k (=k-1)
381    C--       kup    Cycles through 1,2 to point to layer above
382    C--       kDown  Cycles through 2,1 to point to current layer
383    
384              km1  = MAX(1,k-1)
385              kp1  = MIN(k+1,Nr)
386              kup  = 1+MOD(k+1,2)
387              kDown= 1+MOD(k,2)
388    
389    #ifdef ALLOW_AUTODIFF_TAMC
390             kkey = (idynkey-1)*Nr + k
391    c
392    CADJ STORE totphihyd (:,:,k,bi,bj)
393    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
394    CADJ STORE theta (:,:,k,bi,bj)
395    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
396    CADJ STORE salt  (:,:,k,bi,bj)
397    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
398    CADJ STORE gt(:,:,k,bi,bj)
399    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
400    CADJ STORE gs(:,:,k,bi,bj)
401    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
402    # ifdef NONLIN_FRSURF
403    cph-test
404    CADJ STORE  phiHydC (:,:)
405    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
406    CADJ STORE  phiHydF (:,:)
407    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
408    CADJ STORE  gudissip (:,:)
409    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
410    CADJ STORE  gvdissip (:,:)
411    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
412    CADJ STORE  fVerU (:,:,:)
413    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
414    CADJ STORE  fVerV (:,:,:)
415    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
416    CADJ STORE gu(:,:,k,bi,bj)
417    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
418    CADJ STORE gv(:,:,k,bi,bj)
419    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
420    CADJ STORE gunm1(:,:,k,bi,bj)
421    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
422    CADJ STORE gvnm1(:,:,k,bi,bj)
423    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
424    #   ifndef DISABLE_RSTAR_CODE
425    CADJ STORE dwtransc(:,:,bi,bj)
426    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
427    CADJ STORE dwtransu(:,:,bi,bj)
428    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
429    CADJ STORE dwtransv(:,:,bi,bj)
430    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
431    #   endif
432    #  ifdef ALLOW_CD_CODE
433    CADJ STORE unm1(:,:,k,bi,bj)
434    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
435    CADJ STORE vnm1(:,:,k,bi,bj)
436    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
437    CADJ STORE uVelD(:,:,k,bi,bj)
438    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
439    CADJ STORE vVelD(:,:,k,bi,bj)
440    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
441    #  endif
442    # endif
443    #endif /* ALLOW_AUTODIFF_TAMC */
444    
445    C--      Integrate hydrostatic balance for phiHyd with BC of
446    C        phiHyd(z=0)=0
447             IF ( implicitIntGravWave ) THEN
448               CALL CALC_PHI_HYD(
449         I        bi,bj,iMin,iMax,jMin,jMax,k,
450         I        gT, gS,
451         U        phiHydF,
452         O        phiHydC, dPhiHydX, dPhiHydY,
453         I        myTime, myIter, myThid )
454             ELSE
455               CALL CALC_PHI_HYD(
456         I        bi,bj,iMin,iMax,jMin,jMax,k,
457         I        theta, salt,
458         U        phiHydF,
459         O        phiHydC, dPhiHydX, dPhiHydY,
460         I        myTime, myIter, myThid )
461           ENDIF           ENDIF
462    
463  C--      Calculate active tracer tendencies  C--      Calculate accelerations in the momentum equations (gU, gV, ...)
464           IF ( tempStepping ) THEN  C        and step forward storing the result in gU, gV, etc...
465            CALL CALC_GT(           IF ( momStepping ) THEN
466       I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,             IF (.NOT. vectorInvariantMomentum) THEN
467       I         xA,yA,uTrans,vTrans,wTrans,maskUp,  #ifdef ALLOW_MOM_FLUXFORM
468       I         K13,K23,KappaZT,KapGM,  C
469       U         aTerm,xTerm,fZon,fMer,fVerT,  # ifdef ALLOW_AUTODIFF_TAMC
470       I         myThid)  #  ifdef NONLIN_FRSURF
471    #   ifndef DISABLE_RSTAR_CODE
472    CADJ STORE dwtransc(:,:,bi,bj)
473    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
474    CADJ STORE dwtransu(:,:,bi,bj)
475    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
476    CADJ STORE dwtransv(:,:,bi,bj)
477    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
478    #   endif
479    #  endif
480    # endif /* ALLOW_AUTODIFF_TAMC */
481    C
482                  CALL MOM_FLUXFORM(
483         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
484         I         KappaRU, KappaRV,
485         U         fVerU, fVerV,
486         O         guDissip, gvDissip,
487         I         myTime, myIter, myThid)
488    #endif
489               ELSE
490    #ifdef ALLOW_MOM_VECINV
491    C
492    # ifdef ALLOW_AUTODIFF_TAMC
493    #  ifdef NONLIN_FRSURF
494    CADJ STORE fVerU(:,:,:)
495    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
496    CADJ STORE fVerV(:,:,:)
497    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
498    #  endif
499    # endif /* ALLOW_AUTODIFF_TAMC */
500    C
501                 CALL MOM_VECINV(
502         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
503         I         KappaRU, KappaRV,
504         U         fVerU, fVerV,
505         O         guDissip, gvDissip,
506         I         myTime, myIter, myThid)
507    #endif
508               ENDIF
509    C
510               CALL TIMESTEP(
511         I         bi,bj,iMin,iMax,jMin,jMax,k,
512         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
513         I         guDissip, gvDissip,
514         I         myTime, myIter, myThid)
515    
516    #ifdef   ALLOW_OBCS
517    C--      Apply open boundary conditions
518               IF (useOBCS) THEN
519                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
520               ENDIF
521    #endif   /* ALLOW_OBCS */
522    
523           ENDIF           ENDIF
524  Cdbg     CALL CALC_GS(  
525  Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
526  Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  C--     end of dynamics k loop (1:Nr)
527  Cdbg I        K13,K23,K33,KapGM,          ENDDO
528  Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
529  Cdbg I        myThid)  C--     Implicit Vertical advection & viscosity
530    #if (defined (INCLUDE_IMPLVERTADV_CODE) && defined (ALLOW_MOM_COMMON))
531  C--      Prediction step (step forward all model variables)          IF ( momImplVertAdv ) THEN
532           CALL TIMESTEP(            CALL MOM_U_IMPLICIT_R( kappaRU,
533       I       bi,bj,iMin,iMax,jMin,jMax,K,       I                           bi, bj, myTime, myIter, myThid )
534       I       myThid)            CALL MOM_V_IMPLICIT_R( kappaRV,
535         I                           bi, bj, myTime, myIter, myThid )
536  C--      Diagnose barotropic divergence of predicted fields          ELSEIF ( implicitViscosity ) THEN
537           CALL DIV_G(  #else /* INCLUDE_IMPLVERTADV_CODE */
538       I       bi,bj,iMin,iMax,jMin,jMax,K,          IF     ( implicitViscosity ) THEN
539       I       xA,yA,  #endif /* INCLUDE_IMPLVERTADV_CODE */
540       I       myThid)  #ifdef    ALLOW_AUTODIFF_TAMC
541    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
542          ENDDO ! K  CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
543    #endif    /* ALLOW_AUTODIFF_TAMC */
544  C--     Implicit diffusion            CALL IMPLDIFF(
545          IF (implicitDiffusion) THEN       I         bi, bj, iMin, iMax, jMin, jMax,
546           CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,       I         -1, KappaRU,recip_HFacW,
547       I                  KappaZT,       U         gU,
548       I                  myThid )       I         myThid )
549    #ifdef    ALLOW_AUTODIFF_TAMC
550    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
551    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
552    #endif    /* ALLOW_AUTODIFF_TAMC */
553              CALL IMPLDIFF(
554         I         bi, bj, iMin, iMax, jMin, jMax,
555         I         -2, KappaRV,recip_HFacS,
556         U         gV,
557         I         myThid )
558            ENDIF
559    
560    #ifdef   ALLOW_OBCS
561    C--      Apply open boundary conditions
562            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
563               DO K=1,Nr
564                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
565               ENDDO
566            ENDIF
567    #endif   /* ALLOW_OBCS */
568    
569    #ifdef    ALLOW_CD_CODE
570            IF (implicitViscosity.AND.useCDscheme) THEN
571    #ifdef    ALLOW_AUTODIFF_TAMC
572    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
573    #endif    /* ALLOW_AUTODIFF_TAMC */
574              CALL IMPLDIFF(
575         I         bi, bj, iMin, iMax, jMin, jMax,
576         I         0, KappaRU,recip_HFacW,
577         U         vVelD,
578         I         myThid )
579    #ifdef    ALLOW_AUTODIFF_TAMC
580    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
581    #endif    /* ALLOW_AUTODIFF_TAMC */
582              CALL IMPLDIFF(
583         I         bi, bj, iMin, iMax, jMin, jMax,
584         I         0, KappaRV,recip_HFacS,
585         U         uVelD,
586         I         myThid )
587          ENDIF          ENDIF
588    #endif    /* ALLOW_CD_CODE */
589    C--     End implicit Vertical advection & viscosity
590    
591         ENDDO         ENDDO
592        ENDDO        ENDDO
593    
594        write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),  #ifdef ALLOW_OBCS
595       &                           maxval(cg2d_x(1:sNx,1:sNy,:,:))        IF (useOBCS) THEN
596        write(0,*) 'dynamics: U  ',minval(uVel(1:sNx,1:sNy,:,:,:)),         CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
597       &                           maxval(uVel(1:sNx,1:sNy,:,:,:))        ENDIF
598        write(0,*) 'dynamics: V  ',minval(vVel(1:sNx,1:sNy,:,:,:)),  #endif
599       &                           maxval(vVel(1:sNx,1:sNy,:,:,:))  
600  cblk  write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),  C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
601  cblk &                           maxval(K13(1:sNx,1:sNy,:))  
602  cblk  write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),  #ifdef ALLOW_NONHYDROSTATIC
603  cblk &                           maxval(K23(1:sNx,1:sNy,:))  C--   Step forward W field in N-H algorithm
604  cblk  write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),        IF ( nonHydrostatic ) THEN
605  cblk &                           maxval(K33(1:sNx,1:sNy,:))  #ifdef ALLOW_DEBUG
606        write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),           IF ( debugLevel .GE. debLevB )
607       &                           maxval(gT(1:sNx,1:sNy,:,:,:))       &     CALL DEBUG_CALL('CALC_GW', myThid )
608        write(0,*) 'dynamics: T  ',minval(Theta(1:sNx,1:sNy,:,:,:)),  #endif
609       &                           maxval(Theta(1:sNx,1:sNy,:,:,:))           CALL TIMER_START('CALC_GW          [DYNAMICS]',myThid)
610  cblk  write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil)),           CALL CALC_GW( myTime, myIter, myThid )
611  cblk &                           maxval(pH/(Gravity*Rhonil))        ENDIF
612          IF ( nonHydrostatic.OR.implicitIntGravWave )
613         &   CALL TIMESTEP_WVEL( myTime, myIter, myThid )
614          IF ( nonHydrostatic )
615         &   CALL TIMER_STOP ('CALC_GW          [DYNAMICS]',myThid)
616    #endif
617    
618    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
619    
620    Cml(
621    C     In order to compare the variance of phiHydLow of a p/z-coordinate
622    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
623    C     has to be removed by something like the following subroutine:
624    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
625    C     &                'phiHydLow', myThid )
626    Cml)
627    
628    #ifdef ALLOW_DIAGNOSTICS
629          IF ( useDiagnostics ) THEN
630    
631           CALL DIAGNOSTICS_FILL(totPhihyd,'PHIHYD  ',0,Nr,0,1,1,myThid)
632           CALL DIAGNOSTICS_FILL(phiHydLow,'PHIBOT  ',0, 1,0,1,1,myThid)
633    
634           tmpFac = 1. _d 0
635           CALL DIAGNOSTICS_SCALE_FILL(totPhihyd,tmpFac,2,
636         &                                 'PHIHYDSQ',0,Nr,0,1,1,myThid)
637    
638           CALL DIAGNOSTICS_SCALE_FILL(phiHydLow,tmpFac,2,
639         &                                 'PHIBOTSQ',0, 1,0,1,1,myThid)
640    
641          ENDIF
642    #endif /* ALLOW_DIAGNOSTICS */
643          
644    #ifdef ALLOW_DEBUG
645          If ( debugLevel .GE. debLevB ) THEN
646           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
647           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
648           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
649           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
650           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
651           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
652           CALL DEBUG_STATS_RL(Nr,gU,'Gu (DYNAMICS)',myThid)
653           CALL DEBUG_STATS_RL(Nr,gV,'Gv (DYNAMICS)',myThid)
654           CALL DEBUG_STATS_RL(Nr,gT,'Gt (DYNAMICS)',myThid)
655           CALL DEBUG_STATS_RL(Nr,gS,'Gs (DYNAMICS)',myThid)
656    #ifndef ALLOW_ADAMSBASHFORTH_3
657           CALL DEBUG_STATS_RL(Nr,guNm1,'GuNm1 (DYNAMICS)',myThid)
658           CALL DEBUG_STATS_RL(Nr,gvNm1,'GvNm1 (DYNAMICS)',myThid)
659           CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (DYNAMICS)',myThid)
660           CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (DYNAMICS)',myThid)
661    #endif
662          ENDIF
663    #endif
664    
665    #ifdef DYNAMICS_GUGV_EXCH_CHECK
666    C- jmc: For safety checking only: This Exchange here should not change
667    C       the solution. If solution changes, it means something is wrong,
668    C       but it does not mean that it is less wrong with this exchange.
669          IF ( debugLevel .GT. debLevB ) THEN
670           CALL EXCH_UV_XYZ_RL(gU,gV,.TRUE.,myThid)
671          ENDIF
672    #endif
673    
674    #ifdef ALLOW_DEBUG
675          IF ( debugLevel .GE. debLevB )
676         &   CALL DEBUG_LEAVE( 'DYNAMICS', myThid )
677    #endif
678    
679        RETURN        RETURN
680        END        END

Legend:
Removed from v.1.16  
changed lines
  Added in v.1.132

  ViewVC Help
Powered by ViewVC 1.1.22