/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.10 by adcroft, Thu May 28 16:19:50 1998 UTC revision 1.17 by cnh, Wed Jun 10 01:44:03 1998 UTC
# Line 39  C     myThid - Thread number for this in Line 39  C     myThid - Thread number for this in
39  C     == Local variables  C     == Local variables
40  C     xA, yA                 - Per block temporaries holding face areas  C     xA, yA                 - Per block temporaries holding face areas
41  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport
42  C                              o uTrans: Zonal transport  C     wVel                     o uTrans: Zonal transport
43  C                              o vTrans: Meridional transport  C                              o vTrans: Meridional transport
44  C                              o wTrans: Vertical transport  C                              o wTrans: Vertical transport
45    C                              o wVel:   Vertical velocity at upper and lower
46    C                                        cell faces.
47  C     maskC,maskUp             o maskC: land/water mask for tracer cells  C     maskC,maskUp             o maskC: land/water mask for tracer cells
48  C                              o maskUp: land/water mask for W points  C                              o maskUp: land/water mask for W points
49  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in
# Line 68  C                          into fVerTerm Line 70  C                          into fVerTerm
70        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73          _RL wVel  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
74        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
# Line 91  C                          into fVerTerm Line 94  C                          into fVerTerm
94        _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)        _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
95        _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)        _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
96        _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97          _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
98    
99        INTEGER iMin, iMax        INTEGER iMin, iMax
100        INTEGER jMin, jMax        INTEGER jMin, jMax
101        INTEGER bi, bj        INTEGER bi, bj
102        INTEGER i, j        INTEGER i, j
103        INTEGER k, kM1, kUp, kDown        INTEGER k, kM1, kUp, kDown
104    
105    C---    The algorithm...
106    C
107    C       "Correction Step"
108    C       =================
109    C       Here we update the horizontal velocities with the surface
110    C       pressure such that the resulting flow is either consistent
111    C       with the free-surface evolution or the rigid-lid:
112    C         U[n] = U* + dt x d/dx P
113    C         V[n] = V* + dt x d/dy P
114    C
115    C       "Calculation of Gs"
116    C       ===================
117    C       This is where all the accelerations and tendencies (ie.
118    C       physics, parameterizations etc...) are calculated
119    C         w = sum_z ( div. u[n] )
120    C         rho = rho ( theta[n], salt[n] )
121    C         K31 = K31 ( rho )
122    C         Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )
123    C         Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )
124    C         Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )
125    C         Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )
126    C
127    C       "Time-stepping" or "Prediction"
128    C       ================================
129    C       The models variables are stepped forward with the appropriate
130    C       time-stepping scheme (currently we use Adams-Bashforth II)
131    C       - For momentum, the result is always *only* a "prediction"
132    C       in that the flow may be divergent and will be "corrected"
133    C       later with a surface pressure gradient.
134    C       - Normally for tracers the result is the new field at time
135    C       level [n+1} *BUT* in the case of implicit diffusion the result
136    C       is also *only* a prediction.
137    C       - We denote "predictors" with an asterisk (*).
138    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
139    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
140    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
141    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
142    C       With implicit diffusion:
143    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
144    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
145    C         (1 + dt * K * d_zz) theta[n] = theta*
146    C         (1 + dt * K * d_zz) salt[n] = salt*
147    C---
148    
149  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
150  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
151  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
# Line 120  C     uninitialised but inert locations. Line 169  C     uninitialised but inert locations.
169           K13(i,j,k) = 0. _d 0           K13(i,j,k) = 0. _d 0
170           K23(i,j,k) = 0. _d 0           K23(i,j,k) = 0. _d 0
171           K33(i,j,k) = 0. _d 0           K33(i,j,k) = 0. _d 0
172             KappaZT(i,j,k) = 0. _d 0
173          ENDDO          ENDDO
174          rhokm1(i,j)  = 0. _d 0          rhokm1(i,j)  = 0. _d 0
175          rhokp1(i,j)  = 0. _d 0          rhokp1(i,j)  = 0. _d 0
176          rhotmp(i,j)  = 0. _d 0          rhotmp(i,j)  = 0. _d 0
177            maskC (i,j)  = 0. _d 0
178         ENDDO         ENDDO
179        ENDDO        ENDDO
180    
181        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
182         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
183    
 C--     Boundary condition on hydrostatic pressure is pH(z=0)=0  
         DO j=1-OLy,sNy+OLy  
          DO i=1-OLx,sNx+OLx  
           pH(i,j,1) = 0. _d 0  
           K13(i,j,1) = 0. _d 0  
           K23(i,j,1) = 0. _d 0  
           K33(i,j,1) = 0. _d 0  
           KapGM(i,j) = 0. _d 0  
          ENDDO  
         ENDDO  
   
184  C--     Set up work arrays that need valid initial values  C--     Set up work arrays that need valid initial values
185          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
186           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
187            wTrans(i,j)  = 0. _d 0            wTrans(i,j)  = 0. _d 0
188              wVel  (i,j,1) = 0. _d 0
189              wVel  (i,j,2) = 0. _d 0
190            fVerT(i,j,1) = 0. _d 0            fVerT(i,j,1) = 0. _d 0
191            fVerT(i,j,2) = 0. _d 0            fVerT(i,j,2) = 0. _d 0
192            fVerS(i,j,1) = 0. _d 0            fVerS(i,j,1) = 0. _d 0
# Line 153  C--     Set up work arrays that need val Line 195  C--     Set up work arrays that need val
195            fVerU(i,j,2) = 0. _d 0            fVerU(i,j,2) = 0. _d 0
196            fVerV(i,j,1) = 0. _d 0            fVerV(i,j,1) = 0. _d 0
197            fVerV(i,j,2) = 0. _d 0            fVerV(i,j,2) = 0. _d 0
198              pH(i,j,1) = 0. _d 0
199              K13(i,j,1) = 0. _d 0
200              K23(i,j,1) = 0. _d 0
201              K33(i,j,1) = 0. _d 0
202              KapGM(i,j) = 0. _d 0
203           ENDDO           ENDDO
204          ENDDO          ENDDO
205    
# Line 168  C--     Calculate gradient of surface pr Line 215  C--     Calculate gradient of surface pr
215       I       myThid)       I       myThid)
216    
217  C--     Update fields in top level according to tendency terms  C--     Update fields in top level according to tendency terms
218          CALL TIMESTEP(          CALL CORRECTION_STEP(
219       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)
220    
221  C--     Density of 1st level (below W(1)) reference to level 1  C--     Density of 1st level (below W(1)) reference to level 1
# Line 181  C--     Integrate hydrostatic balance fo Line 228  C--     Integrate hydrostatic balance fo
228       I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,       I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,
229       U      pH,       U      pH,
230       I      myThid )       I      myThid )
231          DO J=1-Oly,sNy+Oly          DO J=jMin,jMax
232           DO I=1-Olx,sNx+Olx           DO I=iMin,iMax
233            rhoKp1(I,J)=rhoKm1(I,J)            rhoKp1(I,J)=rhoKm1(I,J)
234           ENDDO           ENDDO
235          ENDDO          ENDDO
236    
237          DO K=2,Nz          DO K=2,Nz
238  C--     Update fields in Kth level according to tendency terms  C--     Update fields in Kth level according to tendency terms
239          CALL TIMESTEP(          CALL CORRECTION_STEP(
240       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)
241  C--     Density of K-1 level (above W(K)) reference to K-1 level  C--     Density of K-1 level (above W(K)) reference to K-1 level
242  copt    CALL FIND_RHO(  copt    CALL FIND_RHO(
# Line 197  copt I     bi, bj, iMin, iMax, jMin, jMa Line 244  copt I     bi, bj, iMin, iMax, jMin, jMa
244  copt O     rhoKm1,  copt O     rhoKm1,
245  copt I     myThid )  copt I     myThid )
246  C       rhoKm1=rhoKp1  C       rhoKm1=rhoKp1
247          DO J=1-Oly,sNy+Oly          DO J=jMin,jMax
248           DO I=1-Olx,sNx+Olx           DO I=iMin,iMax
249            rhoKm1(I,J)=rhoKp1(I,J)            rhoKm1(I,J)=rhoKp1(I,J)
250           ENDDO           ENDDO
251          ENDDO          ENDDO
# Line 220  C--     Calculate iso-neutral slopes for Line 267  C--     Calculate iso-neutral slopes for
267       I            myThid )       I            myThid )
268  C--     Calculate static stability and mix where convectively unstable  C--     Calculate static stability and mix where convectively unstable
269          CALL CONVECT(          CALL CONVECT(
270       I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,       I      bi,bj,iMin,iMax,jMin,jMax,K,rhotmp,rhoKp1,
271       I      myTime,myIter,myThid)       I      myTime,myIter,myThid)
272  C--     Density of K-1 level (above W(K)) reference to K-1 level  C--     Density of K-1 level (above W(K)) reference to K-1 level
273          CALL FIND_RHO(          CALL FIND_RHO(
# Line 238  C--     Integrate hydrostatic balance fo Line 285  C--     Integrate hydrostatic balance fo
285       U      pH,       U      pH,
286       I      myThid )       I      myThid )
287    
288            ENDDO ! K
289    
290    C--     Initial boundary condition on barotropic divergence integral
291            DO j=1-OLy,sNy+OLy
292             DO i=1-OLx,sNx+OLx
293              cg2d_b(i,j,bi,bj) = 0. _d 0
294             ENDDO
295          ENDDO          ENDDO
296    
297          DO K = Nz, 1, -1          DO K = Nz, 1, -1
# Line 252  C--     Integrate hydrostatic balance fo Line 306  C--     Integrate hydrostatic balance fo
306  C--      Get temporary terms used by tendency routines  C--      Get temporary terms used by tendency routines
307           CALL CALC_COMMON_FACTORS (           CALL CALC_COMMON_FACTORS (
308       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
309       O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,       O        xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp,
310         I        myThid)
311    
312    C--      Calculate the total vertical diffusivity
313             CALL CALC_DIFFUSIVITY(
314         I        bi,bj,iMin,iMax,jMin,jMax,K,
315         I        maskC,maskUp,KapGM,K33,
316         O        KappaZT,
317       I        myThid)       I        myThid)
318    
319  C--      Calculate accelerations in the momentum equations  C--      Calculate accelerations in the momentum equations
320           IF ( momStepping ) THEN           IF ( momStepping ) THEN
321            CALL CALC_MOM_RHS(            CALL CALC_MOM_RHS(
322       I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,       I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
323       I         xA,yA,uTrans,vTrans,wTrans,maskC,       I         xA,yA,uTrans,vTrans,wTrans,wVel,maskC,
324       I         pH,       I         pH,
325       U         aTerm,xTerm,cTerm,mTerm,pTerm,       U         aTerm,xTerm,cTerm,mTerm,pTerm,
326       U         fZon, fMer, fVerU, fVerV,       U         fZon, fMer, fVerU, fVerV,
# Line 271  C--      Calculate active tracer tendenc Line 332  C--      Calculate active tracer tendenc
332            CALL CALC_GT(            CALL CALC_GT(
333       I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,       I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
334       I         xA,yA,uTrans,vTrans,wTrans,maskUp,       I         xA,yA,uTrans,vTrans,wTrans,maskUp,
335       I         K13,K23,K33,KapGM,       I         K13,K23,KappaZT,KapGM,
336       U         aTerm,xTerm,fZon,fMer,fVerT,       U         aTerm,xTerm,fZon,fMer,fVerT,
337       I         myThid)       I         myThid)
338           ENDIF           ENDIF
# Line 282  Cdbg I        K13,K23,K33,KapGM, Line 343  Cdbg I        K13,K23,K33,KapGM,
343  Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,
344  Cdbg I        myThid)  Cdbg I        myThid)
345    
346          ENDDO  C--      Prediction step (step forward all model variables)
347             CALL TIMESTEP(
348         I       bi,bj,iMin,iMax,jMin,jMax,K,
349         I       myThid)
350    
351    C--      Diagnose barotropic divergence of predicted fields
352             CALL DIV_G(
353         I       bi,bj,iMin,iMax,jMin,jMax,K,
354         I       xA,yA,
355         I       myThid)
356    
357            ENDDO ! K
358    
359    C--     Implicit diffusion
360            IF (implicitDiffusion) THEN
361             CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
362         I                  KappaZT,
363         I                  myThid )
364            ENDIF
365    
366         ENDDO         ENDDO
367        ENDDO        ENDDO
368    
369  !dbg  write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x)  C     write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),
370  !dbg  write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)),  C    &                           maxval(cg2d_x(1:sNx,1:sNy,:,:))
371  !dbg &                         maxval(uVel(1:sNx,1:sNy,:,:,:))  C     write(0,*) 'dynamics: U  ',minval(uVel(1:sNx,1:sNy,:,:,:)),
372  !dbg  write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)),  C    &                           maxval(uVel(1:sNx,1:sNy,:,:,:))
373  !dbg &                         maxval(vVel(1:sNx,1:sNy,:,:,:))  C     write(0,*) 'dynamics: V  ',minval(vVel(1:sNx,1:sNy,:,:,:)),
374  !dbg  write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),  C    &                           maxval(vVel(1:sNx,1:sNy,:,:,:))
375  !dbg &                         maxval(K13(1:sNx,1:sNy,:))  cblk  write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
376  !dbg  write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),  cblk &                           maxval(K13(1:sNx,1:sNy,:))
377  !dbg &                         maxval(K23(1:sNx,1:sNy,:))  cblk  write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
378  !dbg  write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),  cblk &                           maxval(K23(1:sNx,1:sNy,:))
379  !dbg &                         maxval(K33(1:sNx,1:sNy,:))  cblk  write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
380  !dbg  write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)),  cblk &                           maxval(K33(1:sNx,1:sNy,:))
381  !dbg &                         maxval(gT(1:sNx,1:sNy,:,:,:))  C     write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),
382  !dbg  write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)),  C    &                           maxval(gT(1:sNx,1:sNy,:,:,:))
383  !dbg &                         maxval(Theta(1:sNx,1:sNy,:,:,:))  C     write(0,*) 'dynamics: T  ',minval(Theta(1:sNx,1:sNy,:,:,:)),
384  !dbg  write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)),  C    &                           maxval(Theta(1:sNx,1:sNy,:,:,:))
385  !dbg &                          maxval(pH/(Gravity*Rhonil))  cblk  write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil)),
386    cblk &                           maxval(pH/(Gravity*Rhonil))
387    
388        RETURN        RETURN
389        END        END

Legend:
Removed from v.1.10  
changed lines
  Added in v.1.17

  ViewVC Help
Powered by ViewVC 1.1.22