/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.83 - (show annotations) (download)
Thu Sep 27 20:12:10 2001 UTC (22 years, 8 months ago) by heimbach
Branch: MAIN
CVS Tags: release1_b1, checkpoint43, ecco-branch-mod1, release1_beta1, checkpoint42
Branch point for: release1, ecco-branch, release1_coupled
Changes since 1.82: +10 -7 lines
Fixed AD-related problems:
o Store directives up-to-date with re-arranged Adams-Bashforth
  (mainly thermodynamics.F)
o New store directives for multi-dim. advection schemes
  * new CPP flag ALLOW_MULTI_DIM_ADVECTION
  * new common block and key passkey
  (mainly gad_advection.F)
o Modified store directives for split of dynamics/thermodynamics
  for the case ALLOW_KPP
o Cleaned argument list for timestep_tracer.F

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.82 2001/09/26 18:09:14 cnh Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: DYNAMICS
8 C !INTERFACE:
9 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
10 C !DESCRIPTION: \bv
11 C *==========================================================*
12 C | SUBROUTINE DYNAMICS
13 C | o Controlling routine for the explicit part of the model
14 C | dynamics.
15 C *==========================================================*
16 C | This routine evaluates the "dynamics" terms for each
17 C | block of ocean in turn. Because the blocks of ocean have
18 C | overlap regions they are independent of one another.
19 C | If terms involving lateral integrals are needed in this
20 C | routine care will be needed. Similarly finite-difference
21 C | operations with stencils wider than the overlap region
22 C | require special consideration.
23 C | The algorithm...
24 C |
25 C | "Correction Step"
26 C | =================
27 C | Here we update the horizontal velocities with the surface
28 C | pressure such that the resulting flow is either consistent
29 C | with the free-surface evolution or the rigid-lid:
30 C | U[n] = U* + dt x d/dx P
31 C | V[n] = V* + dt x d/dy P
32 C |
33 C | "Calculation of Gs"
34 C | ===================
35 C | This is where all the accelerations and tendencies (ie.
36 C | physics, parameterizations etc...) are calculated
37 C | rho = rho ( theta[n], salt[n] )
38 C | b = b(rho, theta)
39 C | K31 = K31 ( rho )
40 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
41 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
42 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
43 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
44 C |
45 C | "Time-stepping" or "Prediction"
46 C | ================================
47 C | The models variables are stepped forward with the appropriate
48 C | time-stepping scheme (currently we use Adams-Bashforth II)
49 C | - For momentum, the result is always *only* a "prediction"
50 C | in that the flow may be divergent and will be "corrected"
51 C | later with a surface pressure gradient.
52 C | - Normally for tracers the result is the new field at time
53 C | level [n+1} *BUT* in the case of implicit diffusion the result
54 C | is also *only* a prediction.
55 C | - We denote "predictors" with an asterisk (*).
56 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
57 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
58 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
59 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60 C | With implicit diffusion:
61 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
62 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63 C | (1 + dt * K * d_zz) theta[n] = theta*
64 C | (1 + dt * K * d_zz) salt[n] = salt*
65 C |
66 C *==========================================================*
67 C \ev
68 C !USES:
69 IMPLICIT NONE
70 C == Global variables ===
71 #include "SIZE.h"
72 #include "EEPARAMS.h"
73 #include "PARAMS.h"
74 #include "DYNVARS.h"
75 #include "GRID.h"
76 #ifdef ALLOW_PASSIVE_TRACER
77 #include "TR1.h"
78 #endif
79 #ifdef ALLOW_AUTODIFF_TAMC
80 # include "tamc.h"
81 # include "tamc_keys.h"
82 # include "FFIELDS.h"
83 # ifdef ALLOW_KPP
84 # include "KPP.h"
85 # endif
86 # ifdef ALLOW_GMREDI
87 # include "GMREDI.h"
88 # endif
89 #endif /* ALLOW_AUTODIFF_TAMC */
90 #ifdef ALLOW_TIMEAVE
91 #include "TIMEAVE_STATV.h"
92 #endif
93
94 C !CALLING SEQUENCE:
95 C DYNAMICS()
96 C |
97 C |-- CALC_GRAD_PHI_SURF
98 C |
99 C |-- CALC_VISCOSITY
100 C |
101 C |-- CALC_PHI_HYD
102 C |
103 C |-- MOM_FLUXFORM
104 C |
105 C |-- MOM_VECINV
106 C |
107 C |-- TIMESTEP
108 C |
109 C |-- OBCS_APPLY_UV
110 C |
111 C |-- IMPLDIFF
112 C |
113 C |-- OBCS_APPLY_UV
114 C |
115 C |-- CALL TIMEAVE_CUMUL_1T
116 C |-- CALL TIMEAVE_CUMULATE
117 C |-- CALL DEBUG_STATS_RL
118
119 C !INPUT/OUTPUT PARAMETERS:
120 C == Routine arguments ==
121 C myTime - Current time in simulation
122 C myIter - Current iteration number in simulation
123 C myThid - Thread number for this instance of the routine.
124 _RL myTime
125 INTEGER myIter
126 INTEGER myThid
127
128 C !LOCAL VARIABLES:
129 C == Local variables
130 C fVer[STUV] o fVer: Vertical flux term - note fVer
131 C is "pipelined" in the vertical
132 C so we need an fVer for each
133 C variable.
134 C rhoK, rhoKM1 - Density at current level, and level above
135 C phiHyd - Hydrostatic part of the potential phiHydi.
136 C In z coords phiHydiHyd is the hydrostatic
137 C Potential (=pressure/rho0) anomaly
138 C In p coords phiHydiHyd is the geopotential
139 C surface height anomaly.
140 C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean)
141 C phiSurfY or geopotentiel (atmos) in X and Y direction
142 C iMin, iMax - Ranges and sub-block indices on which calculations
143 C jMin, jMax are applied.
144 C bi, bj
145 C k, kup, - Index for layer above and below. kup and kDown
146 C kDown, km1 are switched with layer to be the appropriate
147 C index into fVerTerm.
148 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
149 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
150 _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
151 _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
152 _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
153 _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
154 _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
155 _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
156 _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
157 _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
158 _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
159 _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
160
161 C This is currently used by IVDC and Diagnostics
162 _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
163
164 INTEGER iMin, iMax
165 INTEGER jMin, jMax
166 INTEGER bi, bj
167 INTEGER i, j
168 INTEGER k, km1, kp1, kup, kDown
169
170 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
171 c CHARACTER*(MAX_LEN_MBUF) suff
172 c LOGICAL DIFFERENT_MULTIPLE
173 c EXTERNAL DIFFERENT_MULTIPLE
174 Cjmc(end)
175
176 C--- The algorithm...
177 C
178 C "Correction Step"
179 C =================
180 C Here we update the horizontal velocities with the surface
181 C pressure such that the resulting flow is either consistent
182 C with the free-surface evolution or the rigid-lid:
183 C U[n] = U* + dt x d/dx P
184 C V[n] = V* + dt x d/dy P
185 C
186 C "Calculation of Gs"
187 C ===================
188 C This is where all the accelerations and tendencies (ie.
189 C physics, parameterizations etc...) are calculated
190 C rho = rho ( theta[n], salt[n] )
191 C b = b(rho, theta)
192 C K31 = K31 ( rho )
193 C Gu[n] = Gu( u[n], v[n], wVel, b, ... )
194 C Gv[n] = Gv( u[n], v[n], wVel, b, ... )
195 C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
196 C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
197 C
198 C "Time-stepping" or "Prediction"
199 C ================================
200 C The models variables are stepped forward with the appropriate
201 C time-stepping scheme (currently we use Adams-Bashforth II)
202 C - For momentum, the result is always *only* a "prediction"
203 C in that the flow may be divergent and will be "corrected"
204 C later with a surface pressure gradient.
205 C - Normally for tracers the result is the new field at time
206 C level [n+1} *BUT* in the case of implicit diffusion the result
207 C is also *only* a prediction.
208 C - We denote "predictors" with an asterisk (*).
209 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
210 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
211 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
212 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
213 C With implicit diffusion:
214 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
215 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
216 C (1 + dt * K * d_zz) theta[n] = theta*
217 C (1 + dt * K * d_zz) salt[n] = salt*
218 C---
219 CEOP
220
221 C-- Set up work arrays with valid (i.e. not NaN) values
222 C These inital values do not alter the numerical results. They
223 C just ensure that all memory references are to valid floating
224 C point numbers. This prevents spurious hardware signals due to
225 C uninitialised but inert locations.
226 DO j=1-OLy,sNy+OLy
227 DO i=1-OLx,sNx+OLx
228 DO k=1,Nr
229 phiHyd(i,j,k) = 0. _d 0
230 KappaRU(i,j,k) = 0. _d 0
231 KappaRV(i,j,k) = 0. _d 0
232 sigmaX(i,j,k) = 0. _d 0
233 sigmaY(i,j,k) = 0. _d 0
234 sigmaR(i,j,k) = 0. _d 0
235 ENDDO
236 rhoKM1 (i,j) = 0. _d 0
237 rhok (i,j) = 0. _d 0
238 phiSurfX(i,j) = 0. _d 0
239 phiSurfY(i,j) = 0. _d 0
240 ENDDO
241 ENDDO
242
243 #ifdef ALLOW_AUTODIFF_TAMC
244 C-- HPF directive to help TAMC
245 CHPF$ INDEPENDENT
246 #endif /* ALLOW_AUTODIFF_TAMC */
247
248 DO bj=myByLo(myThid),myByHi(myThid)
249
250 #ifdef ALLOW_AUTODIFF_TAMC
251 C-- HPF directive to help TAMC
252 CHPF$ INDEPENDENT, NEW (fVerU,fVerV
253 CHPF$& ,phiHyd
254 CHPF$& ,KappaRU,KappaRV
255 CHPF$& )
256 #endif /* ALLOW_AUTODIFF_TAMC */
257
258 DO bi=myBxLo(myThid),myBxHi(myThid)
259
260 #ifdef ALLOW_AUTODIFF_TAMC
261 act1 = bi - myBxLo(myThid)
262 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
263 act2 = bj - myByLo(myThid)
264 max2 = myByHi(myThid) - myByLo(myThid) + 1
265 act3 = myThid - 1
266 max3 = nTx*nTy
267 act4 = ikey_dynamics - 1
268 ikey = (act1 + 1) + act2*max1
269 & + act3*max1*max2
270 & + act4*max1*max2*max3
271 #endif /* ALLOW_AUTODIFF_TAMC */
272
273 C-- Set up work arrays that need valid initial values
274 DO j=1-OLy,sNy+OLy
275 DO i=1-OLx,sNx+OLx
276 fVerU (i,j,1) = 0. _d 0
277 fVerU (i,j,2) = 0. _d 0
278 fVerV (i,j,1) = 0. _d 0
279 fVerV (i,j,2) = 0. _d 0
280 ENDDO
281 ENDDO
282
283 C-- Start computation of dynamics
284 iMin = 1-OLx+2
285 iMax = sNx+OLx-1
286 jMin = 1-OLy+2
287 jMax = sNy+OLy-1
288
289 #ifdef ALLOW_AUTODIFF_TAMC
290 CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
291 #endif /* ALLOW_AUTODIFF_TAMC */
292
293 C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
294 C (note: this loop will be replaced by CALL CALC_GRAD_ETA)
295 IF (implicSurfPress.NE.1.) THEN
296 CALL CALC_GRAD_PHI_SURF(
297 I bi,bj,iMin,iMax,jMin,jMax,
298 I etaN,
299 O phiSurfX,phiSurfY,
300 I myThid )
301 ENDIF
302
303 #ifdef ALLOW_AUTODIFF_TAMC
304 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
305 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
306 #ifdef ALLOW_KPP
307 CADJ STORE KPPviscAz (:,:,:,bi,bj)
308 CADJ & = comlev1_bibj, key=ikey, byte=isbyte
309 #endif /* ALLOW_KPP */
310 #endif /* ALLOW_AUTODIFF_TAMC */
311
312 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
313 C-- Calculate the total vertical diffusivity
314 DO k=1,Nr
315 CALL CALC_VISCOSITY(
316 I bi,bj,iMin,iMax,jMin,jMax,k,
317 O KappaRU,KappaRV,
318 I myThid)
319 ENDDO
320 #endif
321
322 C-- Start of dynamics loop
323 DO k=1,Nr
324
325 C-- km1 Points to level above k (=k-1)
326 C-- kup Cycles through 1,2 to point to layer above
327 C-- kDown Cycles through 2,1 to point to current layer
328
329 km1 = MAX(1,k-1)
330 kp1 = MIN(k+1,Nr)
331 kup = 1+MOD(k+1,2)
332 kDown= 1+MOD(k,2)
333
334 #ifdef ALLOW_AUTODIFF_TAMC
335 kkey = (ikey-1)*Nr + k
336 #endif /* ALLOW_AUTODIFF_TAMC */
337
338 C-- Integrate hydrostatic balance for phiHyd with BC of
339 C phiHyd(z=0)=0
340 C distinguishe between Stagger and Non Stagger time stepping
341 IF (staggerTimeStep) THEN
342 CALL CALC_PHI_HYD(
343 I bi,bj,iMin,iMax,jMin,jMax,k,
344 I gT, gS,
345 U phiHyd,
346 I myThid )
347 ELSE
348 CALL CALC_PHI_HYD(
349 I bi,bj,iMin,iMax,jMin,jMax,k,
350 I theta, salt,
351 U phiHyd,
352 I myThid )
353 ENDIF
354
355 C-- Calculate accelerations in the momentum equations (gU, gV, ...)
356 C and step forward storing the result in gUnm1, gVnm1, etc...
357 IF ( momStepping ) THEN
358 #ifndef DISABLE_MOM_FLUXFORM
359 IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
360 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
361 I phiHyd,KappaRU,KappaRV,
362 U fVerU, fVerV,
363 I myTime, myIter, myThid)
364 #endif
365 #ifndef DISABLE_MOM_VECINV
366 IF (vectorInvariantMomentum) CALL MOM_VECINV(
367 I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
368 I phiHyd,KappaRU,KappaRV,
369 U fVerU, fVerV,
370 I myTime, myIter, myThid)
371 #endif
372 CALL TIMESTEP(
373 I bi,bj,iMin,iMax,jMin,jMax,k,
374 I phiHyd, phiSurfX, phiSurfY,
375 I myIter, myThid)
376
377 #ifdef ALLOW_OBCS
378 C-- Apply open boundary conditions
379 IF (useOBCS) THEN
380 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
381 END IF
382 #endif /* ALLOW_OBCS */
383
384 #ifdef ALLOW_AUTODIFF_TAMC
385 #ifdef INCLUDE_CD_CODE
386 ELSE
387 DO j=1-OLy,sNy+OLy
388 DO i=1-OLx,sNx+OLx
389 guCD(i,j,k,bi,bj) = 0.0
390 gvCD(i,j,k,bi,bj) = 0.0
391 END DO
392 END DO
393 #endif /* INCLUDE_CD_CODE */
394 #endif /* ALLOW_AUTODIFF_TAMC */
395 ENDIF
396
397
398 C-- end of dynamics k loop (1:Nr)
399 ENDDO
400
401
402
403 C-- Implicit viscosity
404 IF (implicitViscosity.AND.momStepping) THEN
405 #ifdef ALLOW_AUTODIFF_TAMC
406 idkey = iikey + 3
407 CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
408 #endif /* ALLOW_AUTODIFF_TAMC */
409 CALL IMPLDIFF(
410 I bi, bj, iMin, iMax, jMin, jMax,
411 I deltaTmom, KappaRU,recip_HFacW,
412 U gUNm1,
413 I myThid )
414 #ifdef ALLOW_AUTODIFF_TAMC
415 idkey = iikey + 4
416 CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
417 #endif /* ALLOW_AUTODIFF_TAMC */
418 CALL IMPLDIFF(
419 I bi, bj, iMin, iMax, jMin, jMax,
420 I deltaTmom, KappaRV,recip_HFacS,
421 U gVNm1,
422 I myThid )
423
424 #ifdef ALLOW_OBCS
425 C-- Apply open boundary conditions
426 IF (useOBCS) THEN
427 DO K=1,Nr
428 CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid )
429 ENDDO
430 END IF
431 #endif /* ALLOW_OBCS */
432
433 #ifdef INCLUDE_CD_CODE
434 #ifdef ALLOW_AUTODIFF_TAMC
435 idkey = iikey + 5
436 CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
437 #endif /* ALLOW_AUTODIFF_TAMC */
438 CALL IMPLDIFF(
439 I bi, bj, iMin, iMax, jMin, jMax,
440 I deltaTmom, KappaRU,recip_HFacW,
441 U vVelD,
442 I myThid )
443 #ifdef ALLOW_AUTODIFF_TAMC
444 idkey = iikey + 6
445 CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
446 #endif /* ALLOW_AUTODIFF_TAMC */
447 CALL IMPLDIFF(
448 I bi, bj, iMin, iMax, jMin, jMax,
449 I deltaTmom, KappaRV,recip_HFacS,
450 U uVelD,
451 I myThid )
452 #endif /* INCLUDE_CD_CODE */
453 C-- End If implicitViscosity.AND.momStepping
454 ENDIF
455
456 Cjmc : add for phiHyd output <- but not working if multi tile per CPU
457 c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime)
458 c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN
459 c WRITE(suff,'(I10.10)') myIter+1
460 c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid)
461 c ENDIF
462 Cjmc(end)
463
464 #ifdef ALLOW_TIMEAVE
465 IF (taveFreq.GT.0.) THEN
466 CALL TIMEAVE_CUMUL_1T(phiHydtave, phiHyd, Nr,
467 I deltaTclock, bi, bj, myThid)
468 IF (ivdc_kappa.NE.0.) THEN
469 CALL TIMEAVE_CUMULATE(ConvectCountTave, ConvectCount, Nr,
470 I deltaTclock, bi, bj, myThid)
471 ENDIF
472 ENDIF
473 #endif /* ALLOW_TIMEAVE */
474
475 ENDDO
476 ENDDO
477
478 #ifndef DISABLE_DEBUGMODE
479 If (debugMode) THEN
480 CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
481 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
482 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
483 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
484 CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
485 CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
486 CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
487 CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
488 CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
489 CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
490 CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
491 CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
492 CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
493 CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
494 ENDIF
495 #endif
496
497 RETURN
498 END

  ViewVC Help
Powered by ViewVC 1.1.22