C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/dynamics.F,v 1.9 1998/05/25 21:29:45 cnh Exp $ #include "CPP_EEOPTIONS.h" SUBROUTINE DYNAMICS(myTime, myIter, myThid) C /==========================================================\ C | SUBROUTINE DYNAMICS | C | o Controlling routine for the explicit part of the model | C | dynamics. | C |==========================================================| C | This routine evaluates the "dynamics" terms for each | C | block of ocean in turn. Because the blocks of ocean have | C | overlap regions they are independent of one another. | C | If terms involving lateral integrals are needed in this | C | routine care will be needed. Similarly finite-difference | C | operations with stencils wider than the overlap region | C | require special consideration. | C | Notes | C | ===== | C | C*P* comments indicating place holders for which code is | C | presently being developed. | C \==========================================================/ C == Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "CG2D.h" #include "PARAMS.h" #include "DYNVARS.h" C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of the routine. INTEGER myThid _RL myTime INTEGER myIter C == Local variables C xA, yA - Per block temporaries holding face areas C uTrans, vTrans, wTrans - Per block temporaries holding flow transport C o uTrans: Zonal transport C o vTrans: Meridional transport C o wTrans: Vertical transport C maskC,maskUp o maskC: land/water mask for tracer cells C o maskUp: land/water mask for W points C aTerm, xTerm, cTerm - Work arrays for holding separate terms in C mTerm, pTerm, tendency equations. C fZon, fMer, fVer[STUV] o aTerm: Advection term C o xTerm: Mixing term C o cTerm: Coriolis term C o mTerm: Metric term C o pTerm: Pressure term C o fZon: Zonal flux term C o fMer: Meridional flux term C o fVer: Vertical flux term - note fVer C is "pipelined" in the vertical C so we need an fVer for each C variable. C iMin, iMax - Ranges and sub-block indices on which calculations C jMin, jMax are applied. C bi, bj C k, kUp, kDown, kM1 - Index for layer above and below. kUp and kDown C are switched with layer to be the appropriate index C into fVerTerm _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL aTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL xTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL cTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL mTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pTerm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL pH (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) _RL rhokm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rhokp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) _RL K33 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz) _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER iMin, iMax INTEGER jMin, jMax INTEGER bi, bj INTEGER i, j INTEGER k, kM1, kUp, kDown C-- Set up work arrays with valid (i.e. not NaN) values C These inital values do not alter the numerical results. They C just ensure that all memory references are to valid floating C point numbers. This prevents spurious hardware signals due to C uninitialised but inert locations. DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx xA(i,j) = 0. _d 0 yA(i,j) = 0. _d 0 uTrans(i,j) = 0. _d 0 vTrans(i,j) = 0. _d 0 aTerm(i,j) = 0. _d 0 xTerm(i,j) = 0. _d 0 cTerm(i,j) = 0. _d 0 mTerm(i,j) = 0. _d 0 pTerm(i,j) = 0. _d 0 fZon(i,j) = 0. _d 0 fMer(i,j) = 0. _d 0 DO K=1,nZ pH (i,j,k) = 0. _d 0 K13(i,j,k) = 0. _d 0 K23(i,j,k) = 0. _d 0 K33(i,j,k) = 0. _d 0 ENDDO rhokm1(i,j) = 0. _d 0 rhokp1(i,j) = 0. _d 0 ENDDO ENDDO DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) C-- Boundary condition on hydrostatic pressure is pH(z=0)=0 DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx pH(i,j,1) = 0. _d 0 K13(i,j,1) = 0. _d 0 K23(i,j,1) = 0. _d 0 K33(i,j,1) = 0. _d 0 KapGM(i,j) = 0. _d 0 ENDDO ENDDO C-- Set up work arrays that need valid initial values DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx wTrans(i,j) = 0. _d 0 fVerT(i,j,1) = 0. _d 0 fVerT(i,j,2) = 0. _d 0 fVerS(i,j,1) = 0. _d 0 fVerS(i,j,2) = 0. _d 0 fVerU(i,j,1) = 0. _d 0 fVerU(i,j,2) = 0. _d 0 fVerV(i,j,1) = 0. _d 0 fVerV(i,j,2) = 0. _d 0 ENDDO ENDDO iMin = 1-OLx+1 iMax = sNx+OLx jMin = 1-OLy+1 jMax = sNy+OLy C-- Calculate gradient of surface pressure CALL GRAD_PSURF( I bi,bj,iMin,iMax,jMin,jMax, O pSurfX,pSurfY, I myThid) C-- Update fields in top level according to tendency terms CALL TIMESTEP( I bi,bj,iMin,iMax,jMin,jMax,1,pSurfX,pSurfY,myThid) C-- Density of 1st level (below W(1)) reference to level 1 CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, 1, 1, 'LINEAR', O rhoKm1, I myThid ) C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 CALL CALC_PH( I bi,bj,iMin,iMax,jMin,jMax,1,rhoKm1,rhoKm1, U pH, I myThid ) DO K=2,Nz C-- Update fields in Kth level according to tendency terms CALL TIMESTEP( I bi,bj,iMin,iMax,jMin,jMax,K,pSurfX,pSurfY,myThid) C-- Density of K-1 level (above W(K)) reference to K level CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K-1, K, 'LINEAR', O rhoKm1, I myThid ) C-- Density of K level (below W(K)) reference to K level CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K, K, 'LINEAR', O rhoKp1, I myThid ) C-- Calculate iso-neutral slopes for the GM/Redi parameterisation CALL CALC_ISOSLOPES( I bi, bj, iMin, iMax, jMin, jMax, K, I rhoKm1, rhoKp1, O K13, K23, K33, KapGM, I myThid ) C-- Calculate static stability and mix where convectively unstable CALL CONVECT( I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1, I myTime,myIter,myThid) C-- Density of K-1 level (above W(K)) reference to K-1 level CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K-1, K-1, 'LINEAR', O rhoKm1, I myThid ) C-- Density of K level (below W(K)) referenced to K level CALL FIND_RHO( I bi, bj, iMin, iMax, jMin, jMax, K, K, 'LINEAR', O rhoKp1, I myThid ) C-- Integrate hydrostatic balance for pH with BC of pH(z=0)=0 CALL CALC_PH( I bi,bj,iMin,iMax,jMin,jMax,K,rhoKm1,rhoKp1, U pH, I myThid ) ENDDO DO K = Nz, 1, -1 kM1 =max(1,k-1) ! Points to level above k (=k-1) kUp =1+MOD(k+1,2) ! Cycles through 1,2 to point to layer above kDown=1+MOD(k,2) ! Cycles through 2,1 to point to current layer iMin = 1-OLx+2 iMax = sNx+OLx-1 jMin = 1-OLy+2 jMax = sNy+OLy-1 C-- Get temporary terms used by tendency routines CALL CALC_COMMON_FACTORS ( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, O xA,yA,uTrans,vTrans,wTrans,maskC,maskUp, I myThid) C-- Calculate accelerations in the momentum equations IF ( momStepping ) THEN CALL CALC_MOM_RHS( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, I xA,yA,uTrans,vTrans,wTrans,maskC, I pH, U aTerm,xTerm,cTerm,mTerm,pTerm, U fZon, fMer, fVerU, fVerV, I myThid) ENDIF C-- Calculate active tracer tendencies IF ( tempStepping ) THEN CALL CALC_GT( I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, I xA,yA,uTrans,vTrans,wTrans,maskUp, I K13,K23,K33,KapGM, U aTerm,xTerm,fZon,fMer,fVerT, I myThid) ENDIF Cdbg CALL CALC_GS( Cdbg I bi,bj,iMin,iMax,jMin,jMax, k,kM1,kUp,kDown, Cdbg I xA,yA,uTrans,vTrans,wTrans,maskUp, Cdbg I K13,K23,K33,KapGM, Cdbg U aTerm,xTerm,fZon,fMer,fVerS, Cdbg I myThid) ENDDO ENDDO ENDDO !dbg write(0,*) 'dynamics: pS',minval(cg2d_x),maxval(cg2d_x) !dbg write(0,*) 'dynamics: U',minval(uVel(1:sNx,1:sNy,:,:,:)), !dbg & maxval(uVel(1:sNx,1:sNy,:,:,:)) !dbg write(0,*) 'dynamics: V',minval(vVel(1:sNx,1:sNy,:,:,:)), !dbg & maxval(vVel(1:sNx,1:sNy,:,:,:)) !dbg write(0,*) 'dynamics: gT',minval(gT(1:sNx,1:sNy,:,:,:)), !dbg & maxval(gT(1:sNx,1:sNy,:,:,:)) !dbg write(0,*) 'dynamics: T',minval(Theta(1:sNx,1:sNy,:,:,:)), !dbg & maxval(Theta(1:sNx,1:sNy,:,:,:)) !dbg write(0,*) 'dynamics: pH',minval(pH/(Gravity*Rhonil)), !dbg & maxval(pH/(Gravity*Rhonil)) RETURN END