/[MITgcm]/MITgcm/model/src/dynamics.F
ViewVC logotype

Diff of /MITgcm/model/src/dynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by adcroft, Thu Apr 30 14:03:28 1998 UTC revision 1.106 by jmc, Sat Jan 3 01:01:34 2004 UTC
# Line 1  Line 1 
1  C $Header$  C $Header$
2    C $Name$
3    
4  #include "CPP_EEOPTIONS.h"  #include "PACKAGES_CONFIG.h"
5    #include "CPP_OPTIONS.h"
       SUBROUTINE DYNAMICS(myThid)  
 C     /==========================================================\  
 C     | SUBROUTINE DYNAMICS                                      |  
 C     | o Controlling routine for the explicit part of the model |  
 C     |   dynamics.                                              |  
 C     |==========================================================|  
 C     | This routine evaluates the "dynamics" terms for each     |  
 C     | block of ocean in turn. Because the blocks of ocean have |  
 C     | overlap regions they are independent of one another.     |  
 C     | If terms involving lateral integrals are needed in this  |  
 C     | routine care will be needed. Similarly finite-difference |  
 C     | operations with stencils wider than the overlap region   |  
 C     | require special consideration.                           |  
 C     | Notes                                                    |  
 C     | =====                                                    |  
 C     | C*P* comments indicating place holders for which code is |  
 C     |      presently being developed.                          |  
 C     \==========================================================/  
6    
7    CBOP
8    C     !ROUTINE: DYNAMICS
9    C     !INTERFACE:
10          SUBROUTINE DYNAMICS(myTime, myIter, myThid)
11    C     !DESCRIPTION: \bv
12    C     *==========================================================*
13    C     | SUBROUTINE DYNAMICS                                      
14    C     | o Controlling routine for the explicit part of the model  
15    C     |   dynamics.                                              
16    C     *==========================================================*
17    C     | This routine evaluates the "dynamics" terms for each      
18    C     | block of ocean in turn. Because the blocks of ocean have  
19    C     | overlap regions they are independent of one another.      
20    C     | If terms involving lateral integrals are needed in this  
21    C     | routine care will be needed. Similarly finite-difference  
22    C     | operations with stencils wider than the overlap region    
23    C     | require special consideration.                            
24    C     | The algorithm...
25    C     |
26    C     | "Correction Step"
27    C     | =================
28    C     | Here we update the horizontal velocities with the surface
29    C     | pressure such that the resulting flow is either consistent
30    C     | with the free-surface evolution or the rigid-lid:
31    C     |   U[n] = U* + dt x d/dx P
32    C     |   V[n] = V* + dt x d/dy P
33    C     |
34    C     | "Calculation of Gs"
35    C     | ===================
36    C     | This is where all the accelerations and tendencies (ie.
37    C     | physics, parameterizations etc...) are calculated
38    C     |   rho = rho ( theta[n], salt[n] )
39    C     |   b   = b(rho, theta)
40    C     |   K31 = K31 ( rho )
41    C     |   Gu[n] = Gu( u[n], v[n], wVel, b, ... )
42    C     |   Gv[n] = Gv( u[n], v[n], wVel, b, ... )
43    C     |   Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
44    C     |   Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
45    C     |
46    C     | "Time-stepping" or "Prediction"
47    C     | ================================
48    C     | The models variables are stepped forward with the appropriate
49    C     | time-stepping scheme (currently we use Adams-Bashforth II)
50    C     | - For momentum, the result is always *only* a "prediction"
51    C     | in that the flow may be divergent and will be "corrected"
52    C     | later with a surface pressure gradient.
53    C     | - Normally for tracers the result is the new field at time
54    C     | level [n+1} *BUT* in the case of implicit diffusion the result
55    C     | is also *only* a prediction.
56    C     | - We denote "predictors" with an asterisk (*).
57    C     |   U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
58    C     |   V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
59    C     |   theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
60    C     |   salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
61    C     | With implicit diffusion:
62    C     |   theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
63    C     |   salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
64    C     |   (1 + dt * K * d_zz) theta[n] = theta*
65    C     |   (1 + dt * K * d_zz) salt[n] = salt*
66    C     |
67    C     *==========================================================*
68    C     \ev
69    C     !USES:
70          IMPLICIT NONE
71  C     == Global variables ===  C     == Global variables ===
72  #include "SIZE.h"  #include "SIZE.h"
73  #include "EEPARAMS.h"  #include "EEPARAMS.h"
74  #include "CG2D.h"  #include "PARAMS.h"
75  #include "DYNVARS.h"  #include "DYNVARS.h"
76    #ifdef ALLOW_CD_CODE
77    #include "CD_CODE_VARS.h"
78    #endif
79    #include "GRID.h"
80    #ifdef ALLOW_PASSIVE_TRACER
81    #include "TR1.h"
82    #endif
83    #ifdef ALLOW_AUTODIFF_TAMC
84    # include "tamc.h"
85    # include "tamc_keys.h"
86    # include "FFIELDS.h"
87    # include "EOS.h"
88    # ifdef ALLOW_KPP
89    #  include "KPP.h"
90    # endif
91    #endif /* ALLOW_AUTODIFF_TAMC */
92    
93    C     !CALLING SEQUENCE:
94    C     DYNAMICS()
95    C      |
96    C      |-- CALC_GRAD_PHI_SURF
97    C      |
98    C      |-- CALC_VISCOSITY
99    C      |
100    C      |-- CALC_PHI_HYD  
101    C      |
102    C      |-- MOM_FLUXFORM  
103    C      |
104    C      |-- MOM_VECINV    
105    C      |
106    C      |-- TIMESTEP      
107    C      |
108    C      |-- OBCS_APPLY_UV
109    C      |
110    C      |-- IMPLDIFF      
111    C      |
112    C      |-- OBCS_APPLY_UV
113    C      |
114    C      |-- CALL TIMEAVE_CUMUL_1T
115    C      |-- CALL DEBUG_STATS_RL
116    
117    C     !INPUT/OUTPUT PARAMETERS:
118  C     == Routine arguments ==  C     == Routine arguments ==
119    C     myTime - Current time in simulation
120    C     myIter - Current iteration number in simulation
121  C     myThid - Thread number for this instance of the routine.  C     myThid - Thread number for this instance of the routine.
122          _RL myTime
123          INTEGER myIter
124        INTEGER myThid        INTEGER myThid
125    
126    C     !LOCAL VARIABLES:
127  C     == Local variables  C     == Local variables
128  C     xA, yA                 - Per block temporaries holding face areas  C     fVer[STUV]               o fVer: Vertical flux term - note fVer
 C     uTrans, vTrans, wTrans - Per block temporaries holding flow transport  
 C                              o uTrans: Zonal transport  
 C                              o vTrans: Meridional transport  
 C                              o wTrans: Vertical transport  
 C     maskC,maskUp             o maskC: land/water mask for tracer cells  
 C                              o maskUp: land/water mask for W points  
 C     aTerm, xTerm, cTerm    - Work arrays for holding separate terms in  
 C     mTerm, pTerm,            tendency equations.  
 C     fZon, fMer, fVer[STUV]   o aTerm: Advection term  
 C                              o xTerm: Mixing term  
 C                              o cTerm: Coriolis term  
 C                              o mTerm: Metric term  
 C                              o pTerm: Pressure term  
 C                              o fZon: Zonal flux term  
 C                              o fMer: Meridional flux term  
 C                              o fVer: Vertical flux term - note fVer  
129  C                                      is "pipelined" in the vertical  C                                      is "pipelined" in the vertical
130  C                                      so we need an fVer for each  C                                      so we need an fVer for each
131  C                                      variable.  C                                      variable.
132  C     iMin, iMax - Ranges and sub-block indices on which calculations  C     phiHydC    :: hydrostatic potential anomaly at cell center
133  C     jMin, jMax   are applied.  C                   In z coords phiHyd is the hydrostatic potential
134    C                      (=pressure/rho0) anomaly
135    C                   In p coords phiHyd is the geopotential height anomaly.
136    C     phiHydF    :: hydrostatic potential anomaly at middle between 2 centers
137    C     dPhiHydX,Y :: Gradient (X & Y directions) of hydrostatic potential anom.
138    C     phiSurfX,  ::  gradient of Surface potential (Pressure/rho, ocean)
139    C     phiSurfY             or geopotential (atmos) in X and Y direction
140    C     iMin, iMax     - Ranges and sub-block indices on which calculations
141    C     jMin, jMax       are applied.
142  C     bi, bj  C     bi, bj
143  C     k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown  C     k, kup,        - Index for layer above and below. kup and kDown
144  C                          are switched with layer to be the appropriate index  C     kDown, km1       are switched with layer to be the appropriate
145  C                          into fVerTerm  C                      index into fVerTerm.
146        _RS xA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerU   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
147        _RS yA    (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL fVerV   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
148        _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
149        _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiHydC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
150        _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
151        _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
152        _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
153        _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
154        _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRU (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
155        _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KappaRV (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
156        _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fZon  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fMer  (1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)  
       _RL pH    (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)  
       _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
157        INTEGER iMin, iMax        INTEGER iMin, iMax
158        INTEGER jMin, jMax        INTEGER jMin, jMax
159        INTEGER bi, bj        INTEGER bi, bj
160        INTEGER i, j        INTEGER i, j
161        INTEGER k, kM1, kUp, kDown        INTEGER k, km1, kp1, kup, kDown
162    
163          LOGICAL  DIFFERENT_MULTIPLE
164          EXTERNAL DIFFERENT_MULTIPLE
165    
166    C---    The algorithm...
167    C
168    C       "Correction Step"
169    C       =================
170    C       Here we update the horizontal velocities with the surface
171    C       pressure such that the resulting flow is either consistent
172    C       with the free-surface evolution or the rigid-lid:
173    C         U[n] = U* + dt x d/dx P
174    C         V[n] = V* + dt x d/dy P
175    C
176    C       "Calculation of Gs"
177    C       ===================
178    C       This is where all the accelerations and tendencies (ie.
179    C       physics, parameterizations etc...) are calculated
180    C         rho = rho ( theta[n], salt[n] )
181    C         b   = b(rho, theta)
182    C         K31 = K31 ( rho )
183    C         Gu[n] = Gu( u[n], v[n], wVel, b, ... )
184    C         Gv[n] = Gv( u[n], v[n], wVel, b, ... )
185    C         Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
186    C         Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
187    C
188    C       "Time-stepping" or "Prediction"
189    C       ================================
190    C       The models variables are stepped forward with the appropriate
191    C       time-stepping scheme (currently we use Adams-Bashforth II)
192    C       - For momentum, the result is always *only* a "prediction"
193    C       in that the flow may be divergent and will be "corrected"
194    C       later with a surface pressure gradient.
195    C       - Normally for tracers the result is the new field at time
196    C       level [n+1} *BUT* in the case of implicit diffusion the result
197    C       is also *only* a prediction.
198    C       - We denote "predictors" with an asterisk (*).
199    C         U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
200    C         V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
201    C         theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
202    C         salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
203    C       With implicit diffusion:
204    C         theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
205    C         salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
206    C         (1 + dt * K * d_zz) theta[n] = theta*
207    C         (1 + dt * K * d_zz) salt[n] = salt*
208    C---
209    CEOP
210    
211    C-- Call to routine for calculation of
212    C   Eliassen-Palm-flux-forced U-tendency,
213    C   if desired:
214    #ifdef INCLUDE_EP_FORCING_CODE
215          CALL CALC_EP_FORCING(myThid)
216    #endif
217    
218    #ifdef ALLOW_AUTODIFF_TAMC
219    C--   HPF directive to help TAMC
220    CHPF$ INDEPENDENT
221    #endif /* ALLOW_AUTODIFF_TAMC */
222    
223          DO bj=myByLo(myThid),myByHi(myThid)
224    
225    #ifdef ALLOW_AUTODIFF_TAMC
226    C--    HPF directive to help TAMC
227    CHPF$  INDEPENDENT, NEW (fVerU,fVerV
228    CHPF$&                  ,phiHydF
229    CHPF$&                  ,KappaRU,KappaRV
230    CHPF$&                  )
231    #endif /* ALLOW_AUTODIFF_TAMC */
232    
233           DO bi=myBxLo(myThid),myBxHi(myThid)
234    
235    #ifdef ALLOW_AUTODIFF_TAMC
236              act1 = bi - myBxLo(myThid)
237              max1 = myBxHi(myThid) - myBxLo(myThid) + 1
238              act2 = bj - myByLo(myThid)
239              max2 = myByHi(myThid) - myByLo(myThid) + 1
240              act3 = myThid - 1
241              max3 = nTx*nTy
242              act4 = ikey_dynamics - 1
243              idynkey = (act1 + 1) + act2*max1
244         &                      + act3*max1*max2
245         &                      + act4*max1*max2*max3
246    #endif /* ALLOW_AUTODIFF_TAMC */
247    
248  C--   Set up work arrays with valid (i.e. not NaN) values  C--   Set up work arrays with valid (i.e. not NaN) values
249  C     These inital values do not alter the numerical results. They  C     These inital values do not alter the numerical results. They
250  C     just ensure that all memory references are to valid floating  C     just ensure that all memory references are to valid floating
251  C     point numbers. This prevents spurious hardware signals due to  C     point numbers. This prevents spurious hardware signals due to
252  C     uninitialised but inert locations.  C     uninitialised but inert locations.
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         xA(i,j)      = 0.*1. _d 37  
         yA(i,j)      = 0.*1. _d 37  
         uTrans(i,j)  = 0.*1. _d 37  
         vTrans(i,j)  = 0.*1. _d 37  
         aTerm(i,j)   = 0.*1. _d 37  
         xTerm(i,j)   = 0.*1. _d 37  
         cTerm(i,j)   = 0.*1. _d 37  
         mTerm(i,j)   = 0.*1. _d 37  
         pTerm(i,j)   = 0.*1. _d 37  
         fZon(i,j)    = 0.*1. _d 37  
         fMer(i,j)    = 0.*1. _d 37  
         DO K=1,nZ  
          pH (i,j,k)  = 0.*1. _d 37  
         ENDDO  
         rhokm1(i,j)    = 0. _d 0  
         rhokp1(i,j)    = 0. _d 0  
        ENDDO  
       ENDDO  
 C--   Set up work arrays that need valid initial values  
       DO j=1-OLy,sNy+OLy  
        DO i=1-OLx,sNx+OLx  
         wTrans(i,j)  = 0. _d 0  
         fVerT(i,j,1) = 0. _d 0  
         fVerT(i,j,2) = 0. _d 0  
         fVerS(i,j,1) = 0. _d 0  
         fVerS(i,j,2) = 0. _d 0  
         fVerU(i,j,1) = 0. _d 0  
         fVerU(i,j,2) = 0. _d 0  
         fVerV(i,j,1) = 0. _d 0  
         fVerV(i,j,2) = 0. _d 0  
        ENDDO  
       ENDDO  
253    
254        DO bj=myByLo(myThid),myByHi(myThid)          DO k=1,Nr
255         DO bi=myBxLo(myThid),myBxHi(myThid)           DO j=1-OLy,sNy+OLy
256              DO i=1-OLx,sNx+OLx
257  C--   Boundary condition on hydrostatic pressure is pH(z=0)=0             KappaRU(i,j,k) = 0. _d 0
258               KappaRV(i,j,k) = 0. _d 0
259    #ifdef ALLOW_AUTODIFF_TAMC
260    cph(
261    c--   need some re-initialisation here to break dependencies
262    c--   totphihyd is assumed zero from ini_pressure, i.e.
263    c--   avoiding iterate pressure p = integral of (g*rho(p)*dz)
264    cph)
265               totPhiHyd(i,j,k,bi,bj) = 0. _d 0
266               gu(i,j,k,bi,bj) = 0. _d 0
267               gv(i,j,k,bi,bj) = 0. _d 0
268    #endif
269              ENDDO
270             ENDDO
271            ENDDO
272          DO j=1-OLy,sNy+OLy          DO j=1-OLy,sNy+OLy
273           DO i=1-OLx,sNx+OLx           DO i=1-OLx,sNx+OLx
274            pH(i,j,1) = 0. _d 0            fVerU  (i,j,1) = 0. _d 0
275              fVerU  (i,j,2) = 0. _d 0
276              fVerV  (i,j,1) = 0. _d 0
277              fVerV  (i,j,2) = 0. _d 0
278              phiHydF (i,j)  = 0. _d 0
279              phiHydC (i,j)  = 0. _d 0
280              dPhiHydX(i,j)  = 0. _d 0
281              dPhiHydY(i,j)  = 0. _d 0
282              phiSurfX(i,j)  = 0. _d 0
283              phiSurfY(i,j)  = 0. _d 0
284           ENDDO           ENDDO
285          ENDDO          ENDDO
286    
287          iMin = 1-OLx+1  C--     Start computation of dynamics
288          iMax = sNx+OLx          iMin = 0
289          jMin = 1-OLy+1          iMax = sNx+1
290          jMax = sNy+OLy          jMin = 0
291            jMax = sNy+1
292  C--     Calculate gradient of surface pressure  
293          CALL GRAD_PSURF(  #ifdef ALLOW_AUTODIFF_TAMC
294       I       bi,bj,iMin,iMax,jMin,jMax,  CADJ STORE wvel (:,:,:,bi,bj) =
295       O       pSurfX,pSurfY,  CADJ &     comlev1_bibj, key = idynkey, byte = isbyte
296       I       myThid)  #endif /* ALLOW_AUTODIFF_TAMC */
297    
298  C--     Update fields in top level according to tendency terms  C--     Explicit part of the Surface Potentiel Gradient (add in TIMESTEP)
299          CALL TIMESTEP(  C       (note: this loop will be replaced by CALL CALC_GRAD_ETA)
300       I       bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid)          IF (implicSurfPress.NE.1.) THEN
301              CALL CALC_GRAD_PHI_SURF(
302          DO K=2,Nz       I         bi,bj,iMin,iMax,jMin,jMax,
303  C--     Update fields in Kth level according to tendency terms       I         etaN,
304          CALL TIMESTEP(       O         phiSurfX,phiSurfY,
305       I       bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid)       I         myThid )                        
306  C Density of K-1 level (above W(K)) reference to K level          ENDIF
307           CALL FIND_RHO(  
308       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K, 'LINEAR',  #ifdef ALLOW_AUTODIFF_TAMC
309       O      rhoKm1,  CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
310       I      myThid )  CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=idynkey, byte=isbyte
311  C Density of K level (below W(K)) reference to K level  #ifdef ALLOW_KPP
312           CALL FIND_RHO(  CADJ STORE KPPviscAz (:,:,:,bi,bj)
313       I      bi, bj, iMin, iMax, jMin, jMax,  K, K, 'LINEAR',  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
314       O      rhoKp1,  #endif /* ALLOW_KPP */
315       I      myThid )  #endif /* ALLOW_AUTODIFF_TAMC */
316  C--     Calculate static stability and mix where convectively unstable  
317           CALL CONVECT(  #ifdef  INCLUDE_CALC_DIFFUSIVITY_CALL
318       I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1,myThid)  C--      Calculate the total vertical diffusivity
319  C Density of K-1 level (above W(K)) reference to K-1 level          DO k=1,Nr
320           CALL FIND_RHO(           CALL CALC_VISCOSITY(
321       I      bi, bj, iMin, iMax, jMin, jMax,  K-1, K-1, 'LINEAR',       I        bi,bj,iMin,iMax,jMin,jMax,k,
322       O      rhoKm1,       O        KappaRU,KappaRV,
      I      myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
          CALL CALC_PH(  
      I       bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,  
      U       pH,  
      I       myThid )  
         ENDDO ! K  
   
 C Density of Nz level (bottom level) reference to Nz level  
          CALL FIND_RHO(  
      I      bi, bj, iMin, iMax, jMin, jMax,  Nz, Nz, 'LINEAR',  
      O      rhoKm1,  
      I      myThid )  
 C--     Integrate hydrostatic balance for pH with BC of pH(z=0)=0  
          CALL CALC_PH(  
      I       bi,bj,iMin,iMax,jMin,jMax,Nz+1,rhoKm1,  
      U       pH,  
      I       myThid )  
   
         DO K = Nz, 1, -1  
          kM1  =max(1,k-1)   ! Points to level above k (=k-1)  
          kUp  =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above  
          kDown=1+MOD(k,2)   ! Cycles through 2,1 to point to current layer  
          iMin = 1-OLx+2  
          iMax = sNx+OLx-1  
          jMin = 1-OLy+2  
          jMax = sNy+OLy-1  
   
 C--      Get temporary terms used by tendency routines  
          CALL CALC_COMMON_FACTORS (  
      I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  
      O        xA,yA,uTrans,vTrans,wTrans,maskC,maskUp,  
323       I        myThid)       I        myThid)
324           ENDDO
325    #endif
326    
327  C--      Calculate accelerations in the momentum equations  #ifdef ALLOW_AUTODIFF_TAMC
328           CALL CALC_MOM_RHS(  CADJ STORE KappaRU(:,:,:)
329       I        bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
330       I        xA,yA,uTrans,vTrans,wTrans,maskC,  CADJ STORE KappaRV(:,:,:)
331       I        pH,  CADJ &                 = comlev1_bibj, key=idynkey, byte=isbyte
332       U        aTerm,xTerm,cTerm,mTerm,pTerm,  #endif /* ALLOW_AUTODIFF_TAMC */
333       U        fZon, fMer, fVerU, fVerV,  
334       I        myThid)  C--     Start of dynamics loop
335            DO k=1,Nr
336    
337    C--       km1    Points to level above k (=k-1)
338    C--       kup    Cycles through 1,2 to point to layer above
339    C--       kDown  Cycles through 2,1 to point to current layer
340    
341              km1  = MAX(1,k-1)
342              kp1  = MIN(k+1,Nr)
343              kup  = 1+MOD(k+1,2)
344              kDown= 1+MOD(k,2)
345    
346    #ifdef ALLOW_AUTODIFF_TAMC
347             kkey = (idynkey-1)*Nr + k
348    c
349    CADJ STORE totphihyd (:,:,k,bi,bj)
350    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
351    CADJ STORE gt (:,:,k,bi,bj)
352    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
353    CADJ STORE gs (:,:,k,bi,bj)
354    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
355    CADJ STORE theta (:,:,k,bi,bj)
356    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
357    CADJ STORE salt  (:,:,k,bi,bj)
358    CADJ &     = comlev1_bibj_k, key=kkey, byte=isbyte
359    #endif /* ALLOW_AUTODIFF_TAMC */
360    
361    C--      Integrate hydrostatic balance for phiHyd with BC of
362    C        phiHyd(z=0)=0
363    C        distinguishe between Stagger and Non Stagger time stepping
364             IF (staggerTimeStep) THEN
365               CALL CALC_PHI_HYD(
366         I        bi,bj,iMin,iMax,jMin,jMax,k,
367         I        gT, gS,
368         U        phiHydF,
369         O        phiHydC, dPhiHydX, dPhiHydY,
370         I        myTime, myIter, myThid )
371             ELSE
372               CALL CALC_PHI_HYD(
373         I        bi,bj,iMin,iMax,jMin,jMax,k,
374         I        theta, salt,
375         U        phiHydF,
376         O        phiHydC, dPhiHydX, dPhiHydY,
377         I        myTime, myIter, myThid )
378             ENDIF
379    
380    C--      Calculate accelerations in the momentum equations (gU, gV, ...)
381    C        and step forward storing the result in gU, gV, etc...
382             IF ( momStepping ) THEN
383    #ifdef ALLOW_MOM_FLUXFORM
384               IF (.NOT. vectorInvariantMomentum) CALL MOM_FLUXFORM(
385         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
386         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
387         U         fVerU, fVerV,
388         I         myTime, myIter, myThid)
389    #endif
390    #ifdef ALLOW_MOM_VECINV
391               IF (vectorInvariantMomentum) CALL MOM_VECINV(
392         I         bi,bj,iMin,iMax,jMin,jMax,k,kup,kDown,
393         I         dPhiHydX,dPhiHydY,KappaRU,KappaRV,
394         U         fVerU, fVerV,
395         I         myTime, myIter, myThid)
396    #endif
397               CALL TIMESTEP(
398         I         bi,bj,iMin,iMax,jMin,jMax,k,
399         I         dPhiHydX,dPhiHydY, phiSurfX, phiSurfY,
400         I         myTime, myIter, myThid)
401    
402    #ifdef   ALLOW_OBCS
403    C--      Apply open boundary conditions
404               IF (useOBCS) THEN
405                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
406               ENDIF
407    #endif   /* ALLOW_OBCS */
408    
409  C--      Calculate active tracer tendencies           ENDIF
          CALL CALC_GT(  
      I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
      I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
      U        aTerm,xTerm,fZon,fMer,fVerT,  
      I        myThid)  
 Cdbg     CALL CALC_GS(  
 Cdbg I        bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown,  
 Cdbg I        xA,yA,uTrans,vTrans,wTrans,maskUp,  
 Cdbg U        aTerm,xTerm,fZon,fMer,fVerS,  
 Cdbg I        myThid)  
410    
411    
412    C--     end of dynamics k loop (1:Nr)
413          ENDDO          ENDDO
414    
415    C--     Implicit Vertical advection & viscosity
416    #ifdef INCLUDE_IMPLVERTADV_CODE
417            IF ( momImplVertAdv ) THEN
418              CALL MOM_U_IMPLICIT_R( kappaRU,
419         I                           bi, bj, myTime, myIter, myThid )
420              CALL MOM_V_IMPLICIT_R( kappaRV,
421         I                           bi, bj, myTime, myIter, myThid )
422            ELSEIF ( implicitViscosity ) THEN
423    #else /* INCLUDE_IMPLVERTADV_CODE */
424            IF     ( implicitViscosity ) THEN
425    #endif /* INCLUDE_IMPLVERTADV_CODE */
426    #ifdef    ALLOW_AUTODIFF_TAMC
427    CADJ STORE KappaRU(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
428    CADJ STORE gU(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
429    #endif    /* ALLOW_AUTODIFF_TAMC */
430              CALL IMPLDIFF(
431         I         bi, bj, iMin, iMax, jMin, jMax,
432         I         deltaTmom, KappaRU,recip_HFacW,
433         U         gU,
434         I         myThid )
435    #ifdef    ALLOW_AUTODIFF_TAMC
436    CADJ STORE KappaRV(:,:,:) = comlev1_bibj , key=idynkey, byte=isbyte
437    CADJ STORE gV(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
438    #endif    /* ALLOW_AUTODIFF_TAMC */
439              CALL IMPLDIFF(
440         I         bi, bj, iMin, iMax, jMin, jMax,
441         I         deltaTmom, KappaRV,recip_HFacS,
442         U         gV,
443         I         myThid )
444            ENDIF
445    
446    #ifdef   ALLOW_OBCS
447    C--      Apply open boundary conditions
448            IF ( useOBCS .AND.(implicitViscosity.OR.momImplVertAdv) ) THEN
449               DO K=1,Nr
450                 CALL OBCS_APPLY_UV( bi, bj, k, gU, gV, myThid )
451               ENDDO
452            ENDIF
453    #endif   /* ALLOW_OBCS */
454    
455    #ifdef    ALLOW_CD_CODE
456            IF (implicitViscosity.AND.useCDscheme) THEN
457    #ifdef    ALLOW_AUTODIFF_TAMC
458    CADJ STORE vVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
459    #endif    /* ALLOW_AUTODIFF_TAMC */
460              CALL IMPLDIFF(
461         I         bi, bj, iMin, iMax, jMin, jMax,
462         I         deltaTmom, KappaRU,recip_HFacW,
463         U         vVelD,
464         I         myThid )
465    #ifdef    ALLOW_AUTODIFF_TAMC
466    CADJ STORE uVelD(:,:,:,bi,bj) = comlev1_bibj , key=idynkey, byte=isbyte
467    #endif    /* ALLOW_AUTODIFF_TAMC */
468              CALL IMPLDIFF(
469         I         bi, bj, iMin, iMax, jMin, jMax,
470         I         deltaTmom, KappaRV,recip_HFacS,
471         U         uVelD,
472         I         myThid )
473            ENDIF
474    #endif    /* ALLOW_CD_CODE */
475    C--     End implicit Vertical advection & viscosity
476    
477         ENDDO         ENDDO
478        ENDDO        ENDDO
479    
480    Cml(
481    C     In order to compare the variance of phiHydLow of a p/z-coordinate
482    C     run with etaH of a z/p-coordinate run the drift of phiHydLow
483    C     has to be removed by something like the following subroutine:
484    C      CALL REMOVE_MEAN_RL( 1, phiHydLow, maskH, maskH, rA, drF,
485    C     &                'phiHydLow', myThid )
486    Cml)
487    
488    #ifdef ALLOW_DEBUG
489          If ( debugLevel .GE. debLevB ) THEN
490           CALL DEBUG_STATS_RL(1,EtaN,'EtaN (DYNAMICS)',myThid)
491           CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (DYNAMICS)',myThid)
492           CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (DYNAMICS)',myThid)
493           CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (DYNAMICS)',myThid)
494           CALL DEBUG_STATS_RL(Nr,theta,'Theta (DYNAMICS)',myThid)
495           CALL DEBUG_STATS_RL(Nr,salt,'Salt (DYNAMICS)',myThid)
496           CALL DEBUG_STATS_RL(Nr,Gu,'Gu (DYNAMICS)',myThid)
497           CALL DEBUG_STATS_RL(Nr,Gv,'Gv (DYNAMICS)',myThid)
498           CALL DEBUG_STATS_RL(Nr,Gt,'Gt (DYNAMICS)',myThid)
499           CALL DEBUG_STATS_RL(Nr,Gs,'Gs (DYNAMICS)',myThid)
500           CALL DEBUG_STATS_RL(Nr,GuNm1,'GuNm1 (DYNAMICS)',myThid)
501           CALL DEBUG_STATS_RL(Nr,GvNm1,'GvNm1 (DYNAMICS)',myThid)
502           CALL DEBUG_STATS_RL(Nr,GtNm1,'GtNm1 (DYNAMICS)',myThid)
503           CALL DEBUG_STATS_RL(Nr,GsNm1,'GsNm1 (DYNAMICS)',myThid)
504          ENDIF
505    #endif
506    
507        RETURN        RETURN
508        END        END

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.106

  ViewVC Help
Powered by ViewVC 1.1.22