--- MITgcm/model/src/dynamics.F 1999/05/03 21:45:57 1.41 +++ MITgcm/model/src/dynamics.F 2001/03/25 22:33:52 1.66 @@ -1,4 +1,5 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.41 1999/05/03 21:45:57 adcroft Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.66 2001/03/25 22:33:52 heimbach Exp $ +C $Name: $ #include "CPP_OPTIONS.h" @@ -25,107 +26,99 @@ C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" -#include "CG2D.h" #include "PARAMS.h" #include "DYNVARS.h" +#include "GRID.h" + +#ifdef ALLOW_AUTODIFF_TAMC +# include "tamc.h" +# include "tamc_keys.h" +#endif /* ALLOW_AUTODIFF_TAMC */ + +#ifdef ALLOW_KPP +# include "KPP.h" +#endif + +#ifdef ALLOW_TIMEAVE +#include "TIMEAVE_STATV.h" +#endif C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of the routine. - INTEGER myThid _RL myTime INTEGER myIter + INTEGER myThid C == Local variables C xA, yA - Per block temporaries holding face areas C uTrans, vTrans, rTrans - Per block temporaries holding flow C transport -C rVel o uTrans: Zonal transport +C o uTrans: Zonal transport C o vTrans: Meridional transport C o rTrans: Vertical transport -C o rVel: Vertical velocity at upper and -C lower cell faces. C maskC,maskUp o maskC: land/water mask for tracer cells C o maskUp: land/water mask for W points -C aTerm, xTerm, cTerm - Work arrays for holding separate terms in -C mTerm, pTerm, tendency equations. -C fZon, fMer, fVer[STUV] o aTerm: Advection term -C o xTerm: Mixing term -C o cTerm: Coriolis term -C o mTerm: Metric term -C o pTerm: Pressure term -C o fZon: Zonal flux term -C o fMer: Meridional flux term -C o fVer: Vertical flux term - note fVer +C fVer[STUV] o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. -C rhoK, rhoKM1 - Density at current level, level above and level -C below. -C rhoKP1 -C buoyK, buoyKM1 - Buoyancy at current level and level above. +C rhoK, rhoKM1 - Density at current level, and level above C phiHyd - Hydrostatic part of the potential phiHydi. C In z coords phiHydiHyd is the hydrostatic -C pressure anomaly +C Potential (=pressure/rho0) anomaly C In p coords phiHydiHyd is the geopotential -C surface height -C anomaly. -C etaSurfX, - Holds surface elevation gradient in X and Y. -C etaSurfY -C K13, K23, K33 - Non-zero elements of small-angle approximation -C diffusion tensor. -C KapGM - Spatially varying Visbeck et. al mixing coeff. +C surface height anomaly. +C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean) +C phiSurfY or geopotentiel (atmos) in X and Y direction C KappaRT, - Total diffusion in vertical for T and S. C KappaRS (background + spatially varying, isopycnal term). C iMin, iMax - Ranges and sub-block indices on which calculations C jMin, jMax are applied. C bi, bj -C k, kUp, - Index for layer above and below. kUp and kDown -C kDown, kM1 are switched with layer to be the appropriate +C k, kup, - Index for layer above and below. kup and kDown +C kDown, km1 are switched with layer to be the appropriate C index into fVerTerm. _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL buoyKM1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL buoyK (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL rhotmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL etaSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL etaSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr) + _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + +C This is currently used by IVDC and Diagnostics + _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j - INTEGER k, kM1, kUp, kDown - LOGICAL BOTTOM_LAYER + INTEGER k, km1, kup, kDown +Cjmc : add for phiHyd output <- but not working if multi tile per CPU +c CHARACTER*(MAX_LEN_MBUF) suff +c LOGICAL DIFFERENT_MULTIPLE +c EXTERNAL DIFFERENT_MULTIPLE +Cjmc(end) + C--- The algorithm... C C "Correction Step" @@ -139,15 +132,14 @@ C "Calculation of Gs" C =================== C This is where all the accelerations and tendencies (ie. -C phiHydysics, parameterizations etc...) are calculated -C rVel = sum_r ( div. u[n] ) +C physics, parameterizations etc...) are calculated C rho = rho ( theta[n], salt[n] ) C b = b(rho, theta) C K31 = K31 ( rho ) -C Gu[n] = Gu( u[n], v[n], rVel, b, ... ) -C Gv[n] = Gv( u[n], v[n], rVel, b, ... ) -C Gt[n] = Gt( theta[n], u[n], v[n], rVel, K31, ... ) -C Gs[n] = Gs( salt[n], u[n], v[n], rVel, K31, ... ) +C Gu[n] = Gu( u[n], v[n], wVel, b, ... ) +C Gv[n] = Gv( u[n], v[n], wVel, b, ... ) +C Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... ) +C Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... ) C C "Time-stepping" or "Prediction" C ================================ @@ -171,6 +163,11 @@ C (1 + dt * K * d_zz) salt[n] = salt* C--- +#ifdef ALLOW_AUTODIFF_TAMC +C-- dummy statement to end declaration part + ikey = 1 +#endif /* ALLOW_AUTODIFF_TAMC */ + C-- Set up work arrays with valid (i.e. not NaN) values C These inital values do not alter the numerical results. They C just ensure that all memory references are to valid floating @@ -182,41 +179,61 @@ yA(i,j) = 0. _d 0 uTrans(i,j) = 0. _d 0 vTrans(i,j) = 0. _d 0 - aTerm(i,j) = 0. _d 0 - xTerm(i,j) = 0. _d 0 - cTerm(i,j) = 0. _d 0 - mTerm(i,j) = 0. _d 0 - pTerm(i,j) = 0. _d 0 - fZon(i,j) = 0. _d 0 - fMer(i,j) = 0. _d 0 - DO K=1,Nr - phiHyd (i,j,k) = 0. _d 0 - K13(i,j,k) = 0. _d 0 - K23(i,j,k) = 0. _d 0 - K33(i,j,k) = 0. _d 0 - KappaRT(i,j,k) = 0. _d 0 - KappaRS(i,j,k) = 0. _d 0 + DO k=1,Nr + phiHyd(i,j,k) = 0. _d 0 + KappaRU(i,j,k) = 0. _d 0 + KappaRV(i,j,k) = 0. _d 0 + sigmaX(i,j,k) = 0. _d 0 + sigmaY(i,j,k) = 0. _d 0 + sigmaR(i,j,k) = 0. _d 0 ENDDO rhoKM1 (i,j) = 0. _d 0 rhok (i,j) = 0. _d 0 - rhoKP1 (i,j) = 0. _d 0 - rhoTMP (i,j) = 0. _d 0 - buoyKM1(i,j) = 0. _d 0 - buoyK (i,j) = 0. _d 0 maskC (i,j) = 0. _d 0 + phiSurfX(i,j) = 0. _d 0 + phiSurfY(i,j) = 0. _d 0 ENDDO ENDDO +#ifdef ALLOW_AUTODIFF_TAMC +C-- HPF directive to help TAMC +CHPF$ INDEPENDENT +#endif /* ALLOW_AUTODIFF_TAMC */ + DO bj=myByLo(myThid),myByHi(myThid) + +#ifdef ALLOW_AUTODIFF_TAMC +C-- HPF directive to help TAMC +CHPF$ INDEPENDENT, NEW (rTrans,fVerT,fVerS,fVerU,fVerV +CHPF$& ,phiHyd,utrans,vtrans,maskc,xA,yA +CHPF$& ,KappaRT,KappaRS,KappaRU,KappaRV +CHPF$& ) +#endif /* ALLOW_AUTODIFF_TAMC */ + DO bi=myBxLo(myThid),myBxHi(myThid) +#ifdef ALLOW_AUTODIFF_TAMC + act1 = bi - myBxLo(myThid) + max1 = myBxHi(myThid) - myBxLo(myThid) + 1 + + act2 = bj - myByLo(myThid) + max2 = myByHi(myThid) - myByLo(myThid) + 1 + + act3 = myThid - 1 + max3 = nTx*nTy + + act4 = ikey_dynamics - 1 + + ikey = (act1 + 1) + act2*max1 + & + act3*max1*max2 + & + act4*max1*max2*max3 +#endif /* ALLOW_AUTODIFF_TAMC */ + C-- Set up work arrays that need valid initial values DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx rTrans(i,j) = 0. _d 0 - rVel (i,j,1) = 0. _d 0 - rVel (i,j,2) = 0. _d 0 fVerT (i,j,1) = 0. _d 0 fVerT (i,j,2) = 0. _d 0 fVerS (i,j,1) = 0. _d 0 @@ -225,11 +242,17 @@ fVerU (i,j,2) = 0. _d 0 fVerV (i,j,1) = 0. _d 0 fVerV (i,j,2) = 0. _d 0 - phiHyd(i,j,1) = 0. _d 0 - K13 (i,j,1) = 0. _d 0 - K23 (i,j,1) = 0. _d 0 - K33 (i,j,1) = 0. _d 0 - KapGM (i,j) = GMkbackground + ENDDO + ENDDO + + DO k=1,Nr + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx +C This is currently also used by IVDC and Diagnostics + ConvectCount(i,j,k) = 0. + KappaRT(i,j,k) = 0. _d 0 + KappaRS(i,j,k) = 0. _d 0 + ENDDO ENDDO ENDDO @@ -239,271 +262,459 @@ jMax = sNy+OLy - K = 1 - BOTTOM_LAYER = K .EQ. Nr +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE uvel(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Start of diagnostic loop + DO k=Nr,1,-1 + +#ifdef ALLOW_AUTODIFF_TAMC +C? Patrick, is this formula correct now that we change the loop range? +C? Do we still need this? +cph kkey formula corrected. +cph Needed for rhok, rhokm1, in the case useGMREDI. + kkey = (ikey-1)*Nr + k +CADJ STORE rhokm1(:,:) = comlev1_bibj_k , key = kkey, byte = isbyte +CADJ STORE rhok (:,:) = comlev1_bibj_k , key = kkey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + +C-- Integrate continuity vertically for vertical velocity + CALL INTEGRATE_FOR_W( + I bi, bj, k, uVel, vVel, + O wVel, + I myThid ) + +#ifdef ALLOW_OBCS +#ifdef ALLOW_NONHYDROSTATIC +C-- Apply OBC to W if in N-H mode + IF (useOBCS.AND.nonHydrostatic) THEN + CALL OBCS_APPLY_W( bi, bj, k, wVel, myThid ) + ENDIF +#endif /* ALLOW_NONHYDROSTATIC */ +#endif /* ALLOW_OBCS */ + +C-- Calculate gradients of potential density for isoneutral +C slope terms (e.g. GM/Redi tensor or IVDC diffusivity) +c IF ( k.GT.1 .AND. (useGMRedi.OR.ivdc_kappa.NE.0.) ) THEN + IF ( useGMRedi .OR. (k.GT.1 .AND. ivdc_kappa.NE.0.) ) THEN + CALL FIND_RHO( + I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType, + I theta, salt, + O rhoK, + I myThid ) + IF (k.GT.1) CALL FIND_RHO( + I bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType, + I theta, salt, + O rhoKm1, + I myThid ) + CALL GRAD_SIGMA( + I bi, bj, iMin, iMax, jMin, jMax, k, + I rhoK, rhoKm1, rhoK, + O sigmaX, sigmaY, sigmaR, + I myThid ) + ENDIF + +C-- Implicit Vertical Diffusion for Convection +c ==> should use sigmaR !!! + IF (k.GT.1 .AND. ivdc_kappa.NE.0.) THEN + CALL CALC_IVDC( + I bi, bj, iMin, iMax, jMin, jMax, k, + I rhoKm1, rhoK, + U ConvectCount, KappaRT, KappaRS, + I myTime, myIter, myThid) + ENDIF + +C-- end of diagnostic k loop (Nr:1) + ENDDO -#ifdef DO_PIPELINED_CORRECTION_STEP -C-- Calculate gradient of surface pressure - CALL CALC_GRAD_ETA_SURF( - I bi,bj,iMin,iMax,jMin,jMax, - O etaSurfX,etaSurfY, - I myThid) -C-- Update fields in top level according to tendency terms - CALL CORRECTION_STEP( - I bi,bj,iMin,iMax,jMin,jMax,K, - I etaSurfX,etaSurfY,myTime,myThid) - IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K, myThid ) - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Update fields in layer below according to tendency terms - CALL CORRECTION_STEP( - I bi,bj,iMin,iMax,jMin,jMax,K+1, - I etaSurfX,etaSurfY,myTime,myThid) - IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid ) +#ifdef ALLOW_OBCS +C-- Calculate future values on open boundaries + IF (useOBCS) THEN + CALL OBCS_CALC( bi, bj, myTime+deltaT, + I uVel, vVel, wVel, theta, salt, + I myThid ) ENDIF -#endif -C-- Density of 1st level (below W(1)) reference to level 1 -#ifdef INCLUDE_FIND_RHO_CALL - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoKm1, - I myThid ) -#endif +#endif /* ALLOW_OBCS */ - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Check static stability with layer below -C-- and mix as needed. -#ifdef INCLUDE_FIND_RHO_CALL - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, - O rhoKp1, - I myThid ) -#endif -#ifdef INCLUDE_CONVECT_CALL - CALL CONVECT( - I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoKm1,rhoKp1, - I myTime,myIter,myThid) -#endif -C-- Recompute density after mixing -#ifdef INCLUDE_FIND_RHO_CALL - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoKm1, - I myThid ) -#endif +C-- Determines forcing terms based on external fields +C relaxation terms, etc. + CALL EXTERNAL_FORCING_SURF( + I bi, bj, iMin, iMax, jMin, jMax, + I myThid ) + +#ifdef ALLOW_GMREDI +C-- Calculate iso-neutral slopes for the GM/Redi parameterisation + IF (useGMRedi) THEN + DO k=1,Nr + CALL GMREDI_CALC_TENSOR( + I bi, bj, iMin, iMax, jMin, jMax, k, + I sigmaX, sigmaY, sigmaR, + I myThid ) + ENDDO +#ifdef ALLOW_AUTODIFF_TAMC + ELSE + DO k=1, Nr + CALL GMREDI_CALC_TENSOR_DUMMY( + I bi, bj, iMin, iMax, jMin, jMax, k, + I sigmaX, sigmaY, sigmaR, + I myThid ) + ENDDO +#endif /* ALLOW_AUTODIFF_TAMC */ ENDIF -C-- Calculate buoyancy - CALL CALC_BUOYANCY( - I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1, - O buoyKm1, - I myThid ) -C-- Integrate hydrostatic balance for phiHyd with BC of -C-- phiHyd(z=0)=0 - CALL CALC_PHI_HYD( - I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyKm1, - U phiHyd, - I myThid ) - - DO K=2,Nr - BOTTOM_LAYER = K .EQ. Nr -#ifdef DO_PIPELINED_CORRECTION_STEP - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Update fields in layer below according to tendency terms - CALL CORRECTION_STEP( - I bi,bj,iMin,iMax,jMin,jMax,K+1, - I etaSurfX,etaSurfY,myTime,myThid) - IF (openBoundaries) CALL APPLY_OBCS1( bi, bj, K+1, myThid ) - ENDIF -#endif -C-- Density of K level (below W(K)) reference to K level -#ifdef INCLUDE_FIND_RHO_CALL - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoK, - I myThid ) -#endif - IF ( .NOT. BOTTOM_LAYER ) THEN -C-- Check static stability with layer below and mix as needed. -C-- Density of K+1 level (below W(K+1)) reference to K level. -#ifdef INCLUDE_FIND_RHO_CALL - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K+1, K, eosType, - O rhoKp1, - I myThid ) -#endif -#ifdef INCLUDE_CONVECT_CALL - CALL CONVECT( - I bi,bj,iMin,iMax,jMin,jMax,K+1,rhoK,rhoKp1, - I myTime,myIter,myThid) -#endif -C-- Recompute density after mixing -#ifdef INCLUDE_FIND_RHO_CALL - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType, - O rhoK, - I myThid ) -#endif - ENDIF -C-- Calculate buoyancy - CALL CALC_BUOYANCY( - I bi,bj,iMin,iMax,jMin,jMax,K,rhoK, - O buoyK, - I myThid ) -C-- Integrate hydrostatic balance for phiHyd with BC of -C-- phiHyd(z=0)=0 - CALL CALC_PHI_HYD( - I bi,bj,iMin,iMax,jMin,jMax,K,buoyKm1,buoyK, - U phiHyd, - I myThid ) -C-- Calculate iso-neutral slopes for the GM/Redi parameterisation -#ifdef INCLUDE_FIND_RHO_CALL - CALL FIND_RHO( - I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType, - O rhoTmp, - I myThid ) -#endif -#ifdef INCLUDE_CALC_ISOSLOPES_CALL - CALL CALC_ISOSLOPES( - I bi, bj, iMin, iMax, jMin, jMax, K, - I rhoKm1, rhoK, rhotmp, - O K13, K23, K33, KapGM, - I myThid ) -#endif - DO J=jMin,jMax - DO I=iMin,iMax -#ifdef INCLUDE_FIND_RHO_CALL - rhoKm1 (I,J) = rhoK(I,J) -#endif - buoyKm1(I,J) = buoyK(I,J) +#endif /* ALLOW_GMREDI */ + +#ifdef ALLOW_KPP +C-- Compute KPP mixing coefficients + IF (useKPP) THEN + CALL KPP_CALC( + I bi, bj, myTime, myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + ELSE + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + KPPhbl (i,j,bi,bj) = 1.0 + KPPfrac(i,j,bi,bj) = 0.0 + DO k = 1,Nr + KPPghat (i,j,k,bi,bj) = 0.0 + KPPviscAz (i,j,k,bi,bj) = viscAz + KPPdiffKzT(i,j,k,bi,bj) = diffKzT + KPPdiffKzS(i,j,k,bi,bj) = diffKzS + ENDDO + ENDDO ENDDO - ENDDO - ENDDO ! K +#endif /* ALLOW_AUTODIFF_TAMC */ + ENDIF + +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE KPPghat (:,:,:,bi,bj) +CADJ & , KPPviscAz (:,:,:,bi,bj) +CADJ & , KPPdiffKzT(:,:,:,bi,bj) +CADJ & , KPPdiffKzS(:,:,:,bi,bj) +CADJ & , KPPfrac (:,: ,bi,bj) +CADJ & = comlev1_bibj, key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + +#endif /* ALLOW_KPP */ + +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE KappaRT(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE KappaRS(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + +#ifdef ALLOW_AIM +C AIM - atmospheric intermediate model, physics package code. +C note(jmc) : phiHyd=0 at this point but is not really used in Molteni Physics + IF ( useAIM ) THEN + CALL TIMER_START('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid) + CALL AIM_DO_ATMOS_PHYSICS( phiHyd, myTime, myThid ) + CALL TIMER_STOP ('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid) + ENDIF +#endif /* ALLOW_AIM */ + - DO K = Nr, 1, -1 +C-- Start of thermodynamics loop + DO k=Nr,1,-1 - kM1 =max(1,k-1) ! Points to level above k (=k-1) - kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above - kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer - iMin = 1-OLx+2 - iMax = sNx+OLx-1 - jMin = 1-OLy+2 - jMax = sNy+OLy-1 +C-- km1 Points to level above k (=k-1) +C-- kup Cycles through 1,2 to point to layer above +C-- kDown Cycles through 2,1 to point to current layer + + km1 = MAX(1,k-1) + kup = 1+MOD(k+1,2) + kDown= 1+MOD(k,2) + + iMin = 1-OLx+2 + iMax = sNx+OLx-1 + jMin = 1-OLy+2 + jMax = sNy+OLy-1 + +#ifdef ALLOW_AUTODIFF_TAMC +C? Patrick Is this formula correct? +cph Yes, but I rewrote it. +cph Also, the KappaR? need the index k! + kkey = (ikey-1)*Nr + k +CADJ STORE KappaRT(:,:,k) = comlev1_bibj_k, key = kkey, byte = isbyte +CADJ STORE KappaRS(:,:,k) = comlev1_bibj_k, key = kkey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ C-- Get temporary terms used by tendency routines CALL CALC_COMMON_FACTORS ( - I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, - O xA,yA,uTrans,vTrans,rTrans,rVel,maskC,maskUp, + I bi,bj,iMin,iMax,jMin,jMax,k,km1,kup,kDown, + O xA,yA,uTrans,vTrans,rTrans,maskC,maskUp, I myThid) + #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL C-- Calculate the total vertical diffusivity CALL CALC_DIFFUSIVITY( - I bi,bj,iMin,iMax,jMin,jMax,K, - I maskC,maskUp,KapGM,K33, - O KappaRT,KappaRS, + I bi,bj,iMin,iMax,jMin,jMax,k, + I maskC,maskup, + O KappaRT,KappaRS,KappaRU,KappaRV, I myThid) #endif -C-- Calculate accelerations in the momentum equations - IF ( momStepping ) THEN - CALL CALC_MOM_RHS( - I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, - I xA,yA,uTrans,vTrans,rTrans,rVel,maskC, - I phiHyd, - U aTerm,xTerm,cTerm,mTerm,pTerm, - U fZon, fMer, fVerU, fVerV, - I myTime, myThid) - ENDIF -C-- Calculate active tracer tendencies + +C-- Calculate active tracer tendencies (gT,gS,...) +C and step forward storing result in gTnm1, gSnm1, etc. IF ( tempStepping ) THEN - CALL CALC_GT( - I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, + CALL CALC_GT( + I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, - I K13,K23,KappaRT,KapGM, - U aTerm,xTerm,fZon,fMer,fVerT, + I KappaRT, + U fVerT, I myTime, myThid) + CALL TIMESTEP_TRACER( + I bi,bj,iMin,iMax,jMin,jMax,k, + I theta, gT, + U gTnm1, + I myIter, myThid) ENDIF IF ( saltStepping ) THEN - CALL CALC_GS( - I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, + CALL CALC_GS( + I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown, I xA,yA,uTrans,vTrans,rTrans,maskUp,maskC, - I K13,K23,KappaRS,KapGM, - U aTerm,xTerm,fZon,fMer,fVerS, + I KappaRS, + U fVerS, I myTime, myThid) + CALL TIMESTEP_TRACER( + I bi,bj,iMin,iMax,jMin,jMax,k, + I salt, gS, + U gSnm1, + I myIter, myThid) ENDIF -C-- Prediction step (step forward all model variables) - CALL TIMESTEP( - I bi,bj,iMin,iMax,jMin,jMax,K, - I myThid) + +#ifdef ALLOW_OBCS C-- Apply open boundary conditions - IF (openBoundaries) CALL APPLY_OBCS2( bi, bj, K, myThid ) + IF (useOBCS) THEN + CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid ) + END IF +#endif /* ALLOW_OBCS */ + C-- Freeze water - IF (allowFreezing) - & CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, K, myThid ) -C-- Diagnose barotropic divergence of predicted fields - CALL CALC_DIV_GHAT( - I bi,bj,iMin,iMax,jMin,jMax,K, - I xA,yA, - I myThid) - -C-- Cumulative diagnostic calculations (ie. time-averaging) -#ifdef INCLUDE_DIAGNOSTICS_INTERFACE_CODE - IF (taveFreq.GT.0.) THEN - CALL DO_TIME_AVERAGES( - I myTime, myIter, bi, bj, K, kUp, kDown, - I K13, K23, rVel, KapGM, - I myThid ) - ENDIF -#endif + IF (allowFreezing) THEN +#ifdef ALLOW_AUTODIFF_TAMC +CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k +CADJ & , key = kkey, byte = isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid ) + END IF + +C-- end of thermodynamic k loop (Nr:1) + ENDDO + - ENDDO ! K +#ifdef ALLOW_AUTODIFF_TAMC +C? Patrick? What about this one? +cph Keys iikey and idkey don't seem to be needed +cph since storing occurs on different tape for each +cph impldiff call anyways. +cph Thus, common block comlev1_impl isn't needed either. +cph Storing below needed in the case useGMREDI. + iikey = (ikey-1)*maximpl +#endif /* ALLOW_AUTODIFF_TAMC */ C-- Implicit diffusion IF (implicitDiffusion) THEN - CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax, - I KappaRT,KappaRS, - I myThid ) + + IF (tempStepping) THEN +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 1 +CADJ STORE gTNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTtracer, KappaRT, recip_HFacC, + U gTNm1, + I myThid ) + ENDIF + + IF (saltStepping) THEN +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 2 +CADJ STORE gSNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTtracer, KappaRS, recip_HFacC, + U gSNm1, + I myThid ) + ENDIF + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + DO K=1,Nr + CALL OBCS_APPLY_TS( bi, bj, k, gTnm1, gSnm1, myThid ) + ENDDO + END IF +#endif /* ALLOW_OBCS */ + +C-- End If implicitDiffusion + ENDIF + +C-- Start computation of dynamics + iMin = 1-OLx+2 + iMax = sNx+OLx-1 + jMin = 1-OLy+2 + jMax = sNy+OLy-1 + +C-- Explicit part of the Surface Potentiel Gradient (add in TIMESTEP) +C (note: this loop will be replaced by CALL CALC_GRAD_ETA) + IF (implicSurfPress.NE.1.) THEN + CALL CALC_GRAD_PHI_SURF( + I bi,bj,iMin,iMax,jMin,jMax, + I etaN, + O phiSurfX,phiSurfY, + I myThid ) + ENDIF + +C-- Start of dynamics loop + DO k=1,Nr + +C-- km1 Points to level above k (=k-1) +C-- kup Cycles through 1,2 to point to layer above +C-- kDown Cycles through 2,1 to point to current layer + + km1 = MAX(1,k-1) + kup = 1+MOD(k+1,2) + kDown= 1+MOD(k,2) + +C-- Integrate hydrostatic balance for phiHyd with BC of +C phiHyd(z=0)=0 +C distinguishe between Stagger and Non Stagger time stepping + IF (staggerTimeStep) THEN + CALL CALC_PHI_HYD( + I bi,bj,iMin,iMax,jMin,jMax,k, + I gTnm1, gSnm1, + U phiHyd, + I myThid ) + ELSE + CALL CALC_PHI_HYD( + I bi,bj,iMin,iMax,jMin,jMax,k, + I theta, salt, + U phiHyd, + I myThid ) + ENDIF + +C-- Calculate accelerations in the momentum equations (gU, gV, ...) +C and step forward storing the result in gUnm1, gVnm1, etc... + IF ( momStepping ) THEN + CALL CALC_MOM_RHS( + I bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown, + I phiHyd,KappaRU,KappaRV, + U fVerU, fVerV, + I myTime, myThid) + CALL TIMESTEP( + I bi,bj,iMin,iMax,jMin,jMax,k, + I phiHyd, phiSurfX, phiSurfY, + I myIter, myThid) + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) + END IF +#endif /* ALLOW_OBCS */ + +#ifdef ALLOW_AUTODIFF_TAMC +#ifdef INCLUDE_CD_CODE + ELSE + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + guCD(i,j,k,bi,bj) = 0.0 + gvCD(i,j,k,bi,bj) = 0.0 + END DO + END DO +#endif /* INCLUDE_CD_CODE */ +#endif /* ALLOW_AUTODIFF_TAMC */ + ENDIF + + +C-- end of dynamics k loop (1:Nr) + ENDDO + + + +C-- Implicit viscosity + IF (implicitViscosity.AND.momStepping) THEN +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 3 +CADJ STORE gUNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRU,recip_HFacW, + U gUNm1, + I myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 4 +CADJ STORE gVNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRV,recip_HFacS, + U gVNm1, + I myThid ) + +#ifdef ALLOW_OBCS +C-- Apply open boundary conditions + IF (useOBCS) THEN + DO K=1,Nr + CALL OBCS_APPLY_UV( bi, bj, k, gUnm1, gVnm1, myThid ) + ENDDO + END IF +#endif /* ALLOW_OBCS */ + +#ifdef INCLUDE_CD_CODE +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 5 +CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRU,recip_HFacW, + U vVelD, + I myThid ) +#ifdef ALLOW_AUTODIFF_TAMC + idkey = iikey + 6 +CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte +#endif /* ALLOW_AUTODIFF_TAMC */ + CALL IMPLDIFF( + I bi, bj, iMin, iMax, jMin, jMax, + I deltaTmom, KappaRV,recip_HFacS, + U uVelD, + I myThid ) +#endif /* INCLUDE_CD_CODE */ +C-- End If implicitViscosity.AND.momStepping ENDIF +Cjmc : add for phiHyd output <- but not working if multi tile per CPU +c IF ( DIFFERENT_MULTIPLE(dumpFreq,myTime+deltaTClock,myTime) +c & .AND. buoyancyRelation .eq. 'ATMOSPHERIC' ) THEN +c WRITE(suff,'(I10.10)') myIter+1 +c CALL WRITE_FLD_XYZ_RL('PH.',suff,phiHyd,myIter+1,myThid) +c ENDIF +Cjmc(end) + +#ifdef ALLOW_TIMEAVE + IF (taveFreq.GT.0.) THEN + CALL TIMEAVE_CUMULATE(phiHydtave, phiHyd, Nr, + I deltaTclock, bi, bj, myThid) + IF (ivdc_kappa.NE.0.) THEN + CALL TIMEAVE_CUMULATE(ConvectCountTave, ConvectCount, Nr, + I deltaTclock, bi, bj, myThid) + ENDIF + ENDIF +#endif /* ALLOW_TIMEAVE */ + ENDDO ENDDO -C write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)), -C & maxval(cg2d_x(1:sNx,1:sNy,:,:)) -C write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.), -C & maxval(uVel(1:sNx,1:sNy,1,:,:),mask=uVel(1:sNx,1:sNy,1,:,:).NE.0.) -C write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.), -C & maxval(vVel(1:sNx,1:sNy,1,:,:),mask=vVel(1:sNx,1:sNy,1,:,:).NE.0.) -C write(0,*) 'dynamics: rVel(1) ', -C & minval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.), -C & maxval(rVel(1:sNx,1:sNy,1),mask=rVel(1:sNx,1:sNy,1).NE.0.) -C write(0,*) 'dynamics: rVel(2) ', -C & minval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.), -C & maxval(rVel(1:sNx,1:sNy,2),mask=rVel(1:sNx,1:sNy,2).NE.0.) -cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)), -cblk & maxval(K13(1:sNx,1:sNy,:)) -cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)), -cblk & maxval(K23(1:sNx,1:sNy,:)) -cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)), -cblk & maxval(K33(1:sNx,1:sNy,:)) -C write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)), -C & maxval(gT(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)), -C & maxval(Theta(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)), -C & maxval(gS(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)), -C & maxval(salt(1:sNx,1:sNy,:,:,:)) -C write(0,*) 'dynamics: phiHyd ',minval(phiHyd/(Gravity*Rhonil),mask=phiHyd.NE.0.), -C & maxval(phiHyd/(Gravity*Rhonil)) -C CALL PLOT_FIELD_XYZRL( gU, ' GU exiting dyanmics ' , -C &Nr, 1, myThid ) -C CALL PLOT_FIELD_XYZRL( gV, ' GV exiting dyanmics ' , -C &Nr, 1, myThid ) -C CALL PLOT_FIELD_XYZRL( gS, ' GS exiting dyanmics ' , -C &Nr, 1, myThid ) -C CALL PLOT_FIELD_XYZRL( gT, ' GT exiting dyanmics ' , -C &Nr, 1, myThid ) -C CALL PLOT_FIELD_XYZRL( phiHyd, ' phiHyd exiting dyanmics ' , -C &Nr, 1, myThid ) - - RETURN END