/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.9 by cnh, Mon May 25 21:29:45 1998 UTC revision 1.112 by heimbach, Mon Jan 24 17:00:17 2005 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
6    
7    CBOP
8    C     !ROUTINE: DYNAMICS
9    C     !INTERFACE:
10        SUBROUTINE DYNAMICS(myTime, myIter, myThid)        SUBROUTINE DYNAMICS(myTime, myIter, myThid)
11  C     /==========================================================\  C     !DESCRIPTION: \bv
12  C     | SUBROUTINE DYNAMICS                                      |  C     *==========================================================*
13  C     | o Controlling routine for the explicit part of the model |  C     | SUBROUTINE DYNAMICS                                      
14  C     |   dynamics.                                              |  C     | o Controlling routine for the explicit part of the model  
15  C     |==========================================================|  C     |   dynamics.                                              
16  C     | This routine evaluates the "dynamics" terms for each     |  C     *==========================================================*
17  C     | block of ocean in turn. Because the blocks of ocean have |  C     | This routine evaluates the "dynamics" terms for each      
18  C     | overlap regions they are independent of one another.     |  C     | block of ocean in turn. Because the blocks of ocean have  
19  C     | If terms involving lateral integrals are needed in this  |  C     | overlap regions they are independent of one another.      
20  C     | routine care will be needed. Similarly finite-difference |  C     | If terms involving lateral integrals are needed in this  
21  C     | operations with stencils wider than the overlap region   |  C     | routine care will be needed. Similarly finite-difference  
22  C     | require special consideration.                           |  C     | operations with stencils wider than the overlap region    
23  C     | Notes                                                    |  C     | require special consideration.                            
24  C     | =====                                                    |  C     | The algorithm...
25  C     | C*P* comments indicating place holders for which code is |  C     |
26  C     |      presently being developed.                          |  C     | "Correction Step"
27  C     \==========================================================/  C     | =================
28    C     | Here we update the horizontal velocities with the surface
29    C     | pressure such that the resulting flow is either consistent
30    C     | with the free-surface evolution or the rigid-lid:
31    C     |   U[n] = U* + dt x d/dx P
32    C     |   V[n] = V* + dt x d/dy P
33    C     |
34    C     | "Calculation of Gs"
35    C     | ===================
36    C     | This is where all the accelerations and tendencies (ie.
37    C     | physics, parameterizations etc...) are calculated
38    C     |   rho = rho ( theta[n], salt[n] )
39    C     |   b   = b(rho, theta)
40    C     |   K31 = K31 ( rho )
41    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
42    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
43    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
44    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
45    C     |
46    C     | "Time-stepping" or "Prediction"
47    C     | ================================
48    C     | The models variables are stepped forward with the appropriate
49    C     | time-stepping scheme (currently we use Adams-Bashforth II)
50    C     | - For momentum, the result is always *only* a "prediction"
51    C     | in that the flow may be divergent and will be "corrected"
52    C     | later with a surface pressure gradient.
53    C     | - Normally for tracers the result is the new field at time
54    C     | level [n+1} *BUT* in the case of implicit diffusion the result
55    C     | is also *only* a prediction.
56    C     | - We denote "predictors" with an asterisk (*).
57    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
58    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
59    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
61    C     | With implicit diffusion:
62    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
64    C     |   (1 + dt * K * d_zz) theta[n] = theta*
65    C     |   (1 + dt * K * d_zz) salt[n] = salt*
66    C     |
67    C     *==========================================================*
68    C     \ev
69    C     !USES:
70          IMPLICIT NONE
71  C     == Global variables ===  C     == Global variables ===
72  #include "SIZE.h"  #include "SIZE.h"
73  #include "EEPARAMS.h"  #include "EEPARAMS.h"
 #include "CG2D.h"  
74  #include "PARAMS.h"  #include "PARAMS.h"
75  #include "DYNVARS.h"  #include "DYNVARS.h"
76    #ifdef ALLOW_CD_CODE
77    #include "CD_CODE_VARS.h"
78    #endif
79    #include "GRID.h"
80    #ifdef ALLOW_AUTODIFF_TAMC
81    # include "tamc.h"
82    # include "tamc_keys.h"
83    # include "FFIELDS.h"
84    # include "EOS.h"
85    # ifdef ALLOW_KPP
86    #  include "KPP.h"
87    # endif
88    #endif /* ALLOW_AUTODIFF_TAMC */
89    
90    C     !CALLING SEQUENCE:
91    C     DYNAMICS()
92    C      |
93    C      |-- CALC_GRAD_PHI_SURF
94    C      |
95    C      |-- CALC_VISCOSITY
96    C      |
97    C      |-- CALC_PHI_HYD  
98    C      |
99    C      |-- MOM_FLUXFORM  
100    C      |
101    C      |-- MOM_VECINV    
102    C      |
103    C      |-- TIMESTEP      
104    C      |
105    C      |-- OBCS_APPLY_UV
106    C      |
107    C      |-- IMPLDIFF      
108    C      |
109    C      |-- OBCS_APPLY_UV
110    C      |
111    C      |-- CALL TIMEAVE_CUMUL_1T
112    C      |-- CALL DEBUG_STATS_RL
113    
114    C     !INPUT/OUTPUT PARAMETERS:
115  C     == Routine arguments ==  C     == Routine arguments ==
116  C     myTime - Current time in simulation  C     myTime - Current time in simulation
117  C     myIter - Current iteration number in simulation  C     myIter - Current iteration number in simulation
118  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
       INTEGER myThid  
119        _RL myTime        _RL myTime
120        INTEGER myIter        INTEGER myIter
121          INTEGER myThid
122    
123    C     !LOCAL VARIABLES:
124  C     == Local variables  C     == Local variables
125  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[STUV]               o fVer: Vertical flux term - note fVer
 C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  
 C                              o uTrans: Zonal transport  
 C                              o vTrans: Meridional transport  
 C                              o wTrans: Vertical transport  
 C     maskC,maskUp             o maskC: land/water mask for tracer cells  
 C                              o maskUp: land/water mask for W points  
 C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  
 C     mTerm, pTerm,            tendency equations.  
 C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  
 C                              o xTerm: Mixing term  
 C                              o cTerm: Coriolis term  
 C                              o mTerm: Metric term  
 C                              o pTerm: Pressure term  
 C                              o fZon: Zonal flux term  
 C                              o fMer: Meridional flux term  
 C                              o fVer: Vertical flux term - note fVer  
126  C                                      is "pipelined" in the vertical  C                                      is "pipelined" in the vertical
127  C                                      so we need an fVer for each  C                                      so we need an fVer for each
128  C                                      variable.  C                                      variable.
129  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     phiHydC    :: hydrostatic potential anomaly at cell center
130  C     jMin, jMax   are applied.  C                   In z coords phiHyd is the hydrostatic potential
131    C                      (=pressure/rho0) anomaly
132    C                   In p coords phiHyd is the geopotential height anomaly.
133    C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
134    C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
135    C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
136    C     phiSurfY             or geopotential (atmos) in X and Y direction
137    C     guDissip   :: dissipation tendency (all explicit terms), u component
138    C     gvDissip   :: dissipation tendency (all explicit terms), v component
139    C     iMin, iMax     - Ranges and sub-block indices on which calculations
140    C     jMin, jMax       are applied.
141  C     bi, bj  C     bi, bj
142  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
143  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
144  C                          into fVerTerm  C                      index into fVerTerm.
145        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
146        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
147        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
148        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
149        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
150        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
151        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
152        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
153        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL guDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
154        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL gvDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
155        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
156        _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
157        _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL K13   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K23   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL K33   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
158        INTEGER iMin, iMax        INTEGER iMin, iMax
159        INTEGER jMin, jMax        INTEGER jMin, jMax
160        INTEGER bi, bj        INTEGER bi, bj
161        INTEGER i, j        INTEGER i, j
162        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
163    
164          LOGICAL  DIFFERENT_MULTIPLE
165          EXTERNAL DIFFERENT_MULTIPLE
166    
167    C---    The algorithm...
168    C
169    C       "Correction Step"
170    C       =================
171    C       Here we update the horizontal velocities with the surface
172    C       pressure such that the resulting flow is either consistent
173    C       with the free-surface evolution or the rigid-lid:
174    C         U[n] = U* + dt x d/dx P
175    C         V[n] = V* + dt x d/dy P
176    C
177    C       "Calculation of Gs"
178    C       ===================
179    C       This is where all the accelerations and tendencies (ie.
180    C       physics, parameterizations etc...) are calculated
181    C         rho = rho ( theta[n], salt[n] )
182    C         b   = b(rho, theta)
183    C         K31 = K31 ( rho )
184    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
185    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
186    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
187    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
188    C
189    C       "Time-stepping" or "Prediction"
190    C       ================================
191    C       The models variables are stepped forward with the appropriate
192    C       time-stepping scheme (currently we use Adams-Bashforth II)
193    C       - For momentum, the result is always *only* a "prediction"
194    C       in that the flow may be divergent and will be "corrected"
195    C       later with a surface pressure gradient.
196    C       - Normally for tracers the result is the new field at time
197    C       level [n+1} *BUT* in the case of implicit diffusion the result
198    C       is also *only* a prediction.
199    C       - We denote "predictors" with an asterisk (*).
200    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
201    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
202    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
203    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
204    C       With implicit diffusion:
205    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
206    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
207    C         (1 + dt * K * d_zz) theta[n] = theta*
208    C         (1 + dt * K * d_zz) salt[n] = salt*
209    C---
210    CEOP
211    
212    C-- Call to routine for calculation of
213    C   Eliassen-Palm-flux-forced U-tendency,
214    C   if desired:
215    #ifdef INCLUDE_EP_FORCING_CODE
216          CALL CALC_EP_FORCING(myThid)
217    #endif
218    
219    #ifdef ALLOW_AUTODIFF_TAMC
220    C--   HPF directive to help TAMC
221    CHPF$ INDEPENDENT
222    #endif /* ALLOW_AUTODIFF_TAMC */
223    
224          DO bj=myByLo(myThid),myByHi(myThid)
225    
226    #ifdef ALLOW_AUTODIFF_TAMC
227    C--    HPF directive to help TAMC
228    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
229    CHPF$&                  ,phiHydF
230    CHPF$&                  ,KappaRU,KappaRV
231    CHPF$&                  )
232    #endif /* ALLOW_AUTODIFF_TAMC */
233    
234           DO bi=myBxLo(myThid),myBxHi(myThid)
235    
236    #ifdef ALLOW_AUTODIFF_TAMC
237              act1 = bi - myBxLo(myThid)
238              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
239              act2 = bj - myByLo(myThid)
240              max2 = myByHi(myThid) - myByLo(myThid) + 1
241              act3 = myThid - 1
242              max3 = nTx*nTy
243              act4 = ikey_dynamics - 1
244              idynkey = (act1 + 1) + act2*max1
245         &                      + act3*max1*max2
246         &                      + act4*max1*max2*max3
247    #endif /* ALLOW_AUTODIFF_TAMC */
248    
249  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
250  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
251  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
252  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
253  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0. _d 0  
         yA(i,j)      = 0. _d 0  
         uTrans(i,j)  = 0. _d 0  
         vTrans(i,j)  = 0. _d 0  
         aTerm(i,j)   = 0. _d 0  
         xTerm(i,j)   = 0. _d 0  
         cTerm(i,j)   = 0. _d 0  
         mTerm(i,j)   = 0. _d 0  
         pTerm(i,j)   = 0. _d 0  
         fZon(i,j)    = 0. _d 0  
         fMer(i,j)    = 0. _d 0  
         DO K=1,nZ  
          pH (i,j,k)  = 0. _d 0  
          K13(i,j,k) = 0. _d 0  
          K23(i,j,k) = 0. _d 0  
          K33(i,j,k) = 0. _d 0  
         ENDDO  
         rhokm1(i,j)  = 0. _d 0  
         rhokp1(i,j)  = 0. _d 0  
        ENDDO  
       ENDDO  
254    
255        DO bj=myByLo(myThid),myByHi(myThid)          DO k=1,Nr
256         DO bi=myBxLo(myThid),myBxHi(myThid)           DO j=1-OLy,sNy+OLy
257              DO i=1-OLx,sNx+OLx
258  C--     Boundary condition on hydrostatic pressure is pH(z=0)=0             KappaRU(i,j,k) = 0. _d 0
259          DO j=1-OLy,sNy+OLy             KappaRV(i,j,k) = 0. _d 0
260           DO i=1-OLx,sNx+OLx  #ifdef ALLOW_AUTODIFF_TAMC
261            pH(i,j,1) = 0. _d 0  cph(
262            K13(i,j,1) = 0. _d 0  c--   need some re-initialisation here to break dependencies
263            K23(i,j,1) = 0. _d 0  cph)
264            K33(i,j,1) = 0. _d 0             gu(i,j,k,bi,bj) = 0. _d 0
265            KapGM(i,j) = 0. _d 0             gv(i,j,k,bi,bj) = 0. _d 0
266    #endif
267              ENDDO
268           ENDDO           ENDDO
269          ENDDO          ENDDO
   
 C--     Set up work arrays that need valid initial values  
270          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
271           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
272            wTrans(i,j)  = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
273            fVerT(i,j,1) = 0. _d 0            fVerU  (i,j,2) = 0. _d 0
274            fVerT(i,j,2) = 0. _d 0            fVerV  (i,j,1) = 0. _d 0
275            fVerS(i,j,1) = 0. _d 0            fVerV  (i,j,2) = 0. _d 0
276            fVerS(i,j,2) = 0. _d 0            phiHydF (i,j)  = 0. _d 0
277            fVerU(i,j,1) = 0. _d 0            phiHydC (i,j)  = 0. _d 0
278            fVerU(i,j,2) = 0. _d 0            dPhiHydX(i,j)  = 0. _d 0
279            fVerV(i,j,1) = 0. _d 0            dPhiHydY(i,j)  = 0. _d 0
280            fVerV(i,j,2) = 0. _d 0            phiSurfX(i,j)  = 0. _d 0
281              phiSurfY(i,j)  = 0. _d 0
282              guDissip(i,j)  = 0. _d 0
283              gvDissip(i,j)  = 0. _d 0
284           ENDDO           ENDDO
285          ENDDO          ENDDO
286    
287          iMin = 1-OLx+1  C--     Start computation of dynamics
288          iMax = sNx+OLx          iMin = 0
289          jMin = 1-OLy+1          iMax = sNx+1
290          jMax = sNy+OLy          jMin = 0
291            jMax = sNy+1
292  C--     Calculate gradient of surface pressure  
293          CALL GRAD_PSURF(  #ifdef ALLOW_AUTODIFF_TAMC
294       I       bi,bj,iMin,iMax,jMin,jMax,  CADJ STORE wvel (:,:,:,bi,bj) =
295       O       pSurfX,pSurfY,  CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
296       I       myThid)  #endif /* ALLOW_AUTODIFF_TAMC */
297    
298  C--     Update fields in top level according to tendency terms  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
299          CALL TIMESTEP(  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
300       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)          IF (implicSurfPress.NE.1.) THEN
301              CALL CALC_GRAD_PHI_SURF(
302  C--     Density of 1st level (below W(1)) reference to level 1       I         bi,bj,iMin,iMax,jMin,jMax,
303          CALL FIND_RHO(       I         etaN,
304       I     bi, bj, iMin, iMax, jMin, jMax, 1, 1, 'LINEAR',       O         phiSurfX,phiSurfY,
305       O     rhoKm1,       I         myThid )                        
306       I     myThid )          ENDIF
307  C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
308          CALL CALC_PH(  #ifdef ALLOW_AUTODIFF_TAMC
309       I      bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
310       U      pH,  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
311       I      myThid )  #ifdef ALLOW_KPP
312    CADJ STORE KPPviscAz (:,:,:,bi,bj)
313          DO K=2,Nz  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
314  C--     Update fields in Kth level according to tendency terms  #endif /* ALLOW_KPP */
315          CALL TIMESTEP(  #endif /* ALLOW_AUTODIFF_TAMC */
316       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)  
317  C--     Density of K-1 level (above W(K)) reference to K level  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
318          CALL FIND_RHO(  C--      Calculate the total vertical diffusivity
319       I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',          DO k=1,Nr
320       O     rhoKm1,           CALL CALC_VISCOSITY(
321       I     myThid )       I        bi,bj,iMin,iMax,jMin,jMax,k,
322  C--     Density of K level (below W(K)) reference to K level       O        KappaRU,KappaRV,
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O     rhoKp1,  
      I     myThid )  
 C--     Calculate iso-neutral slopes for the GM/Redi parameterisation  
         CALL CALC_ISOSLOPES(  
      I            bi, bj, iMin, iMax, jMin, jMax, K,  
      I            rhoKm1, rhoKp1,  
      O            K13, K23, K33, KapGM,  
      I            myThid )  
 C--     Calculate static stability and mix where convectively unstable  
         CALL CONVECT(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      I      myTime,myIter,myThid)  
 C--     Density of K-1 level (above W(K)) reference to K-1 level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',  
      O     rhoKm1,  
      I     myThid )  
 C--     Density of K level (below W(K)) referenced to K level  
         CALL FIND_RHO(  
      I     bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  
      O     rhoKp1,  
      I     myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
         CALL CALC_PH(  
      I      bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,  
      U      pH,  
      I      myThid )  
   
         ENDDO  
   
         DO K = Nz, 1, -1  
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
323       I        myThid)       I        myThid)
324           ENDDO
325    #endif
326    
327    #ifdef ALLOW_AUTODIFF_TAMC
328    CADJ STORE KappaRU(:,:,:)
329    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
330    CADJ STORE KappaRV(:,:,:)
331    CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
332    #endif /* ALLOW_AUTODIFF_TAMC */
333    
334    C--     Start of dynamics loop
335            DO k=1,Nr
336    
337    C--       km1    Points to level above k (=k-1)
338    C--       kup    Cycles through 1,2 to point to layer above
339    C--       kDown  Cycles through 2,1 to point to current layer
340    
341              km1  = MAX(1,k-1)
342              kp1  = MIN(k+1,Nr)
343              kup  = 1+MOD(k+1,2)
344              kDown= 1+MOD(k,2)
345    
346    #ifdef ALLOW_AUTODIFF_TAMC
347             kkey = (idynkey-1)*Nr + k
348    c
349    CADJ STORE totphihyd (:,:,k,bi,bj)
350    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
351    CADJ STORE theta (:,:,k,bi,bj)
352    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
353    CADJ STORE salt  (:,:,k,bi,bj)
354    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
355    #endif /* ALLOW_AUTODIFF_TAMC */
356    
357    C--      Integrate hydrostatic balance for phiHyd with BC of
358    C        phiHyd(z=0)=0
359             CALL CALC_PHI_HYD(
360         I        bi,bj,iMin,iMax,jMin,jMax,k,
361         I        theta, salt,
362         U        phiHydF,
363         O        phiHydC, dPhiHydX, dPhiHydY,
364         I        myTime, myIter, myThid )
365    
366  C--      Calculate accelerations in the momentum equations  C--      Calculate accelerations in the momentum equations (gU, gV, ...)
367    C        and step forward storing the result in gU, gV, etc...
368           IF ( momStepping ) THEN           IF ( momStepping ) THEN
369            CALL CALC_MOM_RHS(  #ifdef ALLOW_MOM_FLUXFORM
370       I         bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,             IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
371       I         xA,yA,uTrans,vTrans,wTrans,maskC,       I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
372       I         pH,       I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
373       U         aTerm,xTerm,cTerm,mTerm,pTerm,       U         fVerU, fVerV,
374       U         fZon, fMer, fVerU, fVerV,       I         myTime, myIter, myThid)
375       I         myThid)  #endif
376           ENDIF  #ifdef ALLOW_MOM_VECINV
377               IF (vectorInvariantMomentum) CALL MOM_VECINV(
378         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
379         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
380         U         fVerU, fVerV,
381         O         guDissip, gvDissip,
382         I         myTime, myIter, myThid)
383    #endif
384               CALL TIMESTEP(
385         I         bi,bj,iMin,iMax,jMin,jMax,k,
386         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
387         I         guDissip, gvDissip,
388         I         myTime, myIter, myThid)
389    
390    #ifdef   ALLOW_OBCS
391    C--      Apply open boundary conditions
392               IF (useOBCS) THEN
393                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
394               ENDIF
395    #endif   /* ALLOW_OBCS */
396    
 C--      Calculate active tracer tendencies  
          IF ( tempStepping ) THEN  
           CALL CALC_GT(  
      I         bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I         xA,yA,uTrans,vTrans,wTrans,maskUp,  
      I         K13,K23,K33,KapGM,  
      U         aTerm,xTerm,fZon,fMer,fVerT,  
      I         myThid)  
397           ENDIF           ENDIF
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg I        K13,K23,K33,KapGM,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
398    
399    
400    C--     end of dynamics k loop (1:Nr)
401          ENDDO          ENDDO
402    
403    C--     Implicit Vertical advection & viscosity
404    #ifdef INCLUDE_IMPLVERTADV_CODE
405            IF ( momImplVertAdv ) THEN
406              CALL MOM_U_IMPLICIT_R( kappaRU,
407         I                           bi, bj, myTime, myIter, myThid )
408              CALL MOM_V_IMPLICIT_R( kappaRV,
409         I                           bi, bj, myTime, myIter, myThid )
410            ELSEIF ( implicitViscosity ) THEN
411    #else /* INCLUDE_IMPLVERTADV_CODE */
412            IF     ( implicitViscosity ) THEN
413    #endif /* INCLUDE_IMPLVERTADV_CODE */
414    #ifdef    ALLOW_AUTODIFF_TAMC
415    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
416    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
417    #endif    /* ALLOW_AUTODIFF_TAMC */
418              CALL IMPLDIFF(
419         I         bi, bj, iMin, iMax, jMin, jMax,
420         I         0, KappaRU,recip_HFacW,
421         U         gU,
422         I         myThid )
423    #ifdef    ALLOW_AUTODIFF_TAMC
424    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
425    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
426    #endif    /* ALLOW_AUTODIFF_TAMC */
427              CALL IMPLDIFF(
428         I         bi, bj, iMin, iMax, jMin, jMax,
429         I         0, KappaRV,recip_HFacS,
430         U         gV,
431         I         myThid )
432            ENDIF
433    
434    #ifdef   ALLOW_OBCS
435    C--      Apply open boundary conditions
436            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
437               DO K=1,Nr
438                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
439               ENDDO
440            ENDIF
441    #endif   /* ALLOW_OBCS */
442    
443    #ifdef    ALLOW_CD_CODE
444            IF (implicitViscosity.AND.useCDscheme) THEN
445    #ifdef    ALLOW_AUTODIFF_TAMC
446    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
447    #endif    /* ALLOW_AUTODIFF_TAMC */
448              CALL IMPLDIFF(
449         I         bi, bj, iMin, iMax, jMin, jMax,
450         I         0, KappaRU,recip_HFacW,
451         U         vVelD,
452         I         myThid )
453    #ifdef    ALLOW_AUTODIFF_TAMC
454    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
455    #endif    /* ALLOW_AUTODIFF_TAMC */
456              CALL IMPLDIFF(
457         I         bi, bj, iMin, iMax, jMin, jMax,
458         I         0, KappaRV,recip_HFacS,
459         U         uVelD,
460         I         myThid )
461            ENDIF
462    #endif    /* ALLOW_CD_CODE */
463    C--     End implicit Vertical advection & viscosity
464    
465         ENDDO         ENDDO
466        ENDDO        ENDDO
467    
468  !dbg  write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x)  #ifdef ALLOW_OBCS
469  !dbg  write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)),        IF (useOBCS) THEN
470  !dbg &                         maxval(uVel(1:sNx,1:sNy,:,:,:))         CALL OBCS_PRESCRIBE_EXCHANGES(myThid)
471  !dbg  write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)),        ENDIF
472  !dbg &                         maxval(vVel(1:sNx,1:sNy,:,:,:))  #endif
473  !dbg  write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)),  
474  !dbg &                         maxval(gT(1:sNx,1:sNy,:,:,:))  Cml(
475  !dbg  write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)),  C     In order to compare the variance of phiHydLow of a p/z-coordinate
476  !dbg &                         maxval(Theta(1:sNx,1:sNy,:,:,:))  C     run with etaH of a z/p-coordinate run the drift of phiHydLow
477  !dbg  write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)),  C     has to be removed by something like the following subroutine:
478  !dbg &                          maxval(pH/(Gravity*Rhonil))  C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
479    C     &                'phiHydLow', myThid )
480    Cml)
481    
482    #ifdef ALLOW_DEBUG
483          If ( debugLevel .GE. debLevB ) THEN
484           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
485           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
486           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
487           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
488           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
489           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
490           CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
491           CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
492           CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
493           CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
494           CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
495           CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
496           CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
497           CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
498          ENDIF
499    #endif
500    
501        RETURN        RETURN
502        END        END

Legend:
Removed from v.1.9  
changed lines
  Added in v.1.112

  ViewVC Help
Powered by ViewVC 1.1.22