/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.18 - (show annotations) (download)
Wed Jun 10 16:05:39 1998 UTC (25 years, 11 months ago) by adcroft
Branch: MAIN
Changes since 1.17: +26 -19 lines
Added code to bring "salt" up-to-date with "theta".
One caveat is that implicit diffusion of salt is done with the
diffusivity of theta. We'll sort this out later. In explicit
mode, diffKzS is used.

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/dynamics.F,v 1.17 1998/06/10 01:44:03 cnh Exp $
2
3 #include "CPP_EEOPTIONS.h"
4
5 SUBROUTINE DYNAMICS(myTime, myIter, myThid)
6 C /==========================================================\
7 C | SUBROUTINE DYNAMICS |
8 C | o Controlling routine for the explicit part of the model |
9 C | dynamics. |
10 C |==========================================================|
11 C | This routine evaluates the "dynamics" terms for each |
12 C | block of ocean in turn. Because the blocks of ocean have |
13 C | overlap regions they are independent of one another. |
14 C | If terms involving lateral integrals are needed in this |
15 C | routine care will be needed. Similarly finite-difference |
16 C | operations with stencils wider than the overlap region |
17 C | require special consideration. |
18 C | Notes |
19 C | ===== |
20 C | C*P* comments indicating place holders for which code is |
21 C | presently being developed. |
22 C \==========================================================/
23
24 C == Global variables ===
25 #include "SIZE.h"
26 #include "EEPARAMS.h"
27 #include "CG2D.h"
28 #include "PARAMS.h"
29 #include "DYNVARS.h"
30
31 C == Routine arguments ==
32 C myTime - Current time in simulation
33 C myIter - Current iteration number in simulation
34 C myThid - Thread number for this instance of the routine.
35 INTEGER myThid
36 _RL myTime
37 INTEGER myIter
38
39 C == Local variables
40 C xA, yA - Per block temporaries holding face areas
41 C uTrans, vTrans, wTrans - Per block temporaries holding flow transport
42 C wVel o uTrans: Zonal transport
43 C o vTrans: Meridional transport
44 C o wTrans: Vertical transport
45 C o wVel: Vertical velocity at upper and lower
46 C cell faces.
47 C maskC,maskUp o maskC: land/water mask for tracer cells
48 C o maskUp: land/water mask for W points
49 C aTerm, xTerm, cTerm - Work arrays for holding separate terms in
50 C mTerm, pTerm, tendency equations.
51 C fZon, fMer, fVer[STUV] o aTerm: Advection term
52 C o xTerm: Mixing term
53 C o cTerm: Coriolis term
54 C o mTerm: Metric term
55 C o pTerm: Pressure term
56 C o fZon: Zonal flux term
57 C o fMer: Meridional flux term
58 C o fVer: Vertical flux term - note fVer
59 C is "pipelined" in the vertical
60 C so we need an fVer for each
61 C variable.
62 C iMin, iMax - Ranges and sub-block indices on which calculations
63 C jMin, jMax are applied.
64 C bi, bj
65 C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown
66 C are switched with layer to be the appropriate index
67 C into fVerTerm
68 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL wVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
74 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
84 _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
85 _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
86 _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
87 _RL pH (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
88 _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
89 _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
90 _RL rhotmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91 _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
93 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
94 _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
95 _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
96 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL KappaZT(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
98 _RL KappaZS(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nz)
99
100 INTEGER iMin, iMax
101 INTEGER jMin, jMax
102 INTEGER bi, bj
103 INTEGER i, j
104 INTEGER k, kM1, kUp, kDown
105
106 C--- The algorithm...
107 C
108 C "Correction Step"
109 C =================
110 C Here we update the horizontal velocities with the surface
111 C pressure such that the resulting flow is either consistent
112 C with the free-surface evolution or the rigid-lid:
113 C U[n] = U* + dt x d/dx P
114 C V[n] = V* + dt x d/dy P
115 C
116 C "Calculation of Gs"
117 C ===================
118 C This is where all the accelerations and tendencies (ie.
119 C physics, parameterizations etc...) are calculated
120 C w = sum_z ( div. u[n] )
121 C rho = rho ( theta[n], salt[n] )
122 C K31 = K31 ( rho )
123 C Gu[n] = Gu( u[n], v[n], w, rho, Ph, ... )
124 C Gv[n] = Gv( u[n], v[n], w, rho, Ph, ... )
125 C Gt[n] = Gt( theta[n], u[n], v[n], w, K31, ... )
126 C Gs[n] = Gs( salt[n], u[n], v[n], w, K31, ... )
127 C
128 C "Time-stepping" or "Prediction"
129 C ================================
130 C The models variables are stepped forward with the appropriate
131 C time-stepping scheme (currently we use Adams-Bashforth II)
132 C - For momentum, the result is always *only* a "prediction"
133 C in that the flow may be divergent and will be "corrected"
134 C later with a surface pressure gradient.
135 C - Normally for tracers the result is the new field at time
136 C level [n+1} *BUT* in the case of implicit diffusion the result
137 C is also *only* a prediction.
138 C - We denote "predictors" with an asterisk (*).
139 C U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
140 C V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
141 C theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
142 C salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
143 C With implicit diffusion:
144 C theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
145 C salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
146 C (1 + dt * K * d_zz) theta[n] = theta*
147 C (1 + dt * K * d_zz) salt[n] = salt*
148 C---
149
150 C-- Set up work arrays with valid (i.e. not NaN) values
151 C These inital values do not alter the numerical results. They
152 C just ensure that all memory references are to valid floating
153 C point numbers. This prevents spurious hardware signals due to
154 C uninitialised but inert locations.
155 DO j=1-OLy,sNy+OLy
156 DO i=1-OLx,sNx+OLx
157 xA(i,j) = 0. _d 0
158 yA(i,j) = 0. _d 0
159 uTrans(i,j) = 0. _d 0
160 vTrans(i,j) = 0. _d 0
161 aTerm(i,j) = 0. _d 0
162 xTerm(i,j) = 0. _d 0
163 cTerm(i,j) = 0. _d 0
164 mTerm(i,j) = 0. _d 0
165 pTerm(i,j) = 0. _d 0
166 fZon(i,j) = 0. _d 0
167 fMer(i,j) = 0. _d 0
168 DO K=1,nZ
169 pH (i,j,k) = 0. _d 0
170 K13(i,j,k) = 0. _d 0
171 K23(i,j,k) = 0. _d 0
172 K33(i,j,k) = 0. _d 0
173 KappaZT(i,j,k) = 0. _d 0
174 ENDDO
175 rhokm1(i,j) = 0. _d 0
176 rhokp1(i,j) = 0. _d 0
177 rhotmp(i,j) = 0. _d 0
178 maskC (i,j) = 0. _d 0
179 ENDDO
180 ENDDO
181
182 DO bj=myByLo(myThid),myByHi(myThid)
183 DO bi=myBxLo(myThid),myBxHi(myThid)
184
185 C-- Set up work arrays that need valid initial values
186 DO j=1-OLy,sNy+OLy
187 DO i=1-OLx,sNx+OLx
188 wTrans(i,j) = 0. _d 0
189 wVel (i,j,1) = 0. _d 0
190 wVel (i,j,2) = 0. _d 0
191 fVerT(i,j,1) = 0. _d 0
192 fVerT(i,j,2) = 0. _d 0
193 fVerS(i,j,1) = 0. _d 0
194 fVerS(i,j,2) = 0. _d 0
195 fVerU(i,j,1) = 0. _d 0
196 fVerU(i,j,2) = 0. _d 0
197 fVerV(i,j,1) = 0. _d 0
198 fVerV(i,j,2) = 0. _d 0
199 pH(i,j,1) = 0. _d 0
200 K13(i,j,1) = 0. _d 0
201 K23(i,j,1) = 0. _d 0
202 K33(i,j,1) = 0. _d 0
203 KapGM(i,j) = 0. _d 0
204 ENDDO
205 ENDDO
206
207 iMin = 1-OLx+1
208 iMax = sNx+OLx
209 jMin = 1-OLy+1
210 jMax = sNy+OLy
211
212 C-- Calculate gradient of surface pressure
213 CALL GRAD_PSURF(
214 I bi,bj,iMin,iMax,jMin,jMax,
215 O pSurfX,pSurfY,
216 I myThid)
217
218 C-- Update fields in top level according to tendency terms
219 CALL CORRECTION_STEP(
220 I bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)
221
222 C-- Density of 1st level (below W(1)) reference to level 1
223 CALL FIND_RHO(
224 I bi, bj, iMin, iMax, jMin, jMax, 1, 1, eosType,
225 O rhoKm1,
226 I myThid )
227 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
228 CALL CALC_PH(
229 I bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1,
230 U pH,
231 I myThid )
232 DO J=jMin,jMax
233 DO I=iMin,iMax
234 rhoKp1(I,J)=rhoKm1(I,J)
235 ENDDO
236 ENDDO
237
238 DO K=2,Nz
239 C-- Update fields in Kth level according to tendency terms
240 CALL CORRECTION_STEP(
241 I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)
242 C-- Density of K-1 level (above W(K)) reference to K-1 level
243 copt CALL FIND_RHO(
244 copt I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType,
245 copt O rhoKm1,
246 copt I myThid )
247 C rhoKm1=rhoKp1
248 DO J=jMin,jMax
249 DO I=iMin,iMax
250 rhoKm1(I,J)=rhoKp1(I,J)
251 ENDDO
252 ENDDO
253 C-- Density of K level (below W(K)) reference to K level
254 CALL FIND_RHO(
255 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
256 O rhoKp1,
257 I myThid )
258 C-- Density of K-1 level (above W(K)) reference to K level
259 CALL FIND_RHO(
260 I bi, bj, iMin, iMax, jMin, jMax, K-1, K, eosType,
261 O rhotmp,
262 I myThid )
263 C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
264 CALL CALC_ISOSLOPES(
265 I bi, bj, iMin, iMax, jMin, jMax, K,
266 I rhoKm1, rhoKp1, rhotmp,
267 O K13, K23, K33, KapGM,
268 I myThid )
269 C-- Calculate static stability and mix where convectively unstable
270 CALL CONVECT(
271 I bi,bj,iMin,iMax,jMin,jMax,K,rhotmp,rhoKp1,
272 I myTime,myIter,myThid)
273 C-- Density of K-1 level (above W(K)) reference to K-1 level
274 CALL FIND_RHO(
275 I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, eosType,
276 O rhoKm1,
277 I myThid )
278 C-- Density of K level (below W(K)) referenced to K level
279 CALL FIND_RHO(
280 I bi, bj, iMin, iMax, jMin, jMax, K, K, eosType,
281 O rhoKp1,
282 I myThid )
283 C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0
284 CALL CALC_PH(
285 I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,
286 U pH,
287 I myThid )
288
289 ENDDO ! K
290
291 C-- Initial boundary condition on barotropic divergence integral
292 DO j=1-OLy,sNy+OLy
293 DO i=1-OLx,sNx+OLx
294 cg2d_b(i,j,bi,bj) = 0. _d 0
295 ENDDO
296 ENDDO
297
298 DO K = Nz, 1, -1
299 kM1 =max(1,k-1) ! Points to level above k (=k-1)
300 kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above
301 kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer
302 iMin = 1-OLx+2
303 iMax = sNx+OLx-1
304 jMin = 1-OLy+2
305 jMax = sNy+OLy-1
306
307 C-- Get temporary terms used by tendency routines
308 CALL CALC_COMMON_FACTORS (
309 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
310 O xA,yA,uTrans,vTrans,wTrans,wVel,maskC,maskUp,
311 I myThid)
312
313 C-- Calculate the total vertical diffusivity
314 CALL CALC_DIFFUSIVITY(
315 I bi,bj,iMin,iMax,jMin,jMax,K,
316 I maskC,maskUp,KapGM,K33,
317 O KappaZT,KappaZS,
318 I myThid)
319
320 C-- Calculate accelerations in the momentum equations
321 IF ( momStepping ) THEN
322 CALL CALC_MOM_RHS(
323 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
324 I xA,yA,uTrans,vTrans,wTrans,wVel,maskC,
325 I pH,
326 U aTerm,xTerm,cTerm,mTerm,pTerm,
327 U fZon, fMer, fVerU, fVerV,
328 I myThid)
329 ENDIF
330
331 C-- Calculate active tracer tendencies
332 IF ( tempStepping ) THEN
333 CALL CALC_GT(
334 I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
335 I xA,yA,uTrans,vTrans,wTrans,maskUp,
336 I K13,K23,KappaZT,KapGM,
337 U aTerm,xTerm,fZon,fMer,fVerT,
338 I myThid)
339 ENDIF
340 IF ( saltStepping ) THEN
341 CALL CALC_GS(
342 I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,
343 I xA,yA,uTrans,vTrans,wTrans,maskUp,
344 I K13,K23,KappaZS,KapGM,
345 U aTerm,xTerm,fZon,fMer,fVerS,
346 I myThid)
347 ENDIF
348
349 C-- Prediction step (step forward all model variables)
350 CALL TIMESTEP(
351 I bi,bj,iMin,iMax,jMin,jMax,K,
352 I myThid)
353
354 C-- Diagnose barotropic divergence of predicted fields
355 CALL DIV_G(
356 I bi,bj,iMin,iMax,jMin,jMax,K,
357 I xA,yA,
358 I myThid)
359
360 ENDDO ! K
361
362 C-- Implicit diffusion
363 IF (implicitDiffusion) THEN
364 CALL IMPLDIFF( bi, bj, iMin, iMax, jMin, jMax,
365 I KappaZT,KappaZS,
366 I myThid )
367 ENDIF
368
369 ENDDO
370 ENDDO
371
372 write(0,*) 'dynamics: pS ',minval(cg2d_x(1:sNx,1:sNy,:,:)),
373 & maxval(cg2d_x(1:sNx,1:sNy,:,:))
374 write(0,*) 'dynamics: U ',minval(uVel(1:sNx,1:sNy,:,:,:)),
375 & maxval(uVel(1:sNx,1:sNy,:,:,:))
376 write(0,*) 'dynamics: V ',minval(vVel(1:sNx,1:sNy,:,:,:)),
377 & maxval(vVel(1:sNx,1:sNy,:,:,:))
378 cblk write(0,*) 'dynamics: K13',minval(K13(1:sNx,1:sNy,:)),
379 cblk & maxval(K13(1:sNx,1:sNy,:))
380 cblk write(0,*) 'dynamics: K23',minval(K23(1:sNx,1:sNy,:)),
381 cblk & maxval(K23(1:sNx,1:sNy,:))
382 cblk write(0,*) 'dynamics: K33',minval(K33(1:sNx,1:sNy,:)),
383 cblk & maxval(K33(1:sNx,1:sNy,:))
384 write(0,*) 'dynamics: gT ',minval(gT(1:sNx,1:sNy,:,:,:)),
385 & maxval(gT(1:sNx,1:sNy,:,:,:))
386 write(0,*) 'dynamics: T ',minval(Theta(1:sNx,1:sNy,:,:,:)),
387 & maxval(Theta(1:sNx,1:sNy,:,:,:))
388 write(0,*) 'dynamics: gS ',minval(gS(1:sNx,1:sNy,:,:,:)),
389 & maxval(gS(1:sNx,1:sNy,:,:,:))
390 write(0,*) 'dynamics: S ',minval(salt(1:sNx,1:sNy,:,:,:)),
391 & maxval(salt(1:sNx,1:sNy,:,:,:))
392 cblk write(0,*) 'dynamics: pH ',minval(pH/(Gravity*Rhonil)),
393 cblk & maxval(pH/(Gravity*Rhonil))
394
395 RETURN
396 END

  ViewVC Help
Powered by ViewVC 1.1.22